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Abstract
Designing scalable and efficient Message Passing Inter-

face (MPI) implementations for emerging cluster intercon-
nects such as VIA-based networks and InfiniBand are im-
portant for building next generation clusters. In this pa-
per, we address the scalability issue in the implementation
of MPI over VIA by on-demand connection management
mechanism. The on-demand connection management is de-
signed to limit the use of resources to what applications ab-
solutely require.

We address the design issues of incorporating the on-
demand connection mechanism into an implementation
of MPI over VIA. A complete implementation was done
for MVICH over both cLAN VIA and Berkeley VIA. Per-
formance evaluation on a set of microbenchmarks and
NAS parallel benchmarks demonstrates that the on-demand
mechanism can increase the scalability of MPI implementa-
tions by limiting the use of resources as needed by applica-
tions. It also shows that the on-demand mechanism delivers
comparable or better performance as the static mechanism
in which a fully-connected process model usually exists in
the MPI implementations. These results demonstrate that
the on-demand connection mechanism is a feasible solu-
tion to increase the scalability of MPI implementations over
VIA- and InfiniBand-based networks.

1. Introduction

In recent years, clusters of workstations have become
both a popular and powerful environment on which to do
parallel processing due to the tremendous improvement in
network hardware and protocols, and the ever decreasing
cost of commodity components. On these cluster systems,
it is crucial to have an efficient communication system that
can make effective use of the capability of the underlying
network hardware and deliver the actual performance of the
�
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hardware to applications. A significant body of research
in user-level communication protocols has been developed
over the years.

The Virtual Interface Architecture (VIA) [9, 7] has been
developed to standardize these protocol efforts. VIA de-
fines an abstraction of network protocols and hardware ca-
pabilities that provides applications with direct access to the
network, eliminates intermediate data copies using remote
direct memory access (RDMA), and thus increases host pro-
cessor application productivity.

More recently, the InfiniBand [13] architecture has been
proposed to provide the next generation high-performance
communication architecture for both inter-processor com-
munication and I/O. InfiniBand incorporates many of the
features of the VI architecture and draws on research efforts
from high performance networked I/O. In the next several
years, VIA/InfiniBand will be the standard architecture for
high performance computing systems, servers, and clusters.

On these cluster systems, MPI [15] has become the
de facto standard for developing portable parallel applica-
tions. Several MPI implementations built on VIA are cur-
rently available: MPI/Pro [8] based on GigaNet cLAN [10];
MVICH [14], a port of the generic MPICH implementation
on M-VIA [1], GigaNet VIA and Servernet VIA [18]; and
LAM/MPI [4] on M-VIA. Several complex design issues
have been addressed in the literature describing these ef-
forts and in overview papers [17]. However, the aspect of
connection management has not yet been explored in detail.

MPI 1.2 does not specify a connection model. It as-
sumes that all processes are fully connected after initializa-
tion. VIA is connection-oriented. So, for any pair of pro-
cesses that will communicate, a VI endpoint must be created
on each node and a connection between these two VI end-
points must be established beforehand. These connections
between processes must be handled explicitly by the MPI
library itself when implemented on the VI Architecture. In
MVICH, for instance, each process creates ���	� VI end-
points and then establishes �
��� connections to other pro-



cesses statically during MPI Init(), where � is the number
of processes in the MPI application. Thus, after initializa-
tion, there is a fully-connected network among all partic-
ipating processes from the point of view of the VI layer.
The total number of VI endpoints is ��� � �
� ��� , with the
number of connections being half of that. This connection
management mechanism is simple to implement; however,
there are both scalability and performance problems in this
static connection mechanism:

1. In large systems, the time to establish and to destroy
a fully-connected process network is considerable and
significantly affects the time to start and to terminate a
parallel application. This is because connection setup
is typically a costly operation with operating system
involvement.

2. Beyond the basic connections required for message
passing, connections are likely to be needed for other
operations, such as for I/O operations on a parallel file
system and for debugging. The number of connections
supported in a specific VIA system serves as a hard
limit to scaling. Thus, a fully-connected parallel ap-
plication can easily exceed this limitation with only a
moderate task size.

3. In an MPI implementation based on VI, each VI is as-
sociated with certain internal buffers and pre-preposted
descriptors [7]. The amount of these resources for each
process would ideally be a function of an application’s
communication pattern when scaling to large systems.
However, in the static connection mechanism, it is a
function of the number of processes in the application,
regardless of what the application really needs. In re-
ality, many large-scale scientific parallel applications
do not require a fully-connected process model. Ta-
ble 1 lists the average number of communication des-
tinations per process in several applications [19]. Con-
sequently, a large amount of resources is never used in
these applications for the static connection mechanism
approach. The estimation of 1024 processes is based
on communication patterns described in [19] and im-
plementation of collective communication using bino-
mial tree algorithms [6].

4. The number of VIs and connections may have an im-
pact on performance of the underlying VIA commu-
nication system, even if the endpoints are never used
after setup, as discussed in [3] for Berkeley VIA [5].

An alternative approach that reduces the number of VIs
and connections required by a large application is to estab-
lish connections when they are needed. We call this ap-
proach the on-demand connection mechanism. In this ap-
proach, the creation of two VI endpoints and establishment

Table 1. Average number of distinct destina-
tions per process
Application # of processes Average # of destinations

64 5.5
sPPM 1024 ���

64 41.88
SMG2000 1024 �	��
���


64 0.98
Sphot 1024 ���

64 3.5
Sweep3D 1024 ���

64 4.94
Samrai4 1024 ����


64 6.36
CG 1024 �����

of a connection between them are on a per-use basis for any
pair of processes, and undertaken only when it is known that
they need a connection to pass messages.

In this paper, we focus on designing and implementing
an on-demand connection mechanism in MPI over VIA.
Detailed performance evaluations are also presented. The
main contributions of this paper are as follows:

� We have addressed the issues in incorporating the on-
demand connection mechanism into an MPI imple-
mentation on VIA-based communication systems.

� We have implemented this on-demand connection
mechanism in MVICH over cLAN VIA and over
Berkeley VIA on Myrinet.

� We have shown that by using the on-demand connec-
tion mechanism, the resource consumption of parallel
applications, such as the NAS parallel benchmarks, is
dramatically reduced.

� We have conducted a series of performance evalua-
tions. Performance results of both microbenchmarks
and the NAS parallel benchmarks show that there is
very little performance degradation after incorporating
the on-demand connection mechanism in MVICH over
cLAN VIA. The performance even increases for cer-
tain applications. The performance over Berkeley VIA
on Myrinet is better than the static mechanism.

The rest of the paper is organized as follows. Back-
ground and related work are presented in section 2. Sec-
tion 3 describes the design issues of incorporating the on-
demand connection mechanism into a generic MPI imple-
mentation, while section 4 presents our implementation of
the on-demand connection mechanism in MVICH. The per-
formance results are presented in section 5, followed by
conclusions and future work in section 6.
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2. Background and related work

The Virtual Interface Architecture (VIA) [7] specifies the
interface between high performance network hardware and
computer systems. This architecture defines mechanisms
to eliminate much of the protocol processing overhead and
intermediate data copies by providing user applications a
protected and directly accessible network interface called
the Virtual Interface (VI).

A VI is a bi-directional communication endpoint. To use
a VI, a point-to-point channel must be established between
two VIs, in a process known as connection setup. Each
channel supports the traditional two-sided send/receive
model, as well as a one-sided remote memory access model.
VI connection establishment is typically a costly operation
with operating system involvement. Initially in version 0.95
of the VIA specification, only a client-server connection
model [7] was defined. The server side waits for incoming
connection requests and then either accepts them or rejects
them based on the attributes associated with the remote VI.
Since VIA specification 1.0, a peer-to-peer model has been
included as well. In this model, either of the two processes
to be connected can initiate the connection by calling a VIA
peer-to-peer connection setup function. The connection is
established after both of them have called the connection
setup function.

There is some literature which analyzes the VI architec-
ture and its ability to support parallel and distributed com-
munication in general, and MPI implementations in partic-
ular. The inherent costs of using VI primitives to imple-
ment Active Messages and Split-C were analyzed in [2],
while [8] described efficiency features of the MPI/Pro ar-
chitecture gained by exploiting certain characteristics of the
VI architecture. [12] compared the performance of Myrinet
and GigaNet and their respective impacts on an MPI imple-
mentation. Their results indicated that the implementation
of MPI is crucial for system performance. In [20], Wong
et al. present a study of the scalability of the NAS Paral-
lel benchmarks from the aspect of resident working set and
communication performance. None of these works studied
the connection scalability issues of the implementation of
MPI over VIA nor the impact of connection management
on application performance.

Brightwell et al. [17] analyze the scalability limitations
of VIA in supporting the CPlant runtime system as well
as any high performance implementation of MPI. The au-
thors of this paper claim using qualitative analysis that
the on-demand connection mechanism is not a good ap-
proach to increase the scalability of the MPI implemen-
tation; however, their analysis does not consider the im-
pact of the number of connections on the underlying VIA
communication system nor the impact of the allocation of
large physical memory buffers on system performance. We
argue that with efficient design and implementation, the

on-demand connection mechanism can achieve comparable
performance. Also, it does not require an extra thread to
make progress, and it keeps the same properties of deter-
minism, predictability, and fairness as the static mechanism.

3. Design

In the on-demand connection mechanism, the creation of
VI endpoints and the establishment of a connection between
two VI endpoints are performed strictly on a per-use basis
for any pair of processes, and undertaken when they pass
messages for the first time. Although conceptually simple,
it is not trivial to incorporate it into current MPI implemen-
tations. In this section, we present the design issues in the
on-demand connection mechanism.

3.1. Threading vs. Polling

The on-demand connection mechanism requires that an
MPI process should be able to handle communication re-
quests and connection requests simultaneously. The process
cannot just block for communication, or just block for con-
nection. It must be ready to handle both. Since VIA itself
does not provide such a capability, this problem must be
addressed explicitly in the MPI implementation.

Two alternatives can be used to solve the problem. The
first one is to use a separate thread to handle all connec-
tion requests, while the main thread is dedicated to compu-
tation and established communication. In this way, com-
munication progress can be ensured. However, a separate
thread, which will incur a large overhead on context switch
between the main thread and itself, may degrade application
performance. Some MPI implementations, like MPI/Pro,
are multi-threaded. For these implementations, it may be
possible to use the existing second thread to handle connec-
tion requests. However, many MPI implementations, such
as MPICH, are based on a single thread. These MPI im-
plementations may not even be thread safe. Incorporating
the on-demand connection mechanism into them by adding
a separate thread will be very difficult.

Another method is using polling to handle both com-
munication and connection requests. In a polling-based
approach, the process checks periodically to see if there
are pending communication or connection requests. This
matches quite well with single threaded MPI implementa-
tions such as MPICH and it has very little overhead. In this
paper, we have chosen such an approach and implemented
it for MVICH on top of both cLAN VIA and Berkeley VIA.

3.2. Client/Server vs. Peer-to-Peer connection
model

VIA provides two connection models: client/server and
peer-to-peer. In theory both models can be used to imple-
ment an on-demand connection mechanism. However, we
have found that the peer-to-peer connection model is gener-
ally better for the on-demand connection mechanism.
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In the client/server connection model, one process acts
as the server and the other acts as the client. The two pro-
cesses have different actions during the connection setup
procedure. Consequently, we have to be careful choosing
the client and the server; otherwise deadlock situations may
occur. The asymmetry of the client/server model also makes
the implementation awkward.

In the peer-to-peer model, both processes involved in
the connection setup behave similarly. And the order in
which the two processes perform these actions does not
matter. This matches quite well with the MPI communi-
cation model because either the message sender or the re-
ceiver can initiate communication setup. The symmetry of
the model also makes the implementation task easier.

3.3. Progress rule
The progress rules of MPI [15] are both a promise to

users and a set of constraints on implementors, though dif-
ferent interpretations seem to be possible. For example,
MPICH [11] and MPI/Pro [8] follow a loose interpretation
and a strict interpretation, respectively. In incorporating the
on-demand connection mechanism into MPI for the VI Ar-
chitecture, it is important to maintain this progress rule.

The on-demand connection mechanism can be incorpo-
rated into the above two typical implementations of MPI
without violation of their respective progress semantics.
The requirement of a “server” thread waiting to establish
connections [17] depends on which interpretation of the
MPI progress rule is provided. In MPICH, no thread is
needed to maintain the loose interpretation of progress. In
the case that there is a progress thread as implemented in
MPI/Pro, this progress thread can take care of connection
requests as well as communication requests.

3.4. Pre-posted send requests
In the on-demand connection mechanism, one important

scenario must be carefully examined for both correctness
and message delivery order. This scenario reflects the sit-
uation where an MPI application issues multiple nonblock-
ing communication requests before the corresponding con-
nection is established. For the VI Architecture, any re-
quests posted into the Send Queue of a VI which is not yet
connected are discarded, which would result in MPI mes-
sage loss. To prevent this, pre-posted send requests must
be stored if the corresponding connection is not yet estab-
lished. To ensure the MPI message order rule, these pend-
ing requests should be processed in a first-in-first-out order
when connections are available.

Note that all receive requests and send requests issued
after the related connection is established can be handled
directly.

3.5. Message reception with MPI ANY SOURCE
MPI allows a special “wildcard” parameter to be speci-

fied as the source host in a receive. Since the receive may

potentially match a message issued from any sender, the
receiver must be prepared to receive a message from any
host and thus must establish connections with all other pro-
cesses.

This communication pattern exhibits a mismatch with
the on-demand connection mechanism. The only solution
is to issue connection requests to all other processes in the
specified communicator upon encountering a receive from
MPI ANY SOURCE. The receiver will then have an estab-
lished connection with the process with which it will even-
tually communicate. In this solution, each process has the
same probability to establish a connection and communi-
cate with the receiver as long as it wants.

Note that there is no problem with fairness in this
scenario since any nondeterminism is inherent in the
application itself. If the receiver chooses to use
MPI ANY SOURCE, and there happen to be multiple
senders which could issue messages that might all match the
receive, MPI offers no ordering guarantees, nor any concept
of fairness in this case. As messages arrive, including data
and connection requests, they will be processed in order and
matched against the receive queue.

4. Implementation

We implemented the on-demand connection mechanism
for MVICH on top of both GigaNet cLAN VIA and Berke-
ley VIA on Myrinet. MVICH is a freely available port of
MPICH on several VIA implementations. All modification
for incorporating the on-demand connection mechanism oc-
curs in the ADI layer [11].

Unlike the original MVICH implementation with static
connection management, there are no VI creation and VI
connection setup in the MPI low-level initialization routine,
MPID Init(). Instead, a VI is created and a peer-to-peer con-
nection request is issued during the processing of the first
communication request. Before the connection for a VI is
established, all send requests on that VI are stored in a FIFO
queue.

MVICH adheres to the weak form of the MPI progress
rule in that message progress is guaranteed only when user
processes call the MPI library. This is achieved by running
a common device check routine, MPID DeviceCheck(),
as part of most of the MPI library calls. Essentially,
MPID DeviceCheck() is the function in MVICH which
handles all message progress. Modification is thus made to
MPID DeviceCheck() to maintain both connection progress
and message progress.

Our implementation of the on-demand connection mech-
anism keeps the same communication semantics and
progress guarantees as the original MVICH implementation
using the static connection mechanism except for a small
difference in the non-local semantics of the standard send
mode. In the static mechanism, the standard mode send is
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non-local and the successful completion of a send opera-
tion may depend on the occurrence of a matching receive,
for example, when flow control credits are used up for short
messages or a long message switches to a rendezvous proto-
col. In the on-demand connection mechanism, even if flow
control credits are available for short messages, the com-
pletion of short messages still depends on whether the con-
nection can be established. That is, the completion of pre-
posted send requests for short messages at the source pro-
cess depends on whether the receiver has planned to com-
municate with the sender. This is not a problem in any cor-
rect MPI program because the receiver can always find a
chance to issue a connection request to the sender in any
communication requests destined for the sender. Note that
this also complies with the original interpretation of the MPI
progress rule.

5. Performance results

To evaluate the performance of the on-demand connec-
tion mechanism as compared to the static connection mech-
anism, we conducted a series of measurements using a set
of microbenchmarks and evaluated application performance
with the NAS parallel benchmarks.

5.1. Experimental setup

Our experimental testbed is a cluster system consisting
of 8 Dell Power Edge 6400 nodes connected by GigaNet
cLAN and Myrinet. We use cLAN 1000 Host Adapters and
cLAN5300 Cluster switches. LANai 7.0 Adapters are used
for Myrinet. Each node has four 700MHz Pentium III Xeon
processors, built around the ServerWorks ServerSet III HE
chipset, which has a 64-bit 66 MHz PCI. Thus, there are
actually 32 CPUs in total. These nodes are equipped with
1GB of SDRAM and 1MB L2-level cache. The linux kernel
is 2.2.17.

5.2. Scalability

One of our main objectives is to increase scalability of
MPI implementations on the Virtual Interface Architecture.
As mentioned earlier, implementing the on-demand connec-
tion mechanism in MVICH enables the implementation of
MPI over VIA to limit the use of resources to what applica-
tions absolutely require. Table 5.2 lists the average number
of VI endpoints created in each process in the static mecha-
nism and in the on-demand mechanism for tests in this pa-
per (due to space limit, some of them are not presented and
can be found in [21]). As shown in this table, the utilization
of resources associated with VIs is very low with the static
mechanism. With increasing the size of applications, it can
be expected that the utilization becomes much lower. This
is true for most parallel applications in which the number
of communicating processes does not grow in proportion
with the size of applications, instead it remains constant or
grows as the surface-to-volume ratio of the computational

grid. The on-demand mechanism eliminates all unused VI
endpoints, connections, and their related resources in most
cases, although potentially unused endpoints will be created
if MPI ANY SOURCE is used by the application.

Table 2. Average number of VIs and resource
utilization on each process

Ave. # of VIs Resource Utilization
App Size static on-demand static on-demand

16 15 2 0.13 1.0
Ring 32 31 2 0.06 1.0

16 15 4 0.27 1.0
Barrier 32 31 5 0.16 1.0

16 15 4 0.27 1.0
Bcast 32 31 5 0.16 1.0

16 15 4 0.27 1.0
Allreduce 32 31 5 0.16 1.0

16 15 5 0.33 1.0
Allgather 32 31 6 0.19 1.0

16 15 15 1.0 1.0
Alltoall 32 31 31 1.0 1.0

16 15 4.75 0.32 1.0
CG 32 31 5.78 0.19 1.0

16 15 15 1.0 1.0
MG 32 31 31 1.0 1.0

16 15 15 1.0 1.0
IS 32 31 31 1.0 1.0

16 15 8 0.53 1.0
SP 36 35 9.83 0.28 1.0

16 15 8 0.53 1.0
BT 36 35 9.83 0.28 1.0

Furthermore, decreasing the number of VIs and connec-
tions in the communication system can relieve the issue
of performance scalability in the underlying communica-
tion system, such as Berkeley VIA, which exhibits a per-
formance penalty to maintain a large number of VIs and
connections.

5.3. Latency and bandwidth
Figure 1(a) shows the latency results of MVICH on

cLAN and Berkeley VIA for 1000 tests using each of the
two mechanisms under study. They perform almost iden-
tically. Note that the on-demand mechanism suffers one
obvious handicap: the cost of connection establishment is
included in the timing loop of the benchmark because the
connections are not pre-established as they are in the static
connection mechanism, but this expense is amortized across
the 1000 loops of the test.

Similar results are shown in Figure 1(b) for bandwidth.
Since the default threshold of transition from the eager pro-
tocol to the rendezvous protocol is 5000 bytes, a jump can
be seen in the bandwidth test.

5.4. Collective communications
MPI Allreduce is one of the most frequently used opera-

tions [19] in large scientific applications. The test program
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Figure 1. Latency and Bandwidth of MVICH on cLAN VIA and Berkeley VIA.

we used is the LLCbench [16] benchmark suite. The op-
eration in MPI Allreduce is MPI SUM. This program re-
peats these collective operations multiple times and then
each process reports its own average latency. Only the la-
tency on the master process (process 0 as default) is reported
in Figure 2.

On cLAN VIA, the on-demand mechanism can achieve
the same performance as the static mechanism with negligi-
ble degradation.

On Berkeley VIA, the reduction of VIs in the on-demand
mechanism is beneficial. It can be seen that the on-demand
mechanism achieves better performance than the static
mechanism. For example, the latency of MPI Allreduce
with a message size of 1024 bytes on 8 nodes is 440 � s
using the on-demand mechanism, while 515 � s using the
static mechanism. The number of VIs is 3 in the former
case, and 7 in the latter case.

Similar results are achieved for other collective op-
erations and can be referred in [21]. Overall, the on-
demand mechanism delivers the same performance as the
static mechanism on cLAN VIA and better performance on
Berkeley VIA.

5.5. NAS parallel benchmarks

The NPB suite consists of a set of 8 programs: EP, FT,
MG, CG, IS, LU, SP and BT. In this paper, we show the
results of MG, CG, IS, SP and BT only. For other three pro-
grams, there is little communication in EP and there is some
compiling and/or running problems with LU and FT. Be-
cause we are interested in only the impact of the on-demand
mechanism as compared to the existing static mechanism,
we show normalized CPU times. Complete data can be
found in [21].

Figure 3 shows the performance of 5 NPB programs
with different program sizes and numbers of processes.
Our testbed has 32 processors, the largest number of pro-
cesses tested in CG, MG, IS is 32, while only 16 in SP
and BT since they require a square number of processes.
For MVICH over Berkeley VIA, we could not run more
than one process on each node. Thus, the largest num-
ber of processes supported there is eight. The � -axis lists

the tested combinations of the class and the number of pro-
cesses for each program, and the � -axis represents the nor-
malized CPU time. For example, in Figure 3(c), C.32 indi-
cates class C data size on 32 processors.

It should be noted that in these benchmarks, the time
for establishing connections is not included when run using
the static connection mechanism. In the on-demand mech-
anism, part of connections are established during MPI ini-
tialization and others are established during the timed exe-
cution of applications. That is, part of the connection time
is included in the CPU time reported by the NAS bench-
marks with the on-demand mechanism. This connection
overhead is amortized by all communication operations on
that connection. Thus, when there is much communication,
the performance improvement by the reduction of VIs and
connections and other related resources can still show an
improvement over the static connection scheme.

In Figure 3, it can be observed that the on-demand mech-
anism delivers performance comparable to the static mech-
anism, performing better in several of them. The average
improvement or degradation in performance is less than 2%
in all cases.

Figure 4 shows the performance of IS, CG, SP and BT
of MVICH over Berkeley VIA. The on-demand mechanism
performs better than the static mechanism. This is attributed
to the performance improvement with the reduction of VIs
and connections. Note that even though there are same
number of VIs with static and on-demand mechanisms in
the IS benchmark, the on-demand mechanism still performs
better. This is because the number of VIs gradually in-
creases as needed with the on-demand mechanism.

5.6. Initialization time

As mentioned earlier, the static mechanism can be im-
plemented under either connection model: client-sever and
peer-to-peer models. cLAN VIA supports both models,
while Berkeley VIA only supports the peer-to-peer model.
We measured the time for finishing the MPI Init() function
in MVICH over cLAN VIA and Berkeley VIA, respectively.
The initialization time shown here is an average of the ini-
tialization time from all processes.
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Figure 3. Performance results of NPB programs in MVICH over cLAN.
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 Figure 4. Performance results of NPB pro-
grams in MVICH over Berkeley VIA on
Myrinet.

Figure 5(a) shows the initialization time on cLAN VIA.
The current implementation of the client-server model in
MVICH is serialized, in which connections are established
strictly in order regardless of the actual arrival order of con-
nection requests from peer processes, while the peer-to-peer
scheme avoids this serialization by checking each potential
connection request. Note that the peer-to-peer model is also
used in our implementation of the on-demand connection
mechanism. However, a fully-connected network is not cre-
ated; thus, the initialization time is lower than in the peer-
to-peer implementation of the static mechanism. In the on-
demand mechanism, it also uses peer-to-peer model. How-
ever, it does not create a fully-connected network. Thus, the
initialization time is lower than the peer-to-peer implemen-
tation of the static mechanism.

Figure 5(b) shows the initialization time in MVICH over
Berkeley VIA. Similarly, the initialization time is lower
than the peer-to-peer implementation of the static mecha-
nism. This initialization time has an impact on the wall
clock time for the execution of applications.

6. Conclusions and future work

The scalability of an implementation of MPI over VIA
is one of the crucial issues in cluster systems connected by
VIA-based networks. Since InfiniBand has many character-
istics in common with VIA and with VIA-based I/O spec-
ifications such as Next Generation I/O (NGIO), this issue
will continue to exist along with future InfiniBand hard-
ware. In this paper, we addressed the design issues of in-
corporating the on-demand connection mechanism into an
implementation of MPI over VIA. A complete implementa-
tion was done for MVICH over cLAN VIA and over Berke-
ley VIA on Myrinet. Performance evaluation on a set of
microbenchmarks and NAS parallel benchmarks demon-
strates that the on-demand mechanism can limit the use of
resources to what applications absolutely require. Thus,
the MPI implementation ensures that resource usage scales
only as demanded by the application itself, not the underly-
ing system.

Furthermore, performance evaluation also shows that the
on-demand mechanism delivers comparable performance
for a set of microbenchmarks and the NAS application
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Figure 5. Initialization time in MVICH on cLAN VIA and Berkeley VIA.

benchmarks to the static mechanism over cLAN VIA, and
better performance compared to the static mechanism over
Berkeley VIA on Myrinet.

We also addressed how to design and implement the on-
demand mechanism to maintain MPI semantics, determin-
ism, predictability, and fairness. We believe that the on-
demand mechanism is a feasible solution to address one im-
portant current scalability limitation in the implementation
of MPI on VIA-based networks.

Truly large-scale application performance evaluation is a
natural extension of this work. Combination of on-demand
connection establishment and dynamic flow-control on each
VI connection is another planned work.
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