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ABSTRACT

Cluster of workstations is one of the most popular architectures in high perfor-

mance computing, thanks to its cost-to-performance effectiveness. As multi-core

technologies are becoming mainstream, more and more clusters are deploying multi-

core processors as the build unit. In the latest Top500 supercomputer list published

in November 2008, about 85% of the sites use multi-core processors from Intel and

AMD. Message Passing Interface (MPI) is one of the most popular programming

models for cluster computing. With increased deployment of multi-core systems in

clusters, it is expected that considerable communication will take place within a

node. This suggests that MPI intra-node communication is going to play a key role

in the overall application performance.

This dissertation presents novel MPI intra-node communication designs, includ-

ing user level shared memory based approach, kernel assisted direct copy approach,

and efficient multi-core aware hybrid approach. The user level shared memory based

approach is portable across operating systems and platforms. The processes copy

messages into and from a shared memory area for communication. The shared

buffers are organized in a way such that it is efficient in cache utilization and mem-

ory usage. The kernel assisted direct copy approach takes help from the operating

system kernel and directly copies message from one process to another so that it
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only needs one copy and improves performance from the shared memory based ap-

proach. In this approach, the memory copy can be either CPU based or DMA

based. This dissertation explores both directions and for DMA based memory copy,

we take advantage of novel mechanism such as I/OAT to achieve better performance

and computation and communication overlap. To optimize performance on multi-

core systems, we efficiently combine the shared memory approach and the kernel

assisted direct copy approach and propose a topology-aware and skew-aware hybrid

approach. The dissertation also presents comprehensive performance evaluation and

analysis of the approaches on contemporary multi-core systems such as Intel Clover-

town cluster and AMD Barcelona cluster, both of which are quad-core processors

based systems.

Software developed as a part of this dissertation is available in MVAPICH and

MVAPICH2, which are popular open-source implementations of MPI-1 and MPI-2

libraries over InfiniBand and other RDMA-enabled networks and are used by several

hundred top computing sites all around the world.
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CHAPTER 1

INTRODUCTION

The pace people pursuing computing power has never slowed down. Moore’s Law

has been proven to be true over the passage of time - the performance of microchips

has been increasing at an exponential rate, doubling every two years. “In 1978, a

commercial flight between New York and Paris cost around $900 and took seven

hours. If the principles of Moore’s Law had been applied to the airline industry the

way they have to the semiconductor industry since 1978, that flight would now cost

about a penny and take less than one second.” (a statement from Intel) However,

it becomes more difficult to speedup processors nowadays by increasing frequency.

One major barrier is the overheat problem, which high-frequency CPU must deal

with carefully. The other issue is power consumption. These concerns make it less

cost-to-performance effective to increase processor clock rate. Therefore, computer

architects have designed multi-core processor, which means to place two or more

processing cores on the same chip [29]. Multi-core processors speedup application

performance by dividing the workload to different cores. It is also referred to as

Chip Multiprocessor (CMP).

On the other hand, clusters [4] have been one of the most popular environments

in parallel computing for decades. The emergence of multi-core architecture has

1



brought clusters into a multi-core era. As a matter of fact, multi-core processors have

already been widely deployed in parallel computing. In the Top500 supercomputer

list published in 2007, more than 77% processors are multi-core processors from

Intel and AMD [24]. This number becomes 85% in the latest Top500 list published

in November, 2008.

Message Passing Interface (MPI) [61] is one of the most popular programming

models for cluster computing. With the rapid deployment of multi-core systems in

clusters, more and more communication will take place inside a node, which means

MPI intra-node communication will play a critical role to the overall application

performance.

MVAPICH [15] is an MPI library that delivers high performance, scalability and

fault tolerance for high-end computing systems and servers using InfiniBand [6],

iWARP [13] and other RDMA-enabled [67] interconnect networking technologies.

MVAPICH2 is MPI-2 [62] compliant. MVAPICH and MVAPICH2 are being used

by more than 840 organizations world-wide to extract the potential of these emerging

networking technologies for modern systems.

In this dissertation we use MVAPICH as the framework and explore the alter-

natives of designing MPI intra-node communication, come up with optimization

strategies for multi-core clusters, and study on the factors that affect MPI intra-

node communication performance. Further, we conduct in-depth evaluation and

analysis on application characteristics on multi-core clusters.
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The rest of the chapter is organized as follows. First we provide an overview of

the architectures of multi-core processors. Then we introduce the basic MPI intra-

node communication schemes. Following that we present the problem statement and

our research approaches. And finally we provide an overview of this dissertation.

1.1 Architectures of Multi-core Clusters

Multi-core means to integrate two or more complete computational cores within

a single chip [29]. The motivation of the development of multi-core processors is the

fact that scaling up processor speed results in dramatic rise in power consumption

and heat generation. In addition, it becomes more difficult to increase processor

speed nowadays that even a little increase in performance will be costly. Realizing

these factors, computer architects have proposed multi-core processors that speed up

application performance by dividing the workload among multiple processing cores

instead of using one “super fast” single processor. Multi-core processor is also re-

ferred to as Chip Multiprocessor (CMP). Since a processing core can be viewed as an

independent processor, in this proposal we use processor and core interchangeably.

Most processor venders have multi-core products, e.g. Intel Quad-core [11] and

Dual-core [9] Xeon, AMD Quad-core [21] and Dual-core Opteron [3], Sun Microsys-

tems UltraSPARC T1 (8 cores) [25], IBM Cell [23], etc. There are various alterna-

tives in designing cache hierarchy organization and memory access model. Figure 1.1

illustrates two typical multi-core system designs. The left box shows a NUMA [1]

based dual-core system in which each core has its own L2 cache. Two cores on

the same chip share the memory controller and local memory. Processors can also

access remote memory, although local memory access is much faster. The right box

3



shows a bus based dual-core system, in which two cores on the same chip share the

same L2 cache and memory controller, and all the cores access the main memory

through a shared bus. Intel Woodcrest processors [12] belong to this architecture.

Intel Clovertown processors (quad-core) [7] are made of two Woodcrest processors.

There are more advanced systems emerging recently, e.g. AMD Barcelona quad-core

processors, in which four cores on the same chip have their own L2 caches but share

the same L3 cache. The L3 cache is not a traditional inclusive cache, when data

is loaded from the L3 cache to the L1 cache (L2 is always bypassed) the data can

be removed from L3 or remain there depending on whether other cores are likely to

access the data in the future. In addition, the L3 cache doesn’t load data from the

memory, it acts like a spill-over cache for items evicted from the L2 cache.

NUMA is a computer memory design where the memory access time depends

on the memory location relative to a processor. Under NUMA, memory is shared

between processors, but a processor can access its own local memory faster than

non-local memory. Therefore, data locality is critical to the performance of an

application. AMD systems are mostly based on NUMA architecture. Modern op-

erating systems allocate memory in a NUMA-aware manner. Memory pages are

always physically allocated local to processors where they are first touched, unless

the desired memory is not available. Solaris has been supporting NUMA architec-

ture for a number of years [71]. Linux also started to be NUMA-aware from 2.6

kernel. In our work so far we focus on Linux.

Due to its greater computing power and cost-to-performance effectiveness, multi-

core processor has been deployed in cluster computing. In a multi-core cluster,

there are three levels of communication as shown in Figure 1.1. The communication
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Figure 1.1: Illustration of Multi-Core Cluster

between two processors on the same chip is referred to as intra-CMP communication

in this proposal. The communication across chips but within a node is referred to

as inter-CMP communication. And the communication between two processors on

different nodes is referred to as inter-node communication.

Multi-core cluster imposes new challenges in software design, both on middleware

level and application level. How to design multi-core aware parallel programs and

communication middleware to get optimal performance is a hot topic. There have

been studies on multi-core systems. Koop, et al in [53] have evaluated the memory

subsystem of Bensley platform using microbenchmarks. Alam, et al have done a

scientific workloads characterization on AMD Opteron based multi-core systems [40].

Realizing the importance and popularity of multi-core architectures, researchers

start to propose techniques for application optimization on multi-core systems. Some

of the techniques are discussed in [36], [42], and [73]. Discussions of OpenMP on

multi-core processors can be found in [39].
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1.2 MPI Intra-node Communication

MPI stands for Message Passing Interface [61]. It is the de facto standard used

for cluster computing. There are multiple MPI libraries in addition to MVAPICH,

such as MPICH [45], MPICH2 [16], OpenMPI [17], HP MPI [5], Intel MPI [10],

etc. Most clusters are built with multi-processor systems which means inter-node

and intra-node communication co-exists in cluster computing. In this section we

introduce the basic approaches for MPI intra-node communication.

NIC-Based Message Loopback

An intelligent NIC can provide a NIC-based loopback. When a message transfer

is initiated, the NIC can detect whether the destination is on the same physical node

or not. By initiating a local DMA from the NIC memory back to the host memory

as shown in Figure 1.2(a), we can eliminate overheads on the network link because

the message is not injected into the network. However, there still exist two DMA

operations. Although I/O buses are getting faster, the DMA overhead is still high.

Further, the DMA operations cannot utilize the cache effect.

InfiniHost [59] is a Mellanox’s second generation InfiniBand Host Channel Adapter

(HCA). It provides internal loopback for packets transmitted between two Queue

Pairs (connections) that are assigned to the same HCA port. Most of other high-

speed interconnections such as Myrinet [27] and Quadrics [64] also provide NIC-

based message loopback. Ciaccio [32] also utilized NIC-level loopback to implement

an efficient memcpy().
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Figure 1.2: Memory Transactions for Different Intra-Node Communication Schemes

User-Space Shared Memory

This design alternative involves each MPI process on a local node, attaching

itself to a shared memory region. This shared memory region can then be used

amongst the local processes to exchange messages and other control information.

The sending process copies the message to the shared memory area. The receiving

process can then copy over the message to its own buffer. This approach involves

minimal setup overhead for every message exchange and shows better performance

for small and medium message sizes than NIC-level message loopback.

Figure 1.2(b) shows the various memory transactions which happen during the

message transfer. In the first memory transaction labeled as 1; the MPI process

needs to bring the send buffer to the cache. The second operation is a write into

the shared memory buffer, labeled as 3. If the block of shared memory is not in

cache, another memory transaction, labeled as 2 will occur to bring the block in

cache. After this, the shared memory block will be accessed by the receiving MPI
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process. The memory transactions will depend on the policy of the cache coherency

implementation and can result in either operation 4a or 4b-1 followed by 4b-2. Then

the receiving process needs to write into the receive buffer, operation labeled as 6.

If the receive buffer is not in cache, then it will result in operation labeled as 5.

Finally, depending on the cache block replacement scheme, step 7 might occur. It

is to be noted that there are at least two copies involved in the message exchange.

This approach might tie down the CPU with memory copy time. In addition, as the

size of the message grows, the performance deteriorates because vigorous copy-in

and copy-out also destroys the cache contents for the end MPI application.

This shared memory based design has been used in MPICH-GM [63] and other

MPI implementations such as MVAPICH [15]. In addition, Lumetta et al. [56]

have dealt with efficient design of shared memory message passing protocol and

multiprotocol implementation. MPICH-Madeleine [26] and MPICH-G2 [41, 52] also

have suggested multi-protocol communication, which can provide a framework for

having different channels for inter and intra-node communication.

CPU Based Kernel Modules for Memory Mapping

Kernel-Based Memory Mapping approach takes help from the operating system

kernel to copy messages directly from one user process to another without any

additional copy operation. The sender or the receiver process posts the message

request descriptor in a message queue indicating its virtual address, tag, etc. This

memory is mapped into the kernel address space when the other process arrives at

the message exchange point. Then the kernel performs a direct copy from the sender

buffer to the receiver application buffer. Thus this approach involves only one copy.
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Figure 1.2(c) demonstrates the memory transactions needed for copying from the

sender buffer directly to the receiver buffer. In step 1, the receiving process needs to

bring the sending process’ buffer into its cache block. Then in step 3, the receiving

process can write this buffer into its own receive buffer. This may generate step 2

based on whether the block was in cache already or not. Then, depending on the

cache block replacement policy, step 4 might be generated implicitly.

It is to be noted that the number of possible memory transactions for the Kernel-

Based Memory Mapping is always less than the number in User-Space Shared Mem-

ory approach. We also note that due to the reduced number of copies to and from

various buffers, we can maximize the cache utilization. However, there are other

overheads. The overheads include time to trap into the kernel, memory mapping

overhead, and TLB flush time. In addition, still the CPU resource is required to

perform a copy operation. There are several previous works that adopt this ap-

proach, which include [43, 72]. We have explored the kernel based approaches, and

implemented a kernel module called LiMIC which will be described in Chapter 4.

I/OAT Based Kernel Modules

As mentioned in Section 1.2, DMA based approaches usually have high overhead.

Recently, Intel’s I/O Acceleration Technology (I/OAT) [44, 57, 68] introduced an

asynchronous DMA copy engine within the chip that has direct access to main

memory to improve performance and reduce the overheads mentioned above. I/O

Acceleration Technology offloads the data copy operation from the CPU with the

addition of an asynchronous DMA copy engine. The copy engine is implemented

as a PCI-enumerated device in the chipset and has multiple independent DMA

channels with direct access to main memory. When the processor requests a block
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memory copy operation from the engine, it can then asynchronously perform the

data transfer with no host processor intervention. When the engine completes a

copy, it can optionally generate an interrupt. As mentioned in [44], I/OAT supports

several interfaces in kernel space for copying data from a source page/buffer to a

destination page/buffer. These interfaces are asynchronous and the copy is not

guaranteed to be completed when the function returns. These interfaces return a

non-negative cookie value on success, which is used to check for completion of a

particular memory operation.

We have designed kernel modules to utilize I/OAT technology for memory copy.

The details are described in Chapter 5.

1.3 Problem Statement

The scope of this dissertation is shown in Figure 1.3. In short, we aim to design

high performance and scalable MPI intra-node communication schemes and study

their impacts on applications in-depth. We intend to understand the characteristics

of multi-core clusters, and optimize MPI performance on them. In Figure 1.3, the

white boxes stand for the existing components, the dark shaded boxes indicate the

components we have been working on, and the light shaded boxes are our future

work.

We present the problem statement of this dissertation in detail as follows:

• Can we have a significantly better understanding on application

characteristics on multi-core clusters, especially with respect to com-

munication performance, message distribution, cache utilization, and

scalability? - With the rapid emergence of multi-core architecture, clusters
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Figure 1.3: Problem Space of this Dissertation

have entered a multi-core era. In order to get optimal performance, it is crucial

to have in-depth understanding on application behaviors and trends on multi-

core clusters. It is also very important to identify potential bottlenecks in

multi-core clusters through evaluation, and explore possible solutions. How-

ever, since multi-core is a relatively new technology, few research has been

done in the literature.

• Can we design a shared memory based approach to allow MVA-

PICH to have better intra-node communication performance? - The

original MVAPICH used to use NIC base loopback approach. While it eases

code design - we do not need to distinguish between intra- and inter-node

communication, the performance is not optimal. Further, with the emergence

of multi-core systems, more and more cores can reside within one node, and
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the NIC based loopback approach may not be scalable since all the intra-node

communication will go through the PCI bus and the PCI bus may become a

bottleneck. It is essential to have a more efficient intra-node communication

scheme.

• Can we optimize the shared memory based approach to have lower

latency, better cache utilization, and reduced memory usage, thus

have improved performance especially on multi-core clusters? - There

are limitations in the current existing shared memory schemes. Some are not

scalable with respect to memory usage, and some require locking mechanisms

among processes to maintain consistency. Thus the performance is suboptimal

for a large number of processes. Moreover, few research has been done to study

the interaction between the multi-core systems and MPI implementations. We

need to take on the challenges and optimize the current shared memory based

schemes to improve MPI intra-node communication performance.

• Can we design MVAPICH intra-node communication to utilize ker-

nel module based approach to reduce the number of copies and

potentially benefit applications? - As mentioned in Section 1.2, one ap-

proach to avoid extra message copies is to use operating system kernel to

provide a direct copy from one process to another. Inside the kernel module,

it can either use CPU to do memory copy, or take advantage of any DMA en-

gines that are available for memory copy. Since this kind of approach requires

only one memory copy, it may improve MVAPICH intra-node communication

12



performance. And if we use the DMA for memory copy, we can potentially

achieve better computation and communication overlap.

• Can we design an efficient hybrid approach that utilizes both the

kernel module based approach and the shared memory based ap-

proach to get optimal performance, especially on multi-core clus-

ters? - User-level shared memory and kernel assisted direct copy are two

popular approaches. Both of them have advantages and disadvantages. How-

ever, we do not know if one of these approaches is sufficient for multi-core

clusters. In order to obtain optimized performance, it is important to have

a comprehensive understanding of these two approaches and combine them

effectively.

• What are the factors that affect MVAPICH Intra-node communi-

cation and how can we tune them to get the optimal performance?

- To optimize communication performance, many MPI implementations such

as MVAPICH provide multiple communication channels. These channels may

be used either for intra- or inter-node communication. Two important factors

that affect application performance are channel polling and threshold selec-

tion. It is important to understand how the applications perform with these

factors and have efficient channel polling and threshold selection algorithms

to improve on performance.

1.4 Research Approaches

In this section we present our general approaches to the above mentioned issues.
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1. Understanding the application characteristics on multi-core clusters

- We have designed a set of experiments to study the impact of multi-core ar-

chitecture on cluster computing. The purpose is to give both application and

communication middleware developers insights on how to improve overall per-

formance on multi-core clusters. The study includes MPI intra-node commu-

nication characteristics on multi-core clusters, message distribution in terms

of both communication channel and message size, cache utilization/potential

bottleneck identification, and initial scalability study.

2. Designing a basic user-level shared memory based approach for MPI

intra-node communication - We have designed a shared memory based im-

plementation for MVAPICH intra-node communication. A temporary file is

created and all the processes map the temporary file to their own memory

spaces as a shared memory area and use this shared memory area for commu-

nication.

3. Designing an advanced user-level shared memory based approach for

MPI intra-node communication for optimized performance - We have

optimized the basic shared memory based design to get better performance

and scalability. We want to achieve two goals in our design: 1. To obtain

low latency and high bandwidth between processes, and 2. To have reduced

memory usage for better scalability. We achieve the first goal by efficiently

utilizing the L2 cache and avoiding the use of lock. We achieve the second

goal by separating the buffer structures for small and large messages, and using

a shared buffer pool for each process to send large messages. We have also
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explored various optimization strategies to further improve the performance,

such as reducing the polling overhead, etc.

4. Designing kernel assisted direct copy approaches to eliminate extra

copies and achieve better computation and communication overlap

- We have designed two major kernel modules for MPI intra-node communica-

tion. One is called LiMIC/LiMIC2, which uses CPU based memory copy. And

the other uses Intel I/OAT which is an on-chip DMA to do memory copy. We

have also modified MVAPICH and MVAPICH2 to utilize the kernel modules.

5. Designing an efficient user-level and kernel-level hybrid approach

for multi-core clusters - We have carefully considered the characteristics of

the shared memory and kernel module based approaches, especially how they

perform with multi-core processors. We have analyzed these approaches and

come up with a topology-aware and skew-aware approach that combines the

two approaches efficiently for multi-core clusters.

6. Analyzing factors that affect multi-channel MPI performance and

designing optimization schemes - Channel polling and threshold selection

are two important factors for multi-channel MPI implementations. We have

designed efficient polling schemes among multiple channels. We have also ex-

plored methodologies to decide the thresholds between multiple channels. We

consider latency, bandwidth, and CPU resource requirement of each channel

to decide the thresholds.
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1.5 Dissertation Overview

We present our research over the next several chapters. In Chapter 2, we present

our study of application characteristics on multi-core clusters. We have done a com-

prehensive performance evaluation, profiling, and analysis using both microbench-

marks and application level benchmarks. We have several interesting observations

from the experimental results, including the impact of procesor topology, the im-

portance of MPI intra-node communication, the potential bottlenecks in multi-core

systems, and scalability of multi-core clusters.

In Chapter 3, we present our shared memory based designs for MPI intra-node

communication. In the shared memory based designs, all the processes map a tem-

porary file to their own memory spaces and use it as a shared memory area for

communication. We start with a basic design, in which the buffers are organized

such that every process has a receive queue corresponding to every other process.

We then present an advance design that reorganizes the communication buffers in

a more efficient way so that we can get lower latency, higher bandwidth, and less

memory usage.

In Chapters 4 and 5, we take on the challenges and design kernel assisted ap-

proaches for MPI intra-node communication. We have designed two major kernel

modules, one using CPU based memory copy and other using Intel I/OAT. Both

the kernel modules eliminate the extra copies and achieve better performance, and

using I/OAT can also achieve better computation and communication overlap.

In Chapter 6, we use a three-step methodology to design a hybrid approach

for MPI intra-node communication using two popular approaches, shared memory

(MVAPICH) and OS kernel assisted direct copy (MVAPICH-LiMIC2). The study
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has been done on an Intel quad-core (Clovertown) cluster. We have evaluated the

impacts of processor topology, communication buffer reuse, and process skew effects

on these two approaches, and profiled the L2 cache utilization. And based on the

results and analysis we have proposed topology-aware and skew-aware thresholds

to build an efficient hybrid approach which shows promising results on multi-core

clusters.

Since many MPI implementations utilize multiple channels for communication,

in Chapter 7 we have studied important factors to optimize multi-channel MPI. We

have proposed several different schemes for polling communication channels, includ-

ing static polling scheme and dynamic polling scheme. In addition, since multiple

channels can be used for MPI intra-node communication, we have also evaluated

thresholds for each channel both based on raw MPI latencies and bandwidths and

also CPU utilization. These optimizations demonstrate large performance improve-

ment.
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CHAPTER 2

UNDERSTANDING THE COMMUNICATION
CHARACTERISTICS ON MULTI-CORE CLUSTERS

Clusters have been one of the most popular environments in parallel computing

for decades. The emergence of multi-core architecture is bringing clusters into a

multi-core era. In order to get optimal performance, it is crucial to have in-depth

understanding on application behaviors and trends on multi-core clusters. It is

also very important to identify potential bottlenecks in multi-core clusters through

evaluation, and explore possible solutions. In this chapter, we design a set of ex-

periments to study the impact of multi-core architecture on cluster computing. We

aim to answer the following questions:

• What are the application communication characteristics on multi-core clus-

ters?

• What are the potential communication bottlenecks in multi-core clusters and

how to possibly avoid them?

• Can multi-core clusters scale well?
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The rest of the chapter is organized as follows: In Section 2.1 we describe the

methodology of our evaluation. The evaluation results and analysis are presented in

Section 2.2. Finally we summarize the results and impact of this work in Section 2.3.

2.1 Design of Experiments for Evaluating Multi-core Clus-
ters

To answer the questions mentioned in the beginning of this chapter, we describe

the evaluation methodology and explain the design and rational of each experiment.

2.1.1 Programming Model and Benchmarks

We choose to use MPI [14] as the programming model because it is the de facto

standard used in cluster computing. The MPI library used is MVAPICH2 [15]. In

MVAPICH2, intra-node communication, including both intra-CMP and inter-CMP,

is achieved by user level memory copy.

We evaluate both microbenchmarks and application level benchmarks to get

a comprehensive understanding on the system. Microbenchmarks include latency

and bandwidth tests. And application level benchmarks include HPL from HPCC

benchmark suite [47], NAMD [65] apoa1 data set, and NAS parallel benchmarks [38].

2.1.2 Design of Experiments

We have designed to carry out four sets of experiments for our study: latency and

bandwidth, message distribution, potential bottleneck identification, and scalability

tests. We describe them in detail below.
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• Latency and Bandwidth: These are standard ping-pong latency and band-

width tests to characterize the three levels of communication in multi-core

cluster: intra-CMP, inter-CMP, and inter-node communication.

• Message Distribution: We define message distribution as a two dimensional

metric. One dimension is with respect to the communication channel, i.e.

the percentage of traffic going through intra-CMP, inter-CMP, and inter-node

respectively. The other dimension is in terms of message size. This experi-

ment is very important because understanding message distribution facilitates

communication middleware developers, e.g. MPI implementors, to optimize

critical communication channels and message size range for applications. The

message distribution is measured in terms of both number of messages and

data volume.

• Potential Bottleneck Identification: In this experiment, we run application

level benchmarks on different configurations, e.g. four processes on the same

node, four processes on two different nodes, and four processes on four different

nodes. We want to discover the potential bottlenecks in multi-core cluster if

any, and explore approaches to alleviate or eliminate the bottlenecks. This will

give insights to application writers how to optimize algorithms and/or data

distribution for multi-core cluster. We also design an example to demonstrate

the effect of multi-core aware algorithm.

• Scalability Tests: This set of experiments is carried out to study the scalability

of multi-core cluster.
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2.1.3 Processor Affinity

In all our experiments, we use sched affinity system call to ensure the binding of

process with processor. The effect of processor affinity is two-fold. First, it eases our

analysis, because we know exactly the mapping of processes with processors. And

second, it makes application performance more stable, because process migration

requires cache invalidation and may degrade performance.

2.2 Performance Evaluation

In this section we present the experimental results and the analysis of the results.

We use the format pxq to represent a configuration. Here p is the number of nodes,

and q is the number of processors per node.

Evaluation Platforms: We use two multi-core clusters and one single-core

cluster for the experiments. Their setup is specified below:

Cluster A: Cluster A consists of 4 Intel Bensley systems connected by InfiniBand.

Each node is equipped with two sets of dual-core 2.6GHz Woodcrest processor, i.e.

4 processors per node. Two processors on the same chip share a 4MB L2 cache. The

overall architecture is similar to that shown in the right box in Figure 1.1. However,

Bensley system has added more dedicated memory bandwidth per processor by

doubling up on memory buses, with one bus dedicated to each of Bensley’s two

CPU chips. The InfiniBand HCA is Mellanox MT25208 DDR and the operating

system is Linux 2.6.

Cluster B: Cluster B is an Intel Clovertown cluster with 72 nodes. Each node

is equipped with dual quad-core Xeon processor, i.e. 8 cores per node, running at

2.0GHz. Each node has 4GB main memory. The nodes are connected by Mellanox
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InfiniBand DDR cards. The operating system is Linux 2.6.18 We use 32 nodes in

Cluster B for our experiments.

Cluster C: Cluster C is a single-core Intel cluster connected by InfiniBand. Each

node is equipped with dual Intel Xeon 3.6GHz processor and each processor has a

2MB L2 cache. Cluster C is used to compare the scalability.

In the following sections, Cluster A is used by default unless specified explicitly.

2.2.1 Latency and Bandwidth

Figure 2.1 shows the basic latency and bandwidth of the three levels of commu-

nication in a multi-core cluster. The numbers are taken at the MPI level. The small

message latency is 0.42us, 0.89us, and 2.83us for intra-CMP, inter-CMP, and inter-

node communication respectively. The corresponding peak bandwidth is 6684MB/s,

1258MB/s, and 1532MB/s.

From Figure 2.1 we can see that intra-CMP performance is far better than inter-

CMP and inter-node performance, especially for small and medium messages. This

is because in Intel Bensley system two cores on the same chip share the same L2

cache. Therefore, the communication just involves two cache operations if the com-

munication buffers are in the cache. From the figure we can also see that for large

messages, inter-CMP performance is not as good as inter-node performance, al-

though memory performance is supposed to be better than network performance.

This is because the intra-node communication is achieved through a shared buffer,

where two memory copies are involved. On the other hand, the inter-node commu-

nication uses the Remote Direct Memory Access (RDMA) operation provided by
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InfiniBand and rendezvous protocol [55], which forms a zero-copy and high perfor-

mance scheme. This also explains why for large messages (when the buffers are out

of cache) intra-CMP and inter-node perform comparably.

This set of results indicate that to optimize MPI intra-node communication

performance, one way is to have better L2 cache utilization to keep communication

buffers in the L2 cache as much as possible, and the other way is to reduce the

number of memory copies. We have proposed a preliminary enhanced MPI intra-

node communication design in our previous work [30].

(a) Small Message La-
tency

(b) Large Message La-
tency

(c) Bandwidth

Figure 2.1: Latency and Bandwidth in Multi-core Cluster

2.2.2 Message Distribution

As mentioned in Section 2.1, this set of experiments is designed to get more

insights with respect to the usage pattern of the communication channels, as well as

the message size distribution. In this section, we first present the results measured

on Cluster A and then present the results on Cluster B.
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(a) Number of Messages (b) Data Volume

Figure 2.2: Message Distribution of NAMD on 16 Cores

(a) Number of Messages (b) Data Volume

Figure 2.3: Message Distribution of HPL on 16 Cores
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Message Distribution on Cluster A: Figures 2.2 and 2.3 show the profiling

results for NAMD and HPL respectively. The results for NAS benchmarks are

listed in Table 6.1. The experiments are carried out on a 4x4 configuration and the

numbers are the average of all the processes.

Figures 2.2 and 2.3 are interpreted as the following. Suppose there are n mes-

sages transferred during the application run, in which m messages are in the range

(a, b]. Also suppose in these m messages, m1 are transferred through intra-CMP,

m2 through inter-CMP, and m3 through inter-node. Then:

• Bar Intra-CMP(a, b] = m1/m

• Bar Inter-CMP(a, b] = m2/m

• Bar Inter-node(a, b] = m3/m

• Point Overall(a, b] = m/n

From Figure 2.2 we have observed that most of the messages in NAMD are

of size 4KB to 64KB. Messages in this range take more than 90% of the total

number of messages and byte volume. Optimizing medium message communication

is important to NAMD performance. In the 4KB to 64KB message range, about

10% messages are transferred through intra-CMP, 30% are transferred through inter-

CMP, and 60% are transferred through inter-node. This is interesting and kind of

surprising. Intuitively, in a cluster environment intra-node communication is much

less than inter-node communication, because a process has much more inter-node

peers than intra-node peers. E.g. in our testbed, a process has 1 intra-CMP peer,

2 inter-CMP peers, and 12 inter-node peers. If a process has the same chance to

communicate with every other process, then theoretically:
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• Intra-CMP = 1/15 = 6.7%

• Inter-CMP = 2/15 = 13.3%

• Inter-node = 12/15 = 80%

If we call this distribution even distribution, then we see that intra-node com-

munication in NAMD is well above that in even distribution, for almost all the

message sizes. Optimizing intra-node communication is as important as optimizing

inter-node communication to NAMD.

From Figure 2.3 we observe that most messages are small messages in HPL,

from 256 bytes to 4KB. However, with respect to data volume messages larger

than 256KB take more percentage. We also find that almost all the messages are

transferred through intra-node in our experiment. However, this is a special case.

In HPL, a process only talks to processes on the same row or column with itself. In

our 4x4 configuration, a process and its row or column peers are always mapped to

the same node, therefore, almost all the communication take place within a node.

We have also conducted the same experiment on a 32x8 configuration for HPL. The

results are shown later in this section.

Table 6.1 presents the total message distribution in NAS benchmarks, in terms

of communication channel. Again, we see that the amount of intra-node (intra-CMP

and inter-CMP) communication is much larger than that in even distribution for

most benchmarks. On an average, about 50% messages going through intra-node

communication. This trend is not random. It is because most applications have

certain communication patterns, e.g. row or column based communication, ring

based communication, etc. which increase the intra-node communication chance.
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Therefore, even in a large multi-core cluster, optimizing intra-node communication

is critical to the overall application performance.

Table 2.1: Message Distribution in NAS Benchmarks Class B on 16 Cores

metric bench. intra-cmp inter-cmp inter-node

number IS 13% 18% 69%
of FT 9% 16% 75%

messages CG 45% 45% 10%
MG 32% 32% 36%
BT 1% 33% 66%
SP 1% 33% 66%
LU 1% 50% 49%

data IS 7% 13% 80%
volume FT 7% 13% 80%

CG 36% 37% 27%
MG 25% 25% 50%
BT 0 33% 67%
SP 0 33% 67%
LU 0 50% 50%

Message Distribution on Cluster B: Figure 2.4 shows the message distribu-

tion of HPL on Cluster B with a 32x8 configuration. In this configuration, the even

distribution is calculated as follows:

• Intra-CMP = 1/255 = 0.4%

• Inter-CMP = 7/255 = 2.7%

• Inter-node = 248/255 = 96.1%
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From the experimental results we see that the percentage of intra-node traffic is

much higher than that in even distribution. The overall message distribution during

HPL execution is summarized as the follows:

• Intra-CMP = 15.4% (number of messages), 3.5% (data volume)

• Inter-CMP = 42.6% (number of messages), 19.9% (data volume)

• Inter-node = 42.0% (number of messages), 76.6% (data volume)

The NAS message distribution on Cluster B is shown in Table 2.2 which shows

the same trend that the intra-node traffic is much higher than that in even distri-

bution for many applications. From this set of experiments we can conclude that

even in a large cluster, intra-node communication plays a critical role.
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Figure 2.4: Message Distribution of HPL on 256 Cores
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Table 2.2: Message Distribution in NAS Benchmarks Class C on 256 Cores

metric bench. intra-cmp inter-cmp inter-node

number IS 1% 4% 95%
of FT 1% 3% 96%

messages CG 23% 47% 30%
MG 15% 32% 53%
BT 0% 29% 71%
SP 0% 29% 71%
LU 0% 47% 53%

data IS 1% 4% 95%
volume FT 1% 2% 97%

CG 20% 41% 39%
MG 20% 19% 61%
BT 0 29% 71%
SP 0 29% 71%
LU 0 47% 53%

(a) 4 Processes (b) 2 Processes

Figure 2.5: Application Performance on Different Configurations
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Figure 2.6: Effect of Data Tiling

2.2.3 Potential Cache and Memory Contention

In this experiment, we run all the benchmarks on 1x4, 2x2, and 4x1 configura-

tions respectively, to examine the potential bottleneck in the system. As mentioned

in the beginning of Section 2.2, we use the format pxq to represent a configuration,

in which p is the number of nodes, and q is the number of processors per node. The

results are shown in Figure 2.5(a). The execution time is normalized to that on 4x1

configuration.

One of the observations from Figure 2.5(a) is that 1x4 configuration does not

perform as well as 2x2 and 4x1 configurations for many applications, e.g. IS, FT,

CG, SP, and HPL. This is because in 1x4 configuration all the cores are activated for

execution. As described earlier, on our evaluation platform, two cores on the same

chip share the L2 cache and memory controller, thus cache and memory contention

is a potential bottleneck. Memory contention is not a problem for processors on dif-

ferent chips, because Intel Bensley system has dedicated bus for each chip for higher

memory bandwidth. This is why 2x2 and 4x1 configurations perform comparably.
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The same trend can be observed from Figure 2.5(b). In this experiment, we run

2 processes on 2 processors from the same chip, 2 processors across chips, and 2

processors across nodes respectively. We see that inter-CMP and inter-node per-

formance are comparable and higher than intra-CMP. The only special case is IS,

whose inter-CMP performance is noticeably lower than inter-node. This is because

IS uses many large messages and inter-node performs better than inter-CMP for

large messages as shown in Figure 2.1.

This set of experiments indicates that to fully take advantage of multi-core

architecture, both communication middleware and applications should be multi-

core aware to reduce cache and memory contention. Communication middleware

should avoid cache pollution as much as possible, e.g. increase communication buffer

reuse [30], use cache bypass memory copy [28], or eliminate intermediate buffer [49].

Applications should be optimized to increase data locality. E.g. Data tiling [51] is

a common technique to reduce unnecessary memory traffic. If a large data buffer is

to be processed multiple times, then instead of going through the whole buffer mul-

tiple times, we can divide the buffer into smaller chunks and process the buffer in a

chunk granularity so that the data chunks stay in the cache for multiple operations.

We show a small example in the next section to demonstrate how data tiling can

potentially improve application performance on multi-core system.

2.2.4 Benefits of Data Tiling

To study the benefits of data tiling on multi-core cluster, we design a microbench-

mark, which does computation and communication in a ring-based manner. Each

process has a piece of data (64MB) to be processed for a number of iterations.
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During execution, each process computes on its own data, sends them to its right

neighbor and receives data from its left neighbor, and then starts another iteration

of computation. In the original scheme, the data processed in the original chunk size

(64MB) while in the data tiling scheme, the data are divided in to smaller chunks

in the size of 256KB, which can easily fit in L2 cache.

Figure 2.6 shows the benefits of data-tiling, from which we observe that the

execution time reduced significantly. This is because in the tiling case, since the

intra-node communication is using CPU-based memory copy, the data are actually

preloaded into L2 cache during the communication. In addition, we observe that

in the cases where 2 processes running on 2 cores on the same chip, since most

communication happens in L2 cache in data tiling case, the improvement is most

significant, around 70% percent. The improvement in the case where 4 processes

running on 4 cores on the same node, 8 processes running on 2 nodes, and 16

processes running on 4 nodes is 60%, 50%, and 50% respectively. The improvements

are not as large as that in the 2 process case because the communication of inter-

CMP and inter-node is not as efficient as the intra-CMP for 256KB message size.

2.2.5 Scalability

In this section we present our initial results on multi-core cluster scalability. We

also compare the scalability of multi-core cluster with that of single-core cluster.

The results are shown in Figure 2.7. It is to be noted that the performance is

normalized to that on 2 processes, so 8 is the ideal speedup for the 16 process case.

It can be seen from Figure 2.7(a) that some applications show almost ideal

speedup on multi-core cluster, e.g. LU and MG. Compared with single-core cluster
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(a) MG, LU, and NAMD (b) IS, FT, CG, and HPL

Figure 2.7: Application Scalability

scalability, we find that for applications that show cache or memory contention

in Figure 2.5(a), such as IS, FT, and CG, the scalability on single-core cluster is

better than that on multi-core cluster. For other applications such as MG, LU and

NAMD, multi-core cluster shows the same scalability as single-core cluster. As an

initial study we find that multi-core cluster is promising in scalability.

2.3 Summary

In this chapter we have done a comprehensive performance evaluation, profiling,

and analysis on multi-core cluster, using both microbenchmarks and application

level benchmarks. We have several interesting observations from the experimental

results that give insights to both application and communication middleware devel-

opers. From microbenchmark results, we see that there are three levels of commu-

nication in a multi-core cluster with different performances: intra-CMP, inter-CMP,

and inter-node communication. Intra-CMP has the best performance because data
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can be shared through L2 cache. Large message performance of inter-CMP is not

as good as inter-node because of memory copy cost. With respect to applications,

the first observation is that counter-intuitively, much more intra-node communica-

tion takes place in applications than that in even distribution, which indicates that

optimizing intra-node communication is as important as optimizing inter-node com-

munication in a multi-core cluster. Another observation is that when all the cores

are activated for execution, cache and memory contention may prevent the multi-

core system from achieving best performance, because two cores on the same chip

share the same L2 cache and memory controller. This indicates that communication

middleware and applications should be written in a multi-core aware manner to get

optimal performance. We have demonstrated an example on application optimiza-

tion technique which improves benchmark performance by up to 70%. Compared

with single-core cluster, multi-core cluster does not scale well for applications that

show cache/memory contention. However, for other applications multi-core cluster

has the same scalability as single-core cluster.
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CHAPTER 3

SHARED MEMORY BASED DESIGN

As mentioned in Section 1.2, there exist several mechanisms for MPI intra-node

communication, including NIC-based loopback, kernel-assisted memory mapping,

and user space memory copy.

The user space memory copy scheme has several advantages. It provides much

higher performance compared to NIC-based loopback. In addition, it is portable

across different operating systems and versions. Due to these advantages, in this

chapter we present our shared memory based designs.

The rest of the chapter is organized as follows: In Section 3.1 we describe the

basic design of our shared memory based approach. We present the advanced design

in Section 3.2 which improves both performance and memory usage over the basic

design. The evaluation results and analysis are presented in Section 3.3. Finally we

summarize the results and impact of this work in Section 3.4.

3.1 Basic Shared Memory Based Design

In this section we describe the basic shared memory based design and optimiza-

tions for MVAPICH.
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Figure 3.1: Basic Shared Memory Based Design

3.1.1 Design

The shared memory area is essentially a temporary file created by the first process

on a node. The file name consists of the host name, the process id, and the user

id, so that multiple jobs submitted by different users can run simultaneously on a

node. Then all the processes map the shared memory area to their own memory

space by calling mmap() system call. The shared memory area is then used for

communication among local processes.

The shared memory area is essentially used as a FIFO queue. The sender writes

data to the queue and the receiver reads data from the queue. There are two

volatile variables that indicate how many bytes have been written to the queue and

how many have been read out of the queue. The sender and the receiver change the

values of these two variables respectively. The receiver polls on these two variables

from time to time to detect incoming messages. If they do not match it indicates
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there are new data written to the queue and it can pull the data out. Message

matching is performed based on source rank, tag, and context id which identifies the

communicator. Message ordering is ensured by the memory consistency model and

use of memory barrier if the underlying memory model is not consistent.

To avoid locking, each pair of processes on the same node allocate two shared

memory buffers between them for exchanging messages to each other. If P processes

are present on the same node, the total size of the shared memory region that needs

to be allocated will be P*(P-1)*BufSize, where BufSize is the size of each shared

buffer. As an example, Figure 3.1 illustrates the scenario for four processes on the

same node. Each process maintains three shared buffers represented with RBxy,

which refers to a Receive Buffer of process y that holds messages particularly sent

by process x.

Eager protocol: Small messages are sent eagerly. Figure 3.1 illustrates an ex-

ample where processes 0 and 2 exchange messages to each other in parallel. The

sending process writes the data from its source buffer into the shared buffer cor-

responding to the designated process (Steps 1 and 3). After the sender finishes

copying the data, then the receiving process copies the data from the shared buffer

into its destination local buffer (Steps 2 and 4).

Rendezvous protocol: Since there is a limit on the shared buffer size, messages

larger than the total shared buffer size cannot be sent eagerly. We use a rendezvous

protocol for large messages, explained below:

• Step 1: Sender sends a request to send message.

• Step 2: Upon receiving the request to send message,the receiver acknowledges

by sending back an ok to send message.
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• Step 3: Upon receiving the ok to send message, the sender sends the actual

data chunk by chunk. If the shared buffer is used up before the message com-

pletes, the sender will insert a request to send message again to indicate there

is more data to come, and the receiver will acknowledge with an ok to send

message when there is freed space in the shared buffer.

3.1.2 Optimization for NUMA systems

As mentioned in Section 1.1, accessing a processor’s local memory is much more

efficient than accessing remote memory on NUMA systems. Since the shared mem-

ory area is frequently used throughout the application run, it is wise to allocate it

in either the sender or the receiver’s memory. We choose to allocate it in sender’s

memory because if we allocate it in the receiver’s memory, then the sender always

needs to go through the long latency and put the data into a remote memory. Since

the sender usually just sends out a message and proceeds with its work, this will

always delay the sender. Whereas if we allocate it in the sender’s memory, there are

cases that it takes some time for the receiver to come to the receive point after the

sender sends out the message (process skew), and in these cases the delay caused by

accessing the remote memory is usually negligible compared to the process skew.

Most recent operating systems are NUMA aware and allocate buffers in the local

memory of the process which first touches them. Therefore, we let all the processes

touch their send buffers in the MPI initialization phase to make sure the shared

buffers are allocated in the sender’s memory. By touching the buffers in advance,

we also save the time to allocate physical memory during application’s run time,
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because the operating systems usually allocate physical memory when processes are

really touching the buffers.

3.1.3 Exploiting Processor Affinity

Although we try to allocate buffers in the sender’s local memory, the operating

system may migrate a process to some other processor at a later stage due to the

reason of load balancing, thus make the process away from its data. To prevent

process migration, we want to bind a process to a specific processor. Under Linux

2.6 kernel, this can be accomplished by using the sched setaffinity system call [37].

We apply this approach to our design to keep the data locality. Processor affinity is

also good for multi-core processor systems, because it prevents a process migrating

away from the cache which contains its data.

3.2 Advanced Shared Memory Based Design

In this section, we provide a detailed illustration of our advanced shared memory

based design and the results.

Our design goal is to develop a shared memory communication model that is

efficient and scalable with respect to both performance and memory usage. In

the following subsections, we start with the overall design architecture, followed by

a description on how the algorithm of intra-node communication works. Design

analysis and several optimization strategies are presented in the end of this section.

3.2.1 Overall Architecture

Throughout this section, we use a notation P to symbolize the number of pro-

cesses running in the same node. Each process has P −1 small-sized Receive Buffers
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Figure 3.2: Overall Architecture of the Proposed Design

(RB), one Send Buffer Pool (SBP), and a collection of P−1 Send Queues (SQ). Fig-

ure 3.2 illustrates the overall architecture, where four processes are involved in the

intra-node communication. In this illustration, we use notations x and y to denote

a process local ID. The shared memory space denoted as RBxy refers to a Receive

Buffer of process y, which retains messages specifically sent by process x. A Send

Buffer Pool that belongs to a process with local ID x is represented with SBPx. A

buffer in the pool is called a cell. Every process owns an array of pointers, where

each pointer points to the head of a queue represented with SQxy, which refers to

a Send Queue of process y that holds data directed to process x.

The sizes of the receive buffer and the buffer cell as well as the number of cells

in the pool are tunable parameters that can be determined empirically to achieve

optimal performance. Based on our experiments, we choose to set the size of receive

buffer to be 32 KB, the size of the buffer cell to be 8 KB, and the total number of

cells in each send buffer pool to be 128.
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3.2.2 Message Transfer Schemes

From our past experience, transferring small messages usually occurs more fre-

quently than large messages. Therefore, sending small messages should be prioritized

and handled efficiently with the purpose of improving the overall performance. In

our design, small messages are exchanged through copying directly into receiving

process’ receive buffer. This approach is so simple that extra overhead is minimized.

On the other hand, as the message size grows, the memory size required for the data

transfer increases as well, which may lead to performance degradation if it is not

handled properly. Therefore, we suggest different ways of handling small and large

messages.

The workflows of sending and receiving small and large messages are presented

in the following.

Small Message Transfer Procedure

Figure 3.3 depicts how a small message is transferred by one process and retrieved

by another. In this example, process 0 is the sender, while process 1 is the receiver.

The figure does not show the processes 2 and 3 since they do not participate in the

data transfer. The send/receive mechanism for small messages is straightforward as

explained below.

1. The sending process directly accesses the receiving process’ receive buffer to

write the actual data to be sent, which is obtained from the source buffer.

2. The receiving process copies the data from its receive buffer into its final spot

in the destination buffer.
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Figure 3.3: Send/Receive Mechanism for a Small Message
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Figure 3.4: Send/Receive Mechanism for a Large Message

This procedural simplicity minimizes unnecessary setup overhead for every message

exchange.

Large Message Transfer Procedure

Figure 3.4 demonstrates a send/receive progression between two processes, where

process 0 sends a message to process 1. For compactness, processes 2 and 3 are not

shown in the figure since they are not involved in the communication process.

A sending procedure comprises of the following three steps:
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1. The sending process fetches a free cell from its send buffer pool, copies the

message from its source buffer into the free cell, and then marks the cell busy.

2. The process enqueues the loaded cell into the corresponding send queue.

3. The process sends a control message, which contains the address location

information of the loaded cell, and writes it into the receiving process’ receive

buffer.

A receiving procedure consists of the following three steps:

4. The receiving process reads the received control message from its receive buffer

to get the address location of the cell containing the data being transferred.

5. Using the address information obtained from the previous step, the process

directly accesses the cell containing the transferred data, which is stored in

the sending process’ send queue.

6. The process copies the actual data from the referenced cell into its own desti-

nation buffer, and subsequently marks the cell free.

In this design, when the message to be transferred is larger than the cell size, it is

packetized into smaller packets, each transferred independently. The packetization

contributes to a better throughput because of the pipelining effect, where the receiver

can start copying the data out before the entire message is completely copied in.

In Steps 1 and 6, a cell is marked busy and free, respectively. A busy cell

indicates that the cell has been loaded with the data and should not be disturbed

until the corresponding receiver finishes reading the data in the cell; whereas a free

cell simply indicates that the cell can be used for transferring a new message. After
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the receiving process marks a cell free, the free cell remains residing in the sending

process’ send queue, until reclaimed by the sender. The cell reclamation process is

done by the sender at the time it initiates a new data transfer (Step 1). We call this

cell reclamation scheme mark-and-sweep.

Transferring large messages utilizes indirection, which means the sender puts a

control message to the receiver’s receive buffer to instruct the receiver to get the

actual data. There are two reasons to use indirection instead of letting the receiver

poll both its receive buffer and the send queue corresponding to it at the sender side.

First, polling more buffers adds unnecessary overhead; and second, the receiver needs

to explicitly handle message ordering if messages come from different channels.

3.2.3 Analysis of the Design

In this section we analyze our proposed design based on the important issues in

designing an efficient and scalable shared memory model.

Lock Avoidance

A locking mechanism is required to maintain consistency when two or more

processes attempt to access a shared resource. A locking operation carries a fair

amount of overhead and may delay memory activity from other processes. Therefore,

it is desirable to design a lock-free model.

In our design, locking is avoided by imposing a rule that only one reader and

one writer exist for each resource. It is obvious that there are only one reader and

one writer for each send queue and receive buffer, hence they are free from locking

mechanism. However, enforcing one-reader-one-writer rule on the send buffer pools

can be tricky. After a receiving process finishes copying data from a cell, the cell
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needs to be placed back into the sender’s send buffer pool for future reuse. Intu-

itively, the receiving process should be the one that returns the cell back into the

send buffer pool, however, this may lead to multiple processes returning free cells to

one sending process at the same time and cause consistency issue. In order to main-

tain both consistency and good performance, we use a mark-and-sweep technique

to impose the one-reader-one-writer rule on the send buffer pools, as explained in

Section 3.2.2.

Effective Cache Utilization

In this section we analyze the cache utilization for small and large messages

respectively. In our design, small messages are transferred through receive buffers

directly. Since the receive buffers are solely designed for small messages, the buffer

size can be really small that it can completely fit in the cache. Therefore, successive

accesses into the same receive buffer will result in more cache hits and lead to a

better performance.

In the communication design for large messages, after the receiver finishes copy-

ing data out from the loaded cell, the cell will be marked free and reclaimed by

the sender for future reuse. Since the sender can reuse cells that it used previously,

there is a chance that the cells are still resident in the cache, therefore, the sender

gets the benefit that it does not need to access the memory for every send. If the

receiver also has the same cell in its cache, then the receiver also does not need to

access the memory, because only cache-to-cache transfer is needed.
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Efficient Memory Usage

We first illustrate the scalability issue in the current MVAPICH intra-node com-

munication support. As we mentioned in Section 3.1, the basic shared memory

based design allocates a shared memory region of size P ∗ (P − 1) ∗BufSize, where

BufSize is the size of each receive buffer (1 MB by default). This implies that the

shared memory consumption becomes huge for large values of P .
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Figure 3.5: Memory Usage of the Proposed New Design Within a Node

In contrast, the proposed design provides a better scalability as it only necessi-

tates one send buffer pool per process, regardless of how many processes participate

in the intra-node communication. The new design uses the same method as the orig-

inal MVAPICH design for small message communication, which requires P ∗ (P −1)

number of receive buffers. Despite such polynomial complexity, the total memory

space pre-allocated for receive buffers is still low due to the small size design of

receive buffers. It is to be noted that simply reducing the receive buffer size in the

basic design is not practical because large messages will suffer from lack of shared
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memory space. Simply having a send buffer pool without the receive buffers might

be also not efficient because small messages may waste a large portion of the buffer.

We calculated the total shared memory usage of both MVAPICH (the original

design) and the new design. In Figure 3.5, we can observe that the shared memory

consumption of the new design is substantially lower than the original design when

the number processes that are involved in the intra-node communication gets larger.

3.2.4 Optimization Strategies

We discuss several optimization strategies to our design in order to further im-

prove performance.

Reducing Polling Overhead

Each process needs to poll its receive buffers to detect incoming new messages.

Two variables are maintained for buffer polling: total-in and total-out, which keep

track of how many bytes of data have entered and exited the buffer. When total-in is

equal to total-out, it means there is no new messages residing in the polled buffer. If

total-in is greater than total-out, it means the polled buffer contains a new message.

total-in can never be less than total-out.

In our design, every process has P − 1 receive buffers that it needs to poll. To

alleviate this polling overhead, we arrange the two variables (i.e. total-in and total-

out) associated with the P − 1 buffers in a contiguous array. Such arrangement will

significantly reduce the polling time by exploiting cache spatial locality, where the

variables can be accessed directly from the cache.
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Reducing Indirection Overhead

Utilizing the indirection technique, which is explained in Section 3.2.2, results in

additional overhead because, to retrieve a message, the receiving process needs to

perform two memory accesses: to read the control message and to read the actual

data packet. Our solution to alleviate this overhead is to associate only one control

message with multiple data packets. But it is to be noted that if we send too many

data packets before sending any control message, the receiver might not be able to

detect incoming messages timely. Thus the optimal value of the number of control

messages should be determined experimentally.

3.3 Performance Evaluation

In this section, we present the performance evaluation of the advanced shared

memory based intra-node communication design, and compare it with the basic

shared memory based design. The latency and bandwidth experiments were carried

out on both NUMA and dual core NUMA clusters. We also present the application

performance on Intel Clovertown systems at the end of this section.

Experimental Setup: The NUMA cluster is composed of two nodes. Each

node is equipped with quad AMD Opteron Processor (single core) running at 2.0

GHz. Each processor has a 1024 KB L2 cache. The two nodes are connected by

InfiniBand. We refer to this cluster as cluster A in the following sections. The

dual core NUMA cluster, referred to as cluster B, also has two nodes connected by

InfiniBand. Each node is equipped with four Dual Core AMD Opteron Processor

(two cores on the same chip and two chips in total). The processor speed is 2.0
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GHz, and the L2 cache size is 1024 KB per core. The operating system on the two

clusters is Linux 2.6.16. The MVAPICH version used is 0.9.7.

We compare the performance of our design to the design in MVAPICH. In the

following sections, we refer to the basic shared memory based design as the Original

Design, and the advanced design as the New Design. Latency is measured in unit of

micro second (us), and bandwidth is measured in million bytes per second (MB/sec).

3.3.1 Latency and Bandwidth on NUMA Cluster

In this section we evaluate the basic ping pong latency and uni-directional band-

width on one node in cluster A. From Figure 3.6 we can see that the new design

improves the latency of small and medium messages by up to 15%, and improves

the large message latency by up to 35%. The bandwidth is improved by up to 50%

as shown in Figure 3.7. The peak bandwidth is raised from 1200 MB/sec to 1650

MB/sec.
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Figure 3.6: Latency on NUMA Cluster
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3.3.2 L2 Cache Miss Rate

To further analyze the reason of the performance gain presented in Section 3.3.1,

we measured the L2 cache miss rate while running the latency and bandwidth bench-

marks. The tool used to measure the cache miss rate is Valgrind [2], and the bench-

marks are the same as used in Section 3.3.1. The results are shown in Figure 3.8.

The results indicate that a large portion of the performance gain comes from the

efficient use of the L2 cache by the new design. This conforms well to our theoretical

analysis of the new design discussed in Section 3.2.3.

3.3.3 Impact on MPI Collective Functions

MPI collective functions are frequently used in MPI applications, and their per-

formance is critical to many of the applications. Since MPI collective functions

can be implemented on top of point-to-point based algorithms, in this section we

study the impact of the new design on MPI collective calls. The experiments were

conducted on cluster A.

Figure 3.9 shows the performance of MPI Barrier, which is one of the most fre-

quently used MPI collective functions. We can see from the figure that the new

design improves MPI Barrier performance by 17% and 19% on 2 and 4 processes

respectively, and the improvement is 8% on 8 processes. The drop of performance

improvement on 8 processes is caused by the mixture of intra- and inter-node com-

munication that takes place within the two separate nodes in cluster A. Therefore,

only a fraction of the overall performance can be enhanced by the intra-node com-

munication.
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Figure 6.9(a) presents the performance of another important collective call

MPI Alltoall on one node with 4 processes on cluster A. In MPI Alltoall every

process does a personalized send to every other process. This figure shows that the

performance can be improved by up to 10% for small and medium messages and

25% for large messages.
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Figure 3.11: Latency on Dual Core NUMA Cluster

3.3.4 Latency and Bandwidth on Dual Core NUMA Cluster

Multi-core processor is an emerging new processor architecture that few study

has been done with respect to how it interacts with MPI implementations. Our

initial research on such topic is presented next, and we plan to do more in-depth

analysis in the future. The experiments were carried out on cluster B.

Figure 3.11 demonstrates the latency of small, medium, and large messages re-

spectively. CMP stands for Chip-level MultiProcessing, which we use to represent

the communication between two processors (cores) on the same chip. We refer to

communication between two processors on different chips as SMP (Symmetric Mul-

tiProcessing). From Figure 3.11 we notice that CMP has a lower latency for small

and medium messages than SMP. This is because when the message is small enough

to be resident in the cache, the processors do not need to access the main mem-

ory, thus only cache-to-cache transfer is needed. Cache-to-cache transfer is much

faster if two processors are on the same chip. However, when the message is large
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and the processors need to access the main memory to get the data, CMP has a

higher latency because the two processors on the same chip will have contention for

memory. Figure 3.11 also shows that the new design improves the SMP latency for

all message sizes. It also improves CMP latency for small and medium messages,

but not for large messages. Further investigation is needed to fully understand the

reason.

The bandwidth results, shown in Figure 3.12, indicate the same trend. Again,

the new design improves SMP bandwidth for all message sizes, and CMP bandwidth

for small and medium messages.
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3.3.5 Application Performance on Intel Clovertown Cluster

In this section we show the application level performance of the advanced shared

memory based design.

Experimental Setup: We used a four-node cluster, each node is equipped with

dual Intel Clovertown (quad-core) processor, that is 8 cores per node. The processor
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speed is 2.33GHz. A Clovertown chip is made of two Woodcrest chips, which means

two cores share a 4MB L2 cache.

The benchmarks we used include IS from NAS parallel benchmarks and PSTSWM

which is a shallow water modeling application. The results are shown in Figure 3.13,

from which we can see that the advanced shared memory based design improves

application performance by up to 5%. This is mainly due to the efficient cache

utilization of the new design.
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Figure 3.13: Application Performance Comparison

3.4 Summary

In this chapter, we have designed and implemented shared memory based schemes

for MPI intra-node communication. We start with designing a basic approach and

its optimizations. Then we propose an advanced approach which uses the system

cache efficiently, requires no locking mechanisms, and has low memory usage. The

advanced approach shows both high performance and good scalability. Our experi-

mental results show that the advanced design can improve MPI intra-node latency
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by up to 35% compared to the basic design on single core NUMA systems, and im-

prove bandwidth by up to 50%. The improvement in point-to-point communication

also reduces MPI collective call latency - up to 19% for MPI Barrier and 25% for

MPI Alltoall. We have done study on the interaction between multi-core systems

and MPI. From the experimental results we see that the advanced design can also

improve intra-node communication performance for multi-core systems. For MPI

applications, the advanced approach improves performance by up to 5%.
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CHAPTER 4

CPU BASED KERNEL ASSISTED DIRECT COPY

The shared memory approach described in Chapter 3 provides high performance,

but the performance is not optimal mainly due to several message copies involved.

Every process has its own virtual address space and cannot directly access another

process’s message buffer. One approach to avoid extra message copies is to use

operating system kernel to provide a direct copy.

In this chapter, we propose, design and implement a portable approach to intra-

node message passing at the kernel level. To achieve this goal, we design and im-

plement a Linux kernel module that provides MPI friendly interfaces. This module

is independent of any communication library or interconnection network. It also

offers portability across the Linux kernels. We call this kernel module as LiMIC

(Linux kernel module for MPI Intra-node Communication). We have implemented

two versions of LiMIC. The second generation is referred to as LiMIC2. The main

difference between LiMIC and LiMIC2 is the interface exposed to the MPI libraries.

The rest of the section is organized as the follows: In Section 4.1 we describe

the existing kernel based approach, its limitations, and our approach. We present

the detailed design and implementation issues in Section 4.2. The evaluation results
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and analysis are presented in Section 4.3. Finally we summarize the results and

impact of this work in Section 4.4.

4.1 Limitations of the Existing Approach and Overall De-
sign of LiMIC

In this section, we describe the existing kernel based solution and its limitations.

We then propose our approach: LiMIC.

4.1.1 Kernel-Based Memory Mapping

Kernel-based memory mapping approach takes help from the operating system

kernel to copy messages directly from one user process to another without any

additional copy operation. The sender or the receiver process posts the message

request descriptor in a message queue indicating its virtual address, tag, etc. This

memory is mapped into the kernel address space when the other process arrives at

the message exchange point. Then the kernel performs a direct copy from the sender

buffer to the receiver application buffer. Thus this approach involves only one copy.

Figure 1.2(c) demonstrates the memory transactions needed for copying from

the sender buffer directly to the receiver buffer. In step 1, the receiving process

needs to bring the sending process’ buffer into cache. Then in step 3, the receiving

process can write this buffer into its own receive buffer. This may generate step 2

based on whether the buffer was in cache already or not. Then, depending on the

cache replacement policy, step 4 might be generated implicitly.

It is to be noted that the number of possible memory transactions for the Kernel-

based memory mapping is always less than the number in User-space shared memory

approach. We also note that due to the reduced number of copies to and from various
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buffers, we can maximize the cache utilization. However, there are other overheads.

The overheads include time to trap into the kernel, memory mapping overhead, and

TLB flush time. In addition, still the CPU resource is required to perform a copy

operation.

There are several previous works that adopt this approach, which include [43, 72].

However, their designs lack portability across different networks and deny flexibility

to the MPI library developer. To the best of our knowledge, no other current

generation open source MPI implementations provide such a kernel support. SGI

MPT (Message Passing Toolkit) provides a single copy support, but it depends on

XPMEM which is an SGI proprietary driver [69].

4.1.2 Our Approach: LiMIC

It is to be noted that the kernel-based approach has the potential to provide ef-

ficient MPI intra-node communication. In this chapter we are taking this approach,

providing unique features such as portability across various interconnects and dif-

ferent communication libraries. This section sharply distinguishes our approach and

design philosophy from earlier research in this direction. Our design principles and

details of this approach are described in Section 4.2.

Traditionally, researchers have explored kernel based approaches as an extension

to the features available in user-level protocols. A high level description of these ear-

lier methodologies is shown in Figure 4.1(a). As a result, most of these methodologies

have been non-portable to other user-level protocols or other MPI implementations.

In addition, these earlier designs do not take into account MPI message matching
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semantics and message queues. Further, the MPI library blindly calls routines pro-

vided by the user-level communication library. Since some of the communication

libraries are proprietary, this mechanism denies any sort of optimization-space for

the MPI library developer.

Specific
Network

User−Level

MPI Library

Support
Kernel

Specific
Network

Any
Network

MPI Library

Protocol
Level LiMIC

Protocol

User

(a) Earlier Design
Approach

(b) LiMIC Design
Approach

Figure 4.1: Approaches for Kernel-Based Design

In order to avoid the limitations of the past approaches we look towards gen-

eralizing the kernel-access interface and making it MPI friendly. Our implemen-

tation of this interface is called LiMIC (Linux kernel module for MPI Intra-node

Communication). Its high level diagram is shown in Figure 4.1(b). We note that

such a design is readily portable across different interconnects because its inter-

face and data structures are not required to be dependent on a specific user-level

protocol or interconnect. Also, this design gives the flexibility to the MPI library

developer to optimize various schemes to make appropriate use of the one copy

kernel mechanism. For instance, LiMIC provides flexibility to the MPI library de-

veloper to easily choose thresholds for the hybrid approach with other intra-node
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communication mechanisms and tune the library for specific applications. Such flex-

ibility is discussed in [31]. As a result, LiMIC can provide portability on different

interconnects and flexibility for MPI performance optimization.

4.2 Design and Implementation Issues

In this section, we discuss the detailed design issues of LiMIC and its integration

with MPI.

4.2.1 Portable and MPI Friendly Interface

In order to achieve portability across various Linux systems, we design LiMIC

to be a runtime loadable module. This means that no modifications to the kernel

code is necessary. Kernel modules are usually portable across major versions of

mainstream Linux. The LiMIC kernel module can be either an independent module

with device driver of interconnection network or a part of the device driver. In

addition, the interface is designed to avoid using communication library specific or

MPI implementation specific information.

In order to utilize the interface functions, very little modification to the MPI

layer are needed. These are required just to place the hooks of the send, receive

and completion of messages. The LiMIC interface traps into the kernel internally

by using the ioctl() system call. We briefly describe the major interface functions

provided by LiMIC.

- LiMIC Isend(int dest, int tag, int context id, void* buf, int len,

MPI Request* req): This call issues a non blocking send to a specified desti-

nation with appropriate message tags.
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- LiMIC Irecv(int src, int tag, int context id, void* buf, int len,

MPI Request* req): This call issues a non-blocking receive. It is to be noted

that blocking send and receive can be easily implemented over non-blocking

and wait primitives.

- LiMIC Wait(int src/dest, MPI Request* req): This call just polls the

LiMIC completion queue once for incoming sends/receives.

As described in Section 4.1.2, we can observe that the interface provided by

LiMIC does not include any specific information on a user-level protocol or inter-

connect. The interface only defines the MPI related information and has an MPI

standard similar format.

4.2.2 Memory Mapping Mechanism

To achieve one-copy intra-node message passing, a process should be able to

access the other processes’ virtual address space so that the process can copy the

message to/from the other’s address space directly. This can be achieved by memory

mapping mechanism that maps a part of the other processes’ address space into its

own address space. After the memory mapping the process can access mapped area

as its own.

For memory mapping, we use kiobuf provided by the Linux kernel. The kiobuf

structure supports the abstraction that hides the complexity of the virtual memory

system from device drivers. The kiobuf structure consists of several fields that store

user buffer information such as page descriptors corresponding to the user buffer,

offset to valid data inside the first page, and total length of the buffer. The Linux

kernel exposes functions to allocate kiobuf structures and make a mapping between
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kiobuf and page descriptors of user buffer. In addition, since kiobuf internally takes

care of pinning down the memory area, we can easily guarantee that the user buffer

is present in the physical memory when another process tries to access it. Therefore,

we can take advantage of kiobuf as a simple and safe way of memory mapping and

page locking.

Although the kiobuf provides many features, there are several issues we must

address in our implementation. The kiobuf functions provide a way to map between

kiobuf and page descriptors of target user buffer only. Therefore, we still need to

map the physical memory into the address space of the process, which wants to

access the target buffer. To do so, we use the kmap() kernel function. Another

issue is a large allocation overhead of kiobuf structures. We performed tests on

kiobuf allocation time on our cluster (Cluster A in Section 4.3) and found that it

takes around 60µs to allocate one kiobuf. To remove this overhead from the critical

path, LiMIC kernel module preallocates some amount of kiobuf structures during

the module loading phase and manages this kiobuf pool.

User BufferUser Buffer

...

kiobuf Kernel Memory

User

1. Request (ioctl) 4. Request (ioctl)

2. Map to kiobuf
(map_user_kiobuf)

6. Map to Kernel Memory (kmap)

7. Copy
(copy_from_user or
copy_to_user)

Kernel

3. Post Request

5. Search

Linked List of Posted Requests

Process A Process B

Figure 4.2: Memory Mapping Mechanism
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Figure 4.2 shows the internal memory mapping operation performed by LiMIC.

When either of the message exchanging processes arrives, it issues a request through

ioctl() (Step 1). If there is no posted request that can be matched with the issued

request, the kernel module simply saves information of page descriptors for the user

buffer and pins down it by calling map user kiobuf() (Step 2). Then, the kernel

module puts this request into the request queue (Step 3). After that when the other

message partner issues a request (Step 4), the kernel module finds the posted request

(Step 5) and maps the user buffer to the kernel memory by calling kmap() (Step 6).

Finally, if the process is the receiver, the kernel module copies the data from kernel

memory to user buffer using copy to user(), otherwise the data is copied from

user buffer to kernel memory by copy from user() (Step 7). The data structures

in the kernel module are shared between different instances of the kernel executing

on the sending and receiving processes. To guarantee consistency, LiMIC takes care

of locking the shared data structures.

4.2.3 Copy Mechanism

Since the copy needs CPU resources and needs to access pinned memory, we

have to carefully decide the timing of the message copy. The message copy could

be done in either of the three ways: copy on function calls of receiver, copy on wait

function call, and copy on send and receive calls.

We suggest the design where the copy operation is performed by send and re-

ceive functions (i.e., LiMIC Isend and LiMIC Irecv) so that we can provide better

progress and less resource usage. In addition, this approach is not prone to skew

between processes. The actual copy operation is performed by the process which
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arrives later at the communication call. So, regardless of the sender or receiver, the

operation can be completed as soon as both the processes have arrived. In addition,

only the first process is required to pin down the user buffer.

4.2.4 MPI Message Matching

There are separate message queues for messages sent or received through the

kernel module. This is done to allow portability to various other MPI like message

queues. So, in general the LiMIC does not assume any specific message queue struc-

ture. MPI messages are matched based on Source, Tag and Context ID. Message

matching can also be done by using wild cards like MPI ANY SOURCE or MPI ANY TAG.

LiMIC implements MPI message matching in the following manner:

• Source in the same node: In this case, the receive request is directly posted

into the queue maintained by LiMIC. On the arrival of the message, the kernel

instance at the receiver side matches the message based on the source, tag and

context id information and then it passes the buffer into user space.

• Source in a different node: In this case, LiMIC is no longer responsible for

matching the message. The interface hooks provided in the MPI should take

care of not posting the receive request into the kernel message queue.

• Source in the same node and MPI ANY TAG: As in the first case, the receive

request is not posted in the generic MPI message queue, but directly into the

LiMIC message queue. Now, the matching is done only by the source and

context id.
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• MPI ANY SOURCE and MPI ANY TAG: In this case, the source of the message

might be on the same physical node but also it can be some other node which

is communicating via the network. So the receive request is posted in the

MPI queue. Then the MPI internal function that senses an arrival of message

checks the send queue in the kernel module as well by using a LiMIC inter-

face, LiMIC Iprobe, and performs message matching with requests in the MPI

queue. If the function finds a message which matches the request, the function

performs the receive operation by calling the LiMIC receive interface.

Some specialized MPI implementations offload several MPI functions into the

NIC. For example, Quadrics performs MPI message matching at the NIC-level [64].

The LiMIC might need an extended interface for such MPI implementations while

most of MPI implementations can easily employ LiMIC.

4.3 Performance Evaluation

In this section we evaluate various performance characteristics of LiMIC and

LiMIC2 on different platforms. We also present the performance impact on MPI+OpenMP

model.

4.3.1 Performance Evaluation of LiMIC on a Single-core
Cluster

As described in section 1.2, there are various design alternatives to implement

efficient intra-node message passing. MVAPICH [15] version 0.9.4 implements a hy-

brid mechanism of User-space shared memory and NIC-level loopback. The message

size threshold used by MVAPICH-0.9.4 to switch from User-space shared memory to

NIC-level loopback is 256KB. In this section, we use a hybrid approach for LiMIC,
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in which User-space shared memory is used for short messages (up to 4KB) and then

Kernel-based memory mapping is used to perform an one copy transfer for larger

messages. The choice of this threshold is explained below in section 4.3.1. However,

each application can set a different threshold. Here on, all references to MVAPICH-

0.9.4 and LiMIC refer to the hybrid designs mentioned above. In addition, we also

provide performance results for each of the individual design alternatives, namely,

User-space shared memory, NIC loopback, and Kernel module.

We conducted experiments on two 8-node clusters with the following configura-

tions:

• Cluster A: SuperMicro SUPER X5DL8-GG nodes with dual Intel Xeon 3.0

GHz processors, 512 KB L2 cache, PCI-X 64-bit 133 MHz bus

• Cluster B: SuperMicro SUPER P4DL6 nodes with dual Intel Xeon 2.4 GHz

processors, 512 KB L2 cache, PCI-X 64-bit 133 MHz bus

The Linux kernel version used was 2.4.22smp from kernel.org. All the nodes are

equipped with Mellanox InfiniHost MT23108 HCAs. The nodes are connected using

Mellanox MTS 2400 24-port switch. Test configurations are named (2x1), (2x2), etc.

to denote two processes on one node, four processes on two nodes, and so on.

First, we evaluate our designs at microbenchmarks level. Second, we present

experimental results on message transfer and descriptor post breakdown. Then we

evaluate the scalability of performance offered by LiMIC for larger clusters. Finally,

we evaluate the impact of LiMIC on NAS Integer Sort application kernel.
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Microbenchmarks

In this section, we describe our tests for microbenchmarks such as point-to-point

latency and bandwidth. The tests were conducted on Cluster A.

The latency test is carried out in a standard ping-pong fashion. The latency

microbenchmark is available from [15]. The results for one-way latency is shown

in Figures 4.3(a) and 4.3(b). We observe an improvement of 71% for latency as

compared to MVAPICH-0.9.4 for 64KB message size. The results clearly show

that on this experimental platform, it is most expensive to use NIC-level loopback

for large messages. The User-space shared memory implementation is good for

small messages. This avoids extra overheads of polling the network or trapping

into the kernel. However, as the message size increases, the application buffers

and the intermediate shared memory buffer no longer fit into the cache and the

copy overhead increases. The Kernel module on the other hand can reduce one

copy, hence maximizing the cache effect. As can be noted from the latency figure,

after the message size of 4KB, it becomes more beneficial to use the Kernel module

than User-space shared memory. Therefore, LiMIC hybrid uses User-space shared

memory for messages smaller than 4KB and the Kernel module for larger messages.

For measuring the point-to-point bandwidth, a simple window based communica-

tion approach was used. The bandwidth microbenchmark is available from [15]. The

bandwidth graphs are shown in Figures 4.3(c) and 4.3(d). We observe an improve-

ment of 405% for bandwidth for 64KB message size as compared to MVAPICH-0.9.4.

We also observe that the bandwidth offered by LiMIC drops at 256KB message size.

This is due to the fact that the cache size on the nodes in Cluster A is 512KB.

Both sender and receiver buffers and some additional data cannot fit into the cache
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beyond this message size. However, the bandwidth offered by LiMIC is still greater

than MVAPICH-0.9.4.
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Figure 4.3: MPI Level Latency and Bandwidth

LiMIC Cost Breakdown

In order to evaluate the cost of various operations which LiMIC has to perform

for message transfer, we profiled the time spent by LiMIC during a ping-pong latency
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Figure 4.4: LiMIC Cost Breakdown (Percentage of Overall Overhead)

test. In this section, we present results on the various relative cost breakdowns on

Cluster A.

The overhead breakdown for message transfer in percentages is shown in Fig-

ure 4.4(a). We observe that the message copy time dominates the overall send/receive

operation as the message size increases. For shorter messages, we see that a consid-

erable amount of time is spent in the kernel trap (around 3µs) and around 0.5µs in

queueing and locking overheads (indicated as “rest”), which are shown as 55% and

12% of the overall message transfer overhead for 4KB message in Figure 4.4(a). We

also observe that the time to map the user buffer to the kernel address space (using

kmap()) increases as the number of pages in the user buffer increases.

The overhead breakdown for descriptor posting in percentages is shown in Fig-

ure 4.4(b). We observe that the time to map the kiobuf with the page descriptors of

the user buffer forms a large portion of the time to post a descriptor. It is because
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the kiobuf mapping overhead increases in proportional to the number of pages.

This step also involves the pinning of the user buffer into physical memory. The

column labeled “rest” indicates again the queuing and locking overheads.

HPCC Effective Bandwidth

To evaluate the impact of the improvement of intra-node bandwidth on a larger

cluster of dual SMP systems, we conducted effective bandwidth test on Clusters

A and B. For measuring the effective bandwidth of the clusters, we used b eff [66]

benchmark. This benchmark measures the accumulated bandwidth of the com-

munication network of parallel and distributed computing systems. This bench-

mark is featured in the High Performance Computing Challenge benchmark suite

(HPCC) [47].

Table 4.1 shows the performance results of LiMIC compared with MVAPICH-

0.9.4. It is observed that when both processes are on the same physical node (2x1),

LiMIC improves effective bandwidth by 61% on Cluster A. It is also observed that

even for a 16 process experiment (2x8) the cluster can achieve 12% improved band-

width.

The table also shows the performance results on Cluster B. The results follow

the same trend as that of Cluster A. It is to be noted that the message latency on

User-space shared memory and Kernel module depends on the speed of CPU while

the NIC-level loopback message latency depends on the speed of I/O bus. Since

the I/O bus speed remains the same between Clusters A and B, and only the CPU

speed reduces, the improvement offered by LiMIC reduces in Cluster B.

In our next experiment, we increased the number of processes as to include nodes

in both Clusters A and B. The motivation was to see the scaling of the improvement
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in effective bandwidth as the number of processes is increased. It is to be noted that

the improvement percentage remains constant (5%) as the number of processes is

increased.

Table 4.1: b eff Results Comparisons (MB/s)

Cluster Config. MVAPICH LiMIC Improv.
A 2x1 152 244 61%

2x2 317 378 19%
2x4 619 694 12%
2x8 1222 1373 12%

B 2x1 139 183 31%
2x2 282 308 9%
2x4 545 572 5%
2x8 1052 1108 5%

A & B 2x16 2114 2223 5%
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Figure 4.5: IS Total Execution Time Comparisons: (a) Class A, (b) Class B, and
(c) Class C
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NAS Integer Sort

We conducted performance evaluation of LiMIC on IS in NAS Parallel Bench-

mark suite [38] on Cluster A. IS is an integer sort benchmark kernel that stresses the

communication aspect of the network. We conducted experiments with classes A,

B and C on configurations (2x1), (2x2), (2x4), and (2x8). The results are shown in

Figure 4.5. Since the class C is a large problem size, we could run it on the system

sizes larger than (2x2). We can observe that LiMIC can achieve 10%, 8%, and 5%

improvement of execution time running classes A, B, and C respectively, on (2x8)

configuration. The improvements are shown in Figure 4.6.

To understand the insights behind the performance improvement, we profiled

the number of intra-node messages larger than 1KB and their sizes being used by

IS within a node. The results with class A are shown in Table 4.2. We can see

that as the system size increases, the size of the messages reduces. The trend is

the same on classes B and C while the message size becomes larger than class A.

Since LiMIC performs better for medium and larger message sizes, we see overall

less impact of LiMIC on IS performance as the system size increases. Also, it is

to be noted that since the message size reduces as the system size increases, the

message size eventually fits in the cache size on (2x8) configuration. This results in

maximizing the benefit of LiMIC and raising the improvement at the (2x8) system

size as shown in Figure 4.6.
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Figure 4.6: IS Performance Improvement

Table 4.2: Intra-Node Message Size Distribution for IS Class A
Message Size (Bytes) 2x1 2x2 2x4 2x8

1K-8K 44 44 44 44
32K-256K 0 0 0 22
256K-1M 0 0 22 0
1M-4M 0 22 0 0
4M-16M 22 0 0 0
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Figure 4.7: Application Performance of LiMIC2 on an AMD Barcelona System

4.3.2 Application Performance of LiMIC2 on an AMD
Barcelona System

In this section, we evaluate the performance of LiMIC2 on an AMD Barcelona

system using IS class A in NAS, and compare with the shared memory approach.

The results are shown in Figure 4.7. The system has four quad-core Opteron chips

(16 cores on a node) running at 2GHz. Each core has a 512KB L2 cache. The

operating system is Linux 2.6.18. From Figure 4.7 we can see that LiMIC2 improves

IS performance by up to 18%.

4.3.3 Performance Impact on MPI+OpenMP Model

MPI+OpenMP [46] model explores two levels of parallelism. It uses OpenMP [39]

for multiprocessing within a node and MPI for communication across nodes.

MPI+OpenMP was proposed because the communication overhead in MPI was high

and it was more efficient to use OpenMP, essentially the threads and shared mem-

ory model, within a node. Our work on MPI intra-node communication has largely
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reduced the communication overhead and it is interesting to re-examine the relative

performance of pure MPI versus MPI+OpenMP. In this section, we evaluate the per-

formance of these two models using LU-MZ and SP-MZ [35], the multi-zone version

of LU and SP in NAS benchmarks, which are implemented with MPI+OpenMP.

The results are shown in Figure 4.8.

In this experiment, we use two Intel Clovertown systems. Each node has two

quad-core Intel Clovertown processors and two nodes are connected by InfiniBand.

Each socket has two chips and two cores on the same chip share a 4MB L2 cache.

In the legend, 2x8 means there are 2 processes, each running on one node with 8

OpenMP threads, which is the traditional MPI+OpenMP model. 16x1 means there

are 16 MPI processes and each process only has one thread, which is essentially the

pure MPI model. Similarly, 4x4 means 4 processes with 4 threads per process and

8x2 means 8 processes with 2 threads per process. It is to be noted that in the

4x4 mode, each MPI process runs a socket, and in the 8x2 mode, each MPI process

runs on a chip. We have two observations from Figure 4.8. First, if we compare

the performance of the traditional MPI+OpenMP with pure MPI, i.e. compare 2x8

with 16x1, we can see that they perform almost the same, actually pure MPI is even

slightly better. Second, we find that 4x4 and 8x2 perform better than both 2x8 and

16x1. These indicate that with efficient MPI intra-node communication, pure MPI

can perform as well as the traditional OpenMP+MPI model for some applications

and OpenMP+MPI needs to change to smaller granularity for better performance.

When OpenMP+MPI uses socket or chip granularity, the improvement on MPI

intra-node communication performance will benefit the OpenMP+MPI model. The
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Figure 4.8: Performance Impact on MPI+OpenMP Model

relative performance of MPI and MPI+OpenMP also depends on application pat-

terns and problem sizes and will need to be thoroughly studied in the future.

4.4 Summary

In this chapter we have designed and implemented a high performance Linux

kernel module (called LiMIC) for MPI intra-node message passing. LiMIC is able

to provide MPI friendly interface and independence from proprietary communication

libraries and interconnects.

To measure the performance of LiMIC, we have integrated it with MVAPICH.

Through the benchmark results, we could observe that LiMIC improved the point-

to-point latency and bandwidth up to 71% and 405%, respectively. In addition,

we observed that employing LiMIC in an 8-node InfiniBand cluster, increased the

HPCC effective bandwidth by 12%. Also, our experiments on a larger 16-node clus-

ter revealed that the improvement in HPCC effective bandwidth remains constant
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as the number of processes increased. Further, LiMIC improved the NAS IS bench-

mark execution time by 10%, 8%, and 5% for classes A, B, and C respectively, on

an 8-node cluster. Similarly, we observe that LiMIC2 has improved IS performance

on an AMD Barcelona system by up to 18%. We have also conducted preliminary

study on the MPI+OpenMP model and find that MPI+OpenMP can also benefit

from our work.
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CHAPTER 5

DMA BASED KERNEL ASSISTED DIRECT COPY

Direct Memory Access (DMA) has been traditionally used to transfer the data

directly from the host memory to any input/output device without the host CPU

intervention. Networks such as InfiniBand [6] provide a zero-copy data transfer

support. However, such solutions are mainly used for transferring data from one

node to another [54]. Researchers in the past have attempted to use DMA engines

to accelerate bulk data movement within a node [33]. Many of these approaches have

not entirely succeeded due to huge DMA startup costs, completion notification costs

and other performance-related issues. Recently, Intel’s I/O Acceleration Technology

(I/OAT) [44, 57, 68] introduced an asynchronous DMA copy engine within the chip

that has direct access to main memory to improve performance and reduce the

overheads mentioned above. In this chapter, we present our DMA based kernel

assisted direct copy approach for MPI intra-node communication.

The rest of the chapter is organized as the follows: We introduce three schemes we

have designed for IPC in Section 5.1 and describe the integration of these scheme in

MPI in Section 5.2. We present the MPI level performance evaluation in Section 5.3

and finally summarize in Section 5.4.
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5.1 Design of the DMA Based Schemes

We have designed three schemes, namely SCI, MCI, and MCNI. In this section

we describe the detailed design of these schemes.

5.1.1 SCI (Single-Core with I/OAT)

The SCI scheme offloads the memory copy operation to the I/OAT’s hardware

copy engine and uses the kernel module to expose the features of the hardware copy

engine to user applications in order to perform asynchronous memory copy opera-

tions. We have extended the support of asynchronous memory copy operations for

both single process as an offloaded memcpy and IPC. User applications contact the

kernel module (referred to as memory copy module in Figure 5.1(b)) for offloading

the copy operation. The kernel module takes help from the underlying DMA module

in initiating the memory copy operation across each of the DMA channels. On a

completion notification request, the kernel module checks the progress of memory

copy operation and informs the application accordingly. In addition, tasks such as

pinning the application buffers, posting the descriptors, releasing the buffers are

also handled by the kernel module. The SCI scheme also supports page caching

mechanism to avoid pinning of application buffers while performing memory copy

operations. In this mechanism, the kernel module caches the virtual to physical page

mappings after locking the application buffers. Once the memory copy operation

finishes, the kernel module does not unlock the application buffers in order to avoid

the pinning cost if the same application buffer is reused for another memory copy

operation.
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For single process operations, we provide memcpy like interfaces as shown in

Table 5.1. And for IPC, we provide socket like interfaces which are illustrated later

in Table 5.2 in Section 5.2.

Table 5.1: Basic Interfaces for Using I/OAT Copy Engine

Operation Description
ioat copy(src, dst, len) Blocking copy routine
ioat icopy(src, dst, len) Non-blocking copy routine
ioat check copy(cookie) (Non-blocking) check for

completion
ioat wait copy(cookie) (Blocking) wait for

completion

5.1.2 MCI (Multi-Core with I/OAT)

While the SCI scheme helps user applications to offload memory copy operations,

several critical operations still remain in the critical path, causing overheads such as

copy engine initiation overheads, page locking overheads, context switch overheads,

synchronization overheads, etc. In this section, we describe the MCI scheme which is

designed to alleviate these overheads to achieve maximum overlap between memory

copy operation and computation.

The main idea of MCI scheme is to offload the copy operation to the hardware

copy engine and onload the tasks that fall in the critical path to another core or

a processor so that applications can exploit complete overlap of memory operation

with computation.
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Figure 5.2a shows the various components of the proposed scheme. Since the copy

engine is accessible only in the kernel space, we dedicate a kernel thread to handle

all copy engine related tasks and allow user applications to communicate with the

kernel thread to perform the copy operation. The kernel thread also maintains a list

of incomplete requests and attempts to make progress for these initiated requests.

Apart from servicing multiple user applications, the dedicated kernel thread also

handles tasks such as locking the application buffers, posting the descriptors for

each user request on appropriate channels, checking for device completions, releasing

the locked buffers after completion events. Since the critical tasks are onloaded to

this kernel thread, the user application is free to execute other computation or even

execute other memory copy operations while the copy operation is still in progress

thus allowing almost total overlap of memory copy operation and computation.

5.1.3 MCNI (Multi-Core with No I/OAT)

In order to provide asynchronous memory copy operations for systems without

the copy engine support, we have proposed a MCNI scheme (Multi-Core systems

with No I/OAT) that onloads the memory copy operation to another processor or

a core in the system. This scheme is similar to the MCI scheme described above.

In this scheme, we dedicate a kernel thread to handle all memory copy operations,

thus relieving the main application thread to perform computation.
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5.2 Integration with MVAPICH

In this section, we describe our MPI intra-node communication implementation

to take advantage of the kernel module assisted memory copy operations. Specifi-

cally we discuss how we integrate the kernel module that supports the SCI, MCI,

and MCNI approaches described in Section 1.2 and 1.2 in MVAPICH.

The kernel module exposes the following user interface, as shown in Table 5.2, for

applications to exchange messages across different processes. ioat read and ioat write

operations read and write data onto another process. ioat iread and ioat iwrite

operations initiate the data transfer.

Table 5.2: Kernel Module Interfaces for IPC

Operation Description
ioat iread(fd, addr, len) Non-blocking read routine
ioat iwrite(fd, addr, len) Non-blocking write routine
ioat read(fd, addr, len) Blocking read routine
ioat write(fd, addr, len) Blocking write routine
ioat check(cookie) (Non-blocking) check for

read/write completion
ioat wait(cookie) (Blocking) Wait for

read/write completion

Because of the initiation overhead, it is only beneficial to use asynchronous mem-

ory copy operations for large messages. In our design, small messages are still trans-

ferred eagerly through the user space shared memory area. For large messages, we

use the shared memory area for handshake messages, and asynchronous memory

copy operations for transferring the data. The protocol is described as below:
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• Step 1: The sender sends a request to send message.

• Step 2: The sender then posts its send request by initiating a non-blocking

IPC write request to the kernel for performing asynchronous memory copy

operations, and puts this request into a pending send queue.

• Step 3: Upon receiving the request to send, the receiver posts its receive re-

quest by initiating a non-blocking IPC read request to the kernel for per-

forming asynchronous memory copy operations, and puts this request into a

pending recv queue.

• Step 4: When the MPI program tries to make progress, the sender and the

receiver check the completion of the pending operations by initiating a non-

blocking IPC check request to the kernel to check for completion and inform

the upper layer about the completion of the operations.

The threshold to switch from Eager protocol to Rendezvous protocol is a run

time parameter which should be tuned based on the system performance.

The potential benefits of using asynchronous memory copy operations for MPI

intra-node communication come from several aspects. First, it reduces the number

of memory copies. Second, the SCI and MCI approaches can achieve communication

and computation overlap, since the memory copy is done by the DMA engine. And

third, since the memory copy in the SCI and MCI approaches does not involve cache,

communication buffers will not disturb the cache content.
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5.3 Performance Evaluation

In this section we present the MPI level evaluation of kernel based approaches.

We first present microbenchmark performance, followed by application level perfor-

mance.

Figure 5.3 shows the MPI level intra-node latency and bandwidth. The Ren-

dezvous threshold is 32KB, which means messages smaller than 32K are transferred

through shared memory in all the schemes. Therefore, we only show results larger

than 32KB. From Figure 5.3(a) we can see that all the kernel based asynchronous

memory copy schemes are able to achieve better performance than shared memory

scheme, e.g. the MCI scheme improves latency by up to 72% compared to shared

memory scheme (SCNI). Among the three asynchronous memory copy schemes, the

MCI scheme performs the best. The reasons are: compared with the SCI scheme,

the MCI scheme onloads the operations in the critical path to another thread; and

compared with the MCNI scheme, the MCI scheme uses the DMA engine which

copies memory more efficiently for large blocks. The bandwidth result shown in

Figure 5.3(b) reveals the same trend. Compared with the shared memory (SCNI)

scheme, the MCI scheme improves bandwidth by up to 170%. It is to be noted that

the bandwidth of both the shared memory scheme and the MCNI scheme drops at

2MB. This is because both of these schemes involve cache for memory operations

and the L2 cache size is 2MB in our testbed. Therefore, when the message is larger

than the cache size, there is an expected bandwidth drop.

We use IS in NAS parallel benchmarks [38] and PSTSWM [20] for our application

level performance evaluation. The normalized execution time is shown in Figure 5.4.

The results were taken on a single node. Since the MCI and the MCNI schemes
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Figure 5.3: MPI-level Latency and Bandwidth

need an additional thread to handle some of the operations, it is not appropriate to

use all the processors for MPI tasks, that is why we only show the performance of

shared memory (SCNI) and SCI schemes for 4 processes. From Figure 5.4 we can

see that the improvement in microbenchmarks have been translated into application

performance. The asynchronous memory copy operations have improved IS perfor-

mance by up to 12%, and PSTSWM performance by up to 7%. The improvement is

expected because both IS and PSTSWM use a lot of large messages. The message

size distribution is shown in Table 5.3, which is profiled in terms of number of mes-

sages. Further, we observe that although large messages dominate in PSTSWM, the

improvement seen is not significant. This is because PSTSWM is a computation

intensive benchmark, e.g. when running the medium problem size on 4 processes,

only 6.6% of the total time is spent in MPI. From Figure 5.4 and Table 5.3 we can

see that the asynchronous memory operations proposed in this paper will benefit

MPI applications which have bulk data transfer.
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Table 5.3: Message Size Distribution of MPI benchmarks
Message Size 0 - 32KB 32KB - 1MB 1MB - 64MB
IS.A.2 68.1% 0 31.9%
IS.A.4 70.6% 0 29.4%
IS.B.2 68.1% 0 31.9%
IS.B.4 70.6% 0 29.4%
IS.C.2 68.1% 0 31.9%
IS.C.4 70.6% 0 29.4%
PSTSWM.small.2 4.0% 0.4% 95.6%
PSTSWM.small.4 3.6% 96.4% 0
PSTSWM.medium.2 4.0% 0 96.0%
PSTSWM.medium.4 3.0% 0.5% 96.5%
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5.4 Summary

In this chapter, we have proposed three schemes to provide overlap of mem-

ory copy operation with computation. In the first scheme, SCI (Single-Core with

I/OAT), we offload the memory copy operations to the Intel on-chip DMA engines.

In the second scheme, MCI (Multi-Core with I/OAT), we not only offload the mem-

ory copy operation, but also onload the startup overheads associated with the copy

engine to a dedicated core. For systems without any hardware copy engine support,

we have proposed a third scheme, MCNI (Multi-Core with No I/OAT) that onloads

the memory copy operation to a dedicate core. We have integrated the schemes

with MPI library, and done MPI level performance evaluation. Our results show

that MPI latency and bandwidth can be improved significantly and the performance

of applications such as NAS and PSTSWM can be improved by up to 12% and 7%,

respectively, compared to the traditional implementations.

88



CHAPTER 6

EFFICIENT KERNEL-LEVEL AND USER-LEVEL

HYBRID APPROACH

Traditionally there have been three approaches for MPI intra-node communica-

tion: network loopback, user-level shared memory, and kernel assisted direct copy,

as described in Section 1.2. In order to obtain optimized MPI intra-node communi-

cation performance, it is important to have a comprehensive understanding of the

approaches and improve upon them. Since network loopback is not commonly used

in modern MPI implementations due to its higher latency, in this chapter we only

consider the shared memory and kernel-assisted approaches. To achieve high perfor-

mance, in this chapter we design and develop a set of experiments and optimization

schemes, and aim to answer the following questions:

• What are the performance characteristics of these two approaches?

• What are the advantages and limitations of these two approaches?

• Can we design a hybrid scheme that takes advantages of both approaches?

• Can applications benefit from the hybrid scheme?

We have carried out this study on an Intel quad-core (Clovertown) cluster and

use a three-step methodology. The rest of the chapter is organized as the follows:
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In Section 6.1 we introduce LiMIC2, the kernel based approach used in the study.

We present the initial performance study using micro-benchmarks in Section 6.2 and

propose an efficient hybrid approach in Section 6.3. We evaluate the hybrid approach

using collective operations and applications in Section 6.4 and finally summarize in

Section 6.5.

6.1 Introduction of LiMIC2

As described in Chapter 4, LiMIC is a Linux kernel module that directly copies

messages from the user buffer of one process to another. It improves performance

by eliminating the intermediate copy to shared memory buffer. The first generation

of LiMIC [49] is a stand-alone library that provides MPI-like interfaces, such as

LiMIC send and LiMIC recv. The second generation, LiMIC2 [50], provides a set of

lightweight primitives that enables MPI libraries to do memory mapping and direct

copy, and relies on the MPI library for message matching and queueing. Therefore,

compared with LiMIC, LiMIC2 provides lower overhead and implementation com-

plexity. In this chapter, we use MVAPICH-LiMIC2, which integrates MVAPICH

with LiMIC2 for intra-node communication.

MVAPICH-LiMIC2 uses a rendezvous protocol for communication. The sender

first sends a request to send message to the receiver together with the send buffer

information. Upon receiving the request, the receiver maps the send buffer to the

kernel space and copy the message to its receive buffer. When the copy finishes, the

receiver sends a complete message to the sender.
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Figure 6.1: Illustration of Intel Clovertown Processor

6.2 Initial Performance Evaluation and Analysis: Micro-
Benchmarks

In this section we study the performance of shared-memory (MVAPICH) and

LiMIC2 (MVAPICH-LiMIC2) approaches using micro-benchmarks.

Testbed: We use an Intel Clovertown cluster. Each node is equipped with dual

quad-core Xeon processor, i.e. 8 cores per node, running at 2.0GHz. Each node

has 4GB main memory. The nodes are connected by InfiniBand DDR cards. The

nodes run Linux 2.6.18. We conduct the micro-benchmark experiments on a single

node. As shown in Figure 6.1, there are three cases of intra-node communication:

shared-cache, intra-socket, and inter-socket.

6.2.1 Impact of Processor Topology

As described above, there are three cases of intra-node communication on our

system: shared cache, intra-socket, and inter-socket. In this section we examine

the bandwidth of MVAPICH and MVAPICH-LiMIC2 in these three cases. We use

multi-pair benchmarks [15] instead of single-pair because usually all the cores are

activated when applications are running. On our system there are 8 cores per node,
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Figure 6.2: Multi-pair Bandwidth

so we create 4 pairs of communication. The benchmark reports the total bandwidth

for the 4 pairs.

The multi-pair bandwidth results are shown in Figure 6.2. In this benchmark,

each sender sends 64 messages to the receiver. Each message is sent from and

received to a different buffer. The send buffers are written at the beginning of the

benchmark. When the receiver gets all the messages, it sends an acknowledgement.

We measure the bandwidth achieved in this process.

From Figure 6.2(a), we see that MVAPICH performs better than MVAPICH-

LiMIC2 up to 32KB for the shared cache case. In this case, because the two cores

share the L2 cache, memory copies only involve intra-cache transactions as long as

the data can fit in the cache. Therefore, although there is one more copy involved in

MVAPICH, the cost of the extra copy is so small that it hardly impacts performance.

On the other hand, MVAPICH-LiMIC2 uses operations such as trapping to the

kernel and mapping memory. This overhead is sufficiently large to negate the benefit

of having only one copy. Therefore, only for large messages that cannot totally fit
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in the cache we can see the benefit with MVAPICH-LiMIC2. We note that the L2

cache on our system is 4MB and shared between two cores; essentially each core has

about 2MB cache space. Since in this experiment the window size is 64, for 32KB

messages the total buffer is already larger than the available cache space (32KB x

64 = 2MB).

In comparison, if the cores do not share cache, then MVAPICH-LiMIC2 shows

benefits for a much larger range of message sizes, starting from 2KB for intra-

socket and 1KB for inter-socket (see Figures 6.2(b) and 6.2(c)). This is because

in these two cases memory copies involve either cache-to-cache transaction or main

memory access, which is relatively expensive. Therefore, saving a copy can improve

performance significantly. We observe that with MVAPICH-LiMIC2, bandwidth is

improved by up to 70% and 98% for intra-socket and inter-socket, respectively.

6.2.2 Impact of Buffer Reuse

Figure 6.2 clearly shows that communication is more efficient if the buffers are in

the cache. Buffer reuse is one of the most commonly used strategies to improve cache

utilization. In this section we examine the impact of buffer reuse on MVAPICH and

MVAPICH-LiMIC2. There is no buffer reuse in the benchmark used in Section 6.2.1

since each message is sent from and received to a different buffer. To simulate the

buffer reuse effect in applications, we modify the benchmark to run for multiple

iterations so that starting from the second iteration the buffers are reused. In the

beginning of each iteration we rewrite the send buffers with new content.
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The intra-socket results are shown in Figure 6.3. The shared cache and inter-

socket results follow the same trend. From Figure 6.3 we can see that the perfor-

mance of both MVAPICH and MVAPICH-LiMIC2 improves with buffer reuse. This

is mainly due to cache effect: starting from the second iteration, the buffers may

already reside in the cache. For messages larger than 32KB, buffer reuse does not

affect the performance of either MVAPICH or MVAPICH-LiMIC2 because the total

buffer size is already larger than the cache size (32KB x 64 = 2MB).

Comparing the performance of MVAPICH and MVAPICH-LiMIC2 in the buffer

reuse situation, we see that the benefit of using MVAPICH-LiMIC2 is larger than

that in the no buffer-reuse case for medium messages. The reason is that MVAPICH-

LiMIC2 does not use the intermediate buffer for data transfer, and thus has better

cache utilization. We analyze cache utilization in detail in Section 6.2.3. From the

results shown in this section we conclude that applications that have more buffer

reuse potentially benefit more from MVAPICH-LiMIC2.

A similar trend can be observed with multi-pair latency test too. The results

are not shown here to avoid redundancy.

6.2.3 L2 Cache Utilization

In this section, we analyze the cache effect in the buffer reuse experiment.

We use the same benchmark as in Section 6.2.2, and use OProfile [19] to profile

the L2 cache misses during the experiment. We show the number of L2 cache misses

as well as the improvement in cache utilization achieved by MVAPICH-LiMIC2

over MVAPICH in Figure 6.4. We start from 1KB since MVAPICH-LiMIC2 shows

better performance starting from 1KB in Figure 6.3. As expected, we see that cache
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misses increase with increase in message size. For the whole range of message sizes,

MVAPICH-LiMIC2 has fewer cache misses than MVAPICH, showing a constant

improvement of about 7% when the message is larger than 16KB. This is because

MVAPICH-LiMIC2 does not involve an intermediate buffer like MVAPICH. Another

interesting observation is that the improvement percentage presents almost the same

trend as the performance comparison in Figure 6.3. This further explains the benefits

obtained by MVAPICH-LiMIC2 and demonstrates our conclusion in Section 6.2.2.

6.2.4 Impact of Process Skew

Process skew can potentially degrade application performance. In this section,

we want to examine the ability of MVAPICH and MVAPICH-LiMIC2 to overcome

process skew effect.

As described in Section 6.1, MVAPICH-LiMIC2 copies messages directly from

the sender’s user buffer to the receiver’s user buffer with the help of the OS kernel.

Therefore, a send operation cannot complete until the matching receive completes.
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This means that the MVAPICH-LiMIC2 performance might potentially be influ-

enced by process skew. On the other hand, MVAPICH uses an intermediate buffer

and eager protocol for small and medium messages. This means that for small and

medium messages, a send operation simply involves copying message to the inter-

mediate buffer without interaction with the receive process. Therefore, MVAPICH

is potentially more skew-tolerant.

We have designed a benchmark that simulates the process skew effect. Fig-

ure 6.5 illustrates the algorithm. There are two processes involved, a producer and

a consumer. The producer computes for c1 amount of time, and then sends the in-

termediate result to the consumer using the non-blocking MPI Isend. The consumer

receives this message using the blocking MPI Recv, and does further processing on

it for c2 amount of time. This process repeats for window size iterations, and then

the producer calls MPI Waitall to make sure all the MPI Isend ’s have been com-

pleted. This kind of scenario is commonly used in many applications. We set c2 to

be much larger than c1 so that the two MPI processes are skewed. We measure the
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total amount of time that the producer needs to complete this process, shown as

c3 in Figure 6.5. This is essentially the latency on the producer side before it can

continue with other computation work.

Based on the characteristics of MVAPICH and MVAPICH-LiMIC2, theoretically

we expect them to perform as follows:

c3(MVAPICH) = (c1 + t(MPI Isend)) * window size + t(MPI Waitall)

c3(MVAPICH-LiMIC2) = (t(MPI Recv) + c2) * window size + t(MPI Waitall)

Since c2 is much larger than c1, we can expect c3(MVAPICH-LiMIC2) to be

much larger than c3(MVAPICH).

We show the experimental results in Figure 6.6. In this experiment, we set the

message size as 16KB, c1=1us and window size=64, and record the producer la-

tency (c3 ) with different consumer computation time (c2 ). From Figure 6.6, we

can see that the experimental result conforms to the theoretical expectation that

c3(MVAPICH) is much lower than c3(MVAPICH-LiMIC2). Further, c3(MVAPICH)

does not increase as c2 increases, indicating that MVAPICH is more resilient to
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process skew. On the other hand, c3(MVAPICH-LiMIC2) grows linearly as c2

increases, which could be a potential limitation of MVAPICH-LiMIC2. We will de-

scribe optimizations to best combine shared memory and LiMIC2 in Section 6.3.2

to alleviate process skew effect.

6.3 Designing the Hybrid Approach

From the micro-benchmark results and analysis, we have seen that MVAPICH

and MVAPICH-LiMIC2 both have advantages and limitations in different situations

and for different message sizes. In this section, we propose two optimization schemes,

topology-aware thresholds and skew-aware thresholds, that efficiently combine the

shared memory approach in MVAPICH with LiMIC2.

6.3.1 Topology Aware Thresholds

We need to carefully decide the threshold to switch from shared memory to

LiMIC2 in order to efficiently combine these two approaches. From the results
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shown in Section 6.2.1, we know that the performance characteristics of MVAPICH

and MVAPICH-LiMIC2 are different for different intra-node communication cases

(shared cache, intra-socket, and inter-socket). Therefore, a single threshold may

not suffice for all the cases. In this section, we illustrate our design of the topology

aware thresholds.

The latest Linux kernels have the ability to detect the topology of multi-core

processors. The information is exported in “sysfs” file system [70]. The following

fields exported under /sys/devices/system/cpu/cpuX/topology/ provide the topol-

ogy information that we need (X in cpuX is the CPU number):

• physical package id: Physical socket id of the logical CPU

• core id: Core id of the logical CPU on the socket

By parsing this information, every process has the knowledge about the topology.

If the cache architecture is also known (Figure 6.1), for a given connection, a process

knows which case it belongs to - shared cache, intra-socket, or inter-socket. It is

thus able to use different thresholds for different cases. Of course, to make sure that

the process does not migrate to other processors, we use the CPU affinity feature

provided by MVAPICH [15].

Based on the results in Figure 6.2, we use 32KB as the threshold for the shared

cache case, 2KB for intra-socket, and 1KB for inter-socket. After we apply these

thresholds, we have the optimized results for all the cases. The results are presented

in Figure 6.7.
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The topology detection method discussed in this section can be used on other

Linux based platforms too, such as AMD multi-core systems. Also, different kinds of

optimizations can be applied based on topology information and platform features.
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Figure 6.7: Multi-pair Bandwidth with Topology Aware Thresholds

6.3.2 Skew Aware Thresholds

We have seen from Section 6.2.4 that the shared memory approach used in

MVAPICH is more resilient to process skew for medium messages. On the other

hand, MVAPICH-LiMIC2 provides higher performance for medium messages. To

take advantages of both methods, we have designed an adaptive scheme that uses

shared memory when there is process skew, and LiMIC2 otherwise.

We detect process skew by keeping track of the length of the unexpected queue at

the receiver side. Messages that are received before the matching receive operations

have been posted are called unexpected messages. Such requests are queued in an

unexpected queue. When the matching receive is posted, the corresponding request
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Figure 6.8: Impact of Skew Aware Thresholds

is removed from the unexpected queue. Therefore, the length of the unexpected

queue reflects the extent of process skew. If the length is larger than the threshold

for a long period of time, then the receiver determines that process skew has oc-

curred, and sends a control message to the sender to indicate the situation. Upon

receiving this message, the sender increases the threshold to switch to LiMIC2 for

this connection so that medium messages will go through shared memory to allevi-

ate the process skew effect. Later if the receiver detects process skew has gone, it

can send another control message so that the sender will change back the threshold

to use LiMIC2 for higher performance.

We show the results of the skew-aware thresholds in Figure 6.8. We used the

same benchmark with the same set of parameters as described in Section 6.2.4. We

see that the sending process can quickly notice the process skew situation and adapt

the threshold to it. As a result, the skew-aware MVAPICH-LiMIC2 achieves much

lower producer latency, close to that of MVAPICH.
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6.4 Performance Evaluation with Collectives and Applica-
tions

In this section we study the impact of the hybrid approach on MPI collective op-

erations and applications. We refer to the hybrid approach as MVAPICH-LiMIC2-

opt because it is essentially an optimized version of MVAPICH-LiMIC2. We use

Intel MPI Benchmark (IMB) [8] for collectives, and NAS [38], PSTSWM [20] and

HPL from HPCC benchmark suite [47] for applications. To better understand the

application behaviors and relationship with MPI implementations we have also done

profiling to the applications.

6.4.1 Impact on Collectives

We show the results of three typical collective operations, MPI Alltoall,

MPI Allgather, and MPI Allreduce, in Figure 6.9. MPI collective operations can

be implemented either on top of point-to-point communication or directly in the

message passing layer using optimized algorithms. Currently MVAPICH-LiMIC2-

opt uses point-to-point based collectives and MVAPICH uses optimized algorithms

for MPI Allreduce for messages up to 32KB [58]. From the figures we see that

MPI collective operations can benefit from using MVAPICH-LiMIC2-opt, especially

for large messages. The performance improves by up to 60%, 28%, and 21% for

MPI Alltoall, MPI Allgather, and MPI Allreduce, respectively. We note that for

messages between 1KB and 8KB, MVAPICH performs better for MPI Allreduce

due to the use of the optimized algorithms. This indicates that the performance

of LiMIC2 based collectives can be further optimized by using specially designed

algorithms.
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Figure 6.9: Collective Results (Single Node 1x8)

6.4.2 Impact on Applications

In this section we evaluate the impact of the hybrid approach on application

performance. The single-node results are shown in Figures 6.10 and 6.11 (Class

B for NAS and small problem size for PSTSWM). The corresponding message size

distribution is shown in Table 6.1. The cluster-mode results are shown in Figure 6.12

(Class C for NAS and medium problem size for PSTSWM), in which we use 8 nodes

and 8 processes per node (8x8).

From Figure 6.10(a) we see that MVAPICH-LiMIC2-opt can improve the per-

formance of FT, PSTSWM, and IS significantly. The improvement is 8% for FT,

14% for PSTSWM, and 17% for IS, respectively. If we look at Figure 6.11(a) we

find that MVAPICH-LiMIC2-opt has better cache utilization for these benchmarks.

Most messages used in these benchmarks are large as shown in Table 6.1. This means

that applications that use large messages will potentially benefit from MVAPICH-

LiMIC2-opt.
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Figure 6.10: Application Performance (Single Node 1x8)

The improvement is under 5% for other benchmarks mostly because these bench-

marks do not use many large messages. For BT and SP, although most messages

are large, since the fraction of time spent on communication is not significant we do

not observe large performance improvement.

From Figure 6.12 we see that in cluster mode where there is a mix of intra-node

and inter-node communication, applications can still benefit from using MVAPICH-

LiMIC2-opt, e.g. PSTSWM performance improves by 6%, which suggests that

MVAPICH-LiMIC2-opt is a promising approach for cluster computing.

6.5 Summary

In this chapter, we use a three-step methodology to design a hybrid approach

for MPI intra-node communication using two popular approaches, shared memory

(MVAPICH) and OS kernel assisted direct copy (MVAPICH-LiMIC2). The study
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Figure 6.11: L2 Cache Misses in Applications (Single Node 1x8)

has been done on an Intel quad-core (Clovertown) cluster. We have evaluated the

impacts of processor topology, communication buffer reuse, and process skew effects

on these two approaches, and profiled the L2 cache utilization. From the results

we find that MVAPICH-LiMIC2 in general provides better performance than MVA-

PICH for medium and large messages due to fewer number of copies and efficient

cache utilization, but the relative performance varies in different situations. For ex-

ample, depending on the physical topology of the sending and receiving processes,

the thresholds to switch from shared memory to LiMIC2 can be different. In addi-

tion, if the application has higher buffer reuse rate, it can potentially benefit more

from MVAPICH-LiMIC2. We also observe that MVAPICH-LiMIC2 has a potential

limitation that it is not as skew-tolerant as MVAPICH. Based on the results and

the analysis, we have proposed topology-aware and skew-aware thresholds to build

an efficient hybrid approach. We have evaluated the hybrid approach using MPI
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Table 6.1: Message Size Distribution (Single Node 1x8)

Apps < 1K 1K-32K 32K-1M > 1M

CG 62% 0 38% 0
MG 52% 28% 20% 0
FT 17% 0 0 83%

PSTSWM 2% 1% 97% 0
IS 44% 15% 0 41%
LU 30% 69% 1% 0

HPL 58% 37% 3% 2%
BT 1% 0% 99% 0
SP 1% 0% 99% 0

collective and application level benchmarks. We observe that the hybrid approach

can improve the performance of MPI Alltoall, MPI Allgather, and MPI Allreduce

by up to 60%, 28%, and 21%, respectively. And for applications, it can improve the

performance of FT, PSTSWM, and IS by 8%, 14%, and 17%, respectively.
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CHAPTER 7

ANALYSIS OF DESIGN CONSIDERATIONS FOR
MULTI-CHANNEL MPI

To optimize communication performance, many MPI implementations such as

MVAPICH [15] provide multiple communication channels. These channels may be

used either for intra- or inter-node communication. Efficient polling of these commu-

nication channels for discovering new messages is often considered to be one of the

key design issues in implementing MPI over any network layer. In addition, based on

characteristics of each channel, we can utilize several channels for intra-node com-

munication. In order to efficiently design and implement these channel interfaces,

we need a centralized policy. Since communication patterns as well as the need for

overlap of communication and computation vary widely over different applications,

it becomes hard to design a general purpose policy. We need to carefully consider

the overheads and benefits offered by each channel.

In this chapter, we try to bring forward important factors that should be consid-

ered to efficiently utilize several MPI channels through in-depth measurements and

analysis. The rest of this chapter is organized as the follows: In Section 7.1, we study

the polling schemes among multiple channels and their overheads. Then, we explore

methodologies to decide the thresholds between multiple channels in Section 7.2.
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We consider latency, bandwidth, and CPU resource requirement of each channel to

decide the thresholds. We present our performance evaluation in Section 7.3 and

finally summarize in Section 7.4.

7.1 Channel polling

In this section we discuss about channel polling overhead and schemes.

7.1.1 Channel polling overheads

Different channels have different polling overheads. In this section we analyze

the polling overhead for each channel.

Network Channel Overhead: The network channel consists of RDMA and

Send/Receive channels. Since RDMA is used for the RDMA channel, there is no

software involvement at the receiver side. Therefore, the only way to check for in-

coming messages is by polling memory locations. The overhead involved in polling

memory locations is around 0.03µs per connection. The overall polling overhead

increases as the number of RDMA connections increases. The other network com-

munication channel uses InfiniBand send/receive primitives, which generate message

completion events. The receiver polls the completion queue to check new incoming

messages. The overhead associated with polling the completion queue is constant

regardless of the number of processes because the same completion queue is shared

among all connections. However, it takes around 0.3µs to poll an empty completion

queue, which is relatively high. In this section, we consider the polling overheads

for RDMA and send/receive channels as the network channel polling overhead.
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Shared Memory Channel Overhead: The shared memory channel uses a

FIFO queue for each shared memory connection. In addition, the channel main-

tains a counter which indicates whether a new message is available for this connec-

tion. The polling overhead of this channel is around 0.06µs and increases as the

number of processes running on the same node increases. It is to be noted that

since most SMP nodes in clusters are 2-way to 16-way, this polling overhead is not

significant. To compare shared memory channel polling overhead with the network

channel overhead, we measured them on various system sizes as shown in Figure 7.1.

We can observe that network channel polling overhead increases faster than shared

memory channel as the system size increases. It is because the number of inter-node

connections per process increases in proportion to (P ×N), where P is the number

of processors on one node and N is the number of nodes. On the other hand, the

number of connections for intra-node communication increases in proportion to only

P . It is to be noted that most of clusters have a much larger N value than P .
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Figure 7.1: Polling overhead of network channel and shared memory channel
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Kernel Module Channel Overhead: The kernel module channel [48] copies

messages directly from the sender buffer to the receiver buffer. However, polling of

the kernel module channel is expensive as it requires a context-switch to the kernel-

space, which takes around 3µs. We can consider following two ways to poll on the

kernel module channel:

• Busy polling of the kernel module in the blocking MPI send, receive, or wait

functions. In this case, we poll the kernel module channel explicitly only when

a message is expected to arrive from that channel.

• The kernel module can provide some signaling bit to indicate the arrival of

new messages to the MPI layer. Although it can reduce the number of context

switches, still we need to trap into the kernel to match MPI headers. In the

worst case, if some unexpected message arrives in the kernel, the MPI layer still

needs to poll that message because the signal bit does not have information

about the MPI header.

In order to avoid multiple context switches and overhead to poll the kernel module,

we place the polling of the kernel module outside the main MPI progress engine. So,

if any messages are not expected from the kernel module channel, then that channel

is not polled at all. All unexpected messages arriving through the kernel module

channel are kept queued by the kernel module. The messages are copied when the

receiver posts the matching receive.

7.1.2 Channel polling schemes

As described in section 7.1.1 there are different costs associated with polling

of each channel. In this section we design different polling schemes to reduce the
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overhead associated with polling network and shared memory channels and enable

faster message discovery. As we have described in section 7.1.1, polling of the kernel

module is placed outside the main progress engine. So the kernel module is not

polled if no messages are expected from it. Therefore, we exclude kernel module

from the study of these polling schemes.

Static channel polling scheme: Static polling scheme decides the polling

policy at the start of the MPI application. This scheme can assign different priorities

(or weights) to different channels. The intuitive idea behind this scheme is that some

channels may be used more frequently or faster than others. To decide the priority,

we need to consider the following factors:

• Polling Overhead: If a channel has a significantly less polling overhead than

others, we can consider to poll this channel more frequently. In this way we

can reduce the message discovery time for the channel without adding a large

overhead to poll other channels.

• Message Latency: If a channel has lower message passing latency and higher

bandwidth than others, it may receive relatively more messages in a short

period of time. Accordingly, we can assign higher priority to this channel.

In this section, we consider both factors. As we have discussed in section 7.1.1, the

overhead of polling the shared memory channel is the least. Also we notice that this

channel has the lower latency than the network channel as shown in Section 7.3.2.

Therefore, we give most priority to the shared memory channel. In this scheme, we

decide the frequency of polling between channels based on the priority ratio assigned

statically at the application startup phase.
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Dynamic channel polling scheme: Dynamic polling schemes can change

polling priority over the course of the execution of the MPI application. There are

various factors to be considered while designing such a dynamic scheme:

• Update Rate: This factor determines how often the priority ratios are updated.

A very high update rate would imply increased overheads for short messages,

whereas a low update rate would miss smaller bursts of messages from other

channels.

• Message History: This factor determines the number of messages recorded

for computing the new priority ratio. The more messages are considered,

the slower the priority ratio will change. This might miss smaller bursts of

messages, whereas when lower number of messages are considered a lot of

fluctuation may occur even with small bursts of messages from a channel.

In this section, we use the following scheme to compute priority ratio: Suppose in

the last h messages received, m of which are from shared memory channel, and n

of which are from network channel, then priority ratio = m/n + 1. Whenever h

messages are received, we update the priority ratio, and reset h to zero. So the

message history length here is the same with update rate. Also, for the reasons

we stated in static polling scheme section, the polling priority of shared memory

channel is always higher than or equal to that of network channel.

7.2 Channel thresholds

Network, shared memory, and kernel module can all be used for intra-node com-

munication. These channels have different performance characteristics. Some chan-

nels have low startup latency and some channels have high bandwidth. In addition,
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some channels do not require the involvement of host CPU. In this section, we study

on selecting appropriate thresholds for efficient intra-node message passing.

7.2.1 Communication startup and message transmission

overheads

In the network channel, messages for intra-node communication are DMAed

into the network interface card and looped back to the host memory. Therefore,

there exist two DMA operations. Although I/O buses are getting faster, the DMA

overhead is still high. Further, the DMA startup overhead is as high as several

microseconds.

We note that the shared memory channel involves the minimal setup overhead

(less than 1.2µs) for every message exchange. However, there are at least two copies

involved in the message exchange. This approach might tie down the CPU with

memory copy time. In addition, as the message size grows, the performance of the

copy operation becomes even worse because vigorous copy-in and copy-out destroy

the cache contents.

The kernel module channel involves only one copy and is able to maximize the

cache effect. However, there are other overheads such as trap, memory mapping, and

locking of data structures. The trap and locking overheads are involved for every

message passing and larger than 3µs. The memory mapping overhead increases as

the number of pages for the user buffer increases, which takes around 0.7µs per page.

In addition, although the number of copy operations is reduced, the CPU resource

is still required to perform the copy operation.

114



7.2.2 Threshold decision methodology

To decide the thresholds, we consider several important factors, such as latency,

bandwidth, and CPU utilization, which can largely affect application performance.

However, different thresholds might be required by different applications because

each of them has different communication characteristics and programming assump-

tions. In this section, we discuss two different approaches for choosing appropriate

thresholds.

Microbenchmark based decision: In general, it is very difficult to decide

the threshold of communication channel for all applications. However, it is widely

accepted that such decisions can be based on latency and bandwidth measurements.

Therefore we can look at MPI microbenchmarks to see the basic performance of each

channel.

CPU utilization based decision: In this approach we measure the over-

lapping of computation and communication. Although some channels might have

higher message latency, they may effectively overlap computation and communica-

tion. This is beneficial for applications that are efficiently programmed to overlap

them. Since many MPI implementations use the rendezvous protocol for large mes-

sages and make a communication progress within MPI calls, applications are usually

required to call an MPI function such as MPI Iprobe to make an efficient overlap

between computation and communication. However, this is quite application de-

pendent. For applications which mostly use blocking operations, simply selecting

the channel with lowest latency would be enough.
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7.3 Performance Evaluation

In this section we present our results on design considerations for multi-channel

MPI, specifically results on polling schemes and threshold determination.

7.3.1 Evaluation of Polling Schemes

We conducted experiments on an 8-node cluster with the following configuration:

Super Micro SUPER X5DL8-GG nodes with dual Intel Xeon 3.0 GHz processors,

512 KB L2 cache, 2 GB memory, PCI-X 64-bit 133 MHz bus. The Linux kernel

version used was 2.4.22smp from kernel.org. All nodes are equipped with Mellanox

InfiniHost MT23108 HCAs and installed the Mellanox InfiniBand stack [60]. The

version of VAPI was 3.2 and firmware version 3.2. The nodes are connected through

Mellanox MTS 2400 24-port switch.

One crucial factor to determine for static polling scheme is “how much priority

should be given to the shared memory channel?” Obviously, if we give more priority

to shared memory channel, then the shared memory latency will reduce. But at the

same time the latency of messages coming over the network will also increase.

To find out the optimal priority ratio, we conducted the standard ping-pong

latency test with different priority ratios. Figure 2 shows variation of ping-pong

latency with various priority ratios for 4B and 2KB message sizes. We can observe

from these figures that if we give shared memory channel a priority ratio of 50,

then we can get a reasonably balanced improvement of intra-node latency - 12%

improvement for 4B message and 9% improvement for 2KB message - without hurt-

ing network latency. For 4B message, our experiments indicate that we can achieve

up to 37% improvement in intra-node latency using the static polling priority 1000,
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but it hurts the network channel latency significantly. As message size increases,

the benefit of polling scheme reduces because the message transmission overhead

becomes larger than the polling overhead.
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Figure 7.2: Latency of static polling scheme

In order to evaluate the dynamic polling scheme we need to devise a new MPI

microbenchmark that appropriately captures the message discovery time at the MPI

layer. There are three processes in the benchmark. Two processes are on the same

node, whereas one process is on a separate node. This process sends messages

over the network, whereas the process on the same node sends messages exclusively

through shared memory channel. On the receipt of each message the “root” process

replies with an ACK. The process sending the “burst” number of messages to the
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root is alternately selected between the network peer and the shared memory peer.

This test captures the message discovery time by the root process before it can send

an ACK to the peer process. Figure 7.3 illustrates this microbenchmark where we

are trying to measure time T .
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Figure 7.4: Message discovery time of dynamic polling scheme

Figure 4 shows the performance results of this microbenchmark with the burst

sizes of 100 and 200 for 4B message. We observe that with the increase of update

rate, the message discovery time actually decreases. The update rate of 8 or 10 is
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enough not to introduce too much overhead and also sustain fairly small burst of

messages. Our experiments indicate that we can achieve up to 45% improvement

rate of message discovery time with burst size of 200. However, when the update

rate becomes higher, the overhead causes the discovery time to rise. We also observe

that when the burst size is equal to the update rate, the discovery time increases

significantly due to continuous wrong predictions.

7.3.2 Evaluation of Thresholds

In this section, we run the above mentioned decision approaches on the cluster

described in section 7.3.1. We use the standard ping-pong latency and bandwidth

to evaluate the threshold points for the three channels.

Figure 5 shows the experimental results of the latency and bandwidth tests.

We find that for messages smaller than 4KB, it is beneficial to use shared memory

channel. This is because shared memory channel avoids a high communication

startup time such as kernel trap and DMA initialization. For messages greater than

4KB, it is useful to have the kernel module channel. This is mainly because the

number of copies has been reduced to one. Also, we can observe that the bandwidth

for the kernel module channel drops significantly from 256KB message size. It is

because the cache size on the node used is 512KB. Both the sender and receiver

buffers and some additional data structures cannot fit into the cache beyond this

message size. However, the bandwidth offered by the kernel module channel is still

greater than others.

To analyze different channels’ capability of overlapping computation and com-

munication, we conducted experiments as follows: Two processes running on the
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same node call MPI Isend and MPI Irecv. Then they execute a computation loop

for a given computation time (i.e., values in x-axis of Figure 7.6). Within the

computation loop, processes call MPI Iprobe to make a communication progress

for every 100µs. After the computation time, they call MPI Waitall and calculate

(Total T ime/Computation T ime), where Total T ime includes both computation

and communication time. A value closer to 1 means more overlapping between

computation and communication.

Figure 7.6 shows experimental results for 4B and 128KB messages, respectively.

For small messages, the communication startup time is the dominant overhead while

message transmission time is very small. Since the shared memory channel has the

lowest communication startup time, this channel shows closer values to 1 than others

with small computation time. It is to be noted that the network channel shows

better overlapping than the kernel module channel for small messages. Although

the network channel has a larger startup time than the kernel module, the DMA

initialization time, which is the dominant startup overhead for the network channel,

does not require CPU resource at all. Thus most of startup time of the network

channel can be overlapped with computation, which results in the better overlapping

than the kernel module channel. Since communication overhead becomes relatively

smaller as the computation time grows, there is no difference among three channels

with large computation time values.

For large messages, we observe that the network channel can make the compu-

tation and communication fully overlap. It is because the network channel does not

need any CPU resource to move intra-node messages. However, the shared mem-

ory and kernel module channels require the CPU to copy messages. Therefore, it
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is difficult to expect them to achieve a good overlapping. Since the kernel module

channel needs only one copy, this channel shows better overlapping than the shared

memory channel. As the computation time increases, all three channels again show

the same overlapping capability. It is because the computation time is too large

comparing with communication time. Overall, to maximize the computation and

communication overlapping, the shared memory and network channels are beneficial

for small and large messages, respectively.
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Figure 7.5: Latency and bandwidth comparisons
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Figure 7.6: Computation/communication overlap

7.4 Summary

In this chapter, we have studied important factors to optimize multi-channel

MPI. We have proposed several different schemes for polling communication chan-

nels and deciding thresholds for the hybrid of them in MVAPICH. To come up with

an efficient static polling scheme, we have taken into account polling overhead and

message latency. In addition, we have suggested a dynamic polling scheme, which

updates the priority ratio based on update rate and message history. The exper-

imental results show that the factors we have considered affect sensitively on the

message discovery time. We note that the static polling scheme can reduce intra-

node latency by 12% without hurting inter-node latency. By using the adaptive

polling scheme we can reduce the message discovery overhead by 45%.

In addition, we have evaluated thresholds for each channel both based on raw

MPI latencies and bandwidths and also CPU utilization. We have observed that ker-

nel module channel can achieve a very low latency and high bandwidth for medium

and large messages. On the other hand, for this message range, network channel
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can overlap computation and communication very well although this channel has a

high latency and low bandwidth. For small messages, the shared memory channel

shows better performance than others.
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CHAPTER 8

OPEN SOURCE SOFTWARE RELEASE AND ITS
IMPACT

The work described in this dissertation has been incorporated into our MVA-

PICH/MVAPICH2 software package and is distributed in an open-source manner.

The duration of this work has spanned several release versions of this package,

including the latest versions MVAPICH-1.1 and MVAPICH2-1.4. The results pre-

sented in this dissertation have reduced intra-node memory usage significantly and

enabled MVAPICH/MVAPICH2 to run efficiently on large multi-core systems.

MVAPICH/MVAPICH2 supports many software interfaces, including OpenFab-

rics [18], uDAPL [34], and InfiniPath-PSM interface from QLogic [22]. The work

presented in this dissertation is available in all these interfaces, and is portable across

a wide variety of target architectures, like IA32, EM64T, X86 64 and IA64.

Since its release in 2002, more than 855 computing sites and organizations have

downloaded this software. More than 27000 downloads have taken place. In ad-

dition, nearly every InfiniBand vendor and the Open Source OpenFabrics stack

includes this software in their packages. Our software has been used on some of the

most powerful computers, as ranked by Top500 [24]. Examples from the November

2008 rankings include 6th, 62976-core Sun Blade System (Ranger) with Opteron

124



Quad Core 2.0 GHz at Texas Advanced Computing Center (TACC), 58th, 5848-

core Dell PowerEdge Intel EM64T 2.66 GHz cluster at Texas Advanced Computing

Center/Univ. of Texas, and 73rd, 9216-core Appro Quad Opteron dual Core 2.4

GHz at Lawrence Livermore National Laboratory.
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CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

The research in this dissertation has demonstrated the feasibility of running MPI

applications efficiently on large multi-core systems with the aid of employing high

performance and scalable intra-node communication techniques inside the MPI li-

brary. We have described how we can take advantage of shared memory, kernel mod-

ules, and on-chip DMAs to design efficient MPI intra-node communication schemes.

We have also investigated multi-core aware and multi-channel MPI optimizations.

In addition, our work has analyzed application characteristics on multi-core sys-

tems, potential bottlenecks, how next-generation MPI applications can be modified

to obtain optimal performance, and scalability of multi-core clusters.

9.1 Summary of Research Contributions

The work proposed in this thesis aims towards designing high-performance and

scalable MPI intra-node communication middleware, especially for contemporary

multi-core systems. The advanced shared memory based approach described in

this proposal has already been integrated into MVAPICH software package. MVA-

PICH is very widely used, including the 6th fastest supercomputer in the world: a
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62976-core Sun Blade System (Ranger) with Opteron Quad Core 2.0 GHz at Texas

Advanced Computing Center (TACC). The design enables applications to execute

within a node in a high-performance and scalable manner. The kernel module based

approach LiMIC2 has also been integrated into MVAPICH2 distribution.

We note that the ideas proposed and developed in this thesis are independent of

any networks and portable across different operating systems. They can essentially

be integrated into any MPI library. Thus, we foresee that the contribution of this

thesis will be significant for the HPC community, especially as multi-core becomes

main stream. Following is a more detailed summary of the research presented in

this dissertation.

9.1.1 High Performance and Scalable MPI Intra-node Com-

munication Designs

In Chapters 3, 4, and 5, we have presented several designs for MPI intra-node

communication. The shared memory based design has the minimum startup time

and administrative requirement, and is portable across different operating systems

and platforms. It has shown very good latency and bandwidth. The kernel assisted

direct copy approach takes help from the operating system and eliminates the in-

termediate copies and further improves performance. The I/OAT based approach

does not only remove the extra copies but also has better communication and com-

putation overlap. From our experimental results, we have observed that with these

advanced designs MPI applications can run efficiently on large multi-core systems.
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9.1.2 Multi-core Aware Optimizations

In Chapter 6, we have presented a hybrid approach to get optimized performance

on multi-core systems. The approach efficiently combines the shared memory and

the kernel assisted direct copy approaches in a topology-aware and skew-aware way.

Our performance evaluation shows that the hybrid approach has optimized perfor-

mance for all intra-node communication cases, namely shared-cache, intra-socket,

and inter-socket. It also improves the performance of MPI collective operations and

applications.

9.1.3 Comprehensive Analysis of Considerations for Multi-
channel MPI

Since most MPI implementations use multiple channels for communication, such

as shared memory channel, network channel, kernel module channel etc, it is im-

portant to understand and optimize on the factors that affect multi-channel MPI

performance. In Chapter 7, we have done this study. We have shown that chan-

nel polling and threshold selection are two important factors and proposed efficient

channel polling algorithms and threshold selection methods. Our experimental re-

sults show that our optimization can improve MPI performance significantly.

9.1.4 In-depth Understanding of Application Behaviors on

Multi-core Clusters

In Chapter 2, we have done a comprehensive performance evaluation and analysis

on application behaviors on multi-core clusters. Through our study we have found

that MPI intra-node communication is very important for the overall performance.

We have also observed that cache and memory contention is a potential bottleneck
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in multi-core systems, and applications should use techniques such as data tiling

to avoid cache and memory contention as much as possible. Our scalability study

shows that the scalability of multi-core clusters depends on the applications. For

applications that are not memory intensive, multi-core clusters have the same scala-

bility as single-core clusters. Our study gives insights to parallel application writers

and MPI middleware developers and facilitates them to write code more efficiently

for multi-core clusters.

9.2 Future Research Directions

In this dissertation, we have shown the methods to optimize MPI intra-node

communication. However, there are several interesting research topics that are still

left to be explored.

• Topology Aware Dynamic Process Distribution - As described in Sec-

tion 6, there are multiple levels of communication existing in MPI intra-node

communication. For example, there are three levels of communication in Intel

Clovertown systems. The first level includes two cores on the same chip and

share the L2 cache. The second level includes two cores on the same chip but

do not share the L2 cache. And the third level includes two cores on different

chips. These different levels of communication have different characteristics,

e.g. the latency of the first level communication is the lowest because it just in-

volves cache transactions. Based on the topology information and application

characteristics, we can explore the feasibility of dynamic processes migration

among physical cores within a node. This may have the potential benefit of

129



minimizing communication overhead. This may be especially important for

next-generation many-core systems, such as Intel 80-core system.

• Efficient MPI Collective Operations - MPI collective operations are fre-

quently used in many applications, and their performance is critical to the

overall performance. This thesis mostly focuses on point-to-point operations

and in the future we would like to explore on collective operations too. There

are different collective algorithms and they should be chosen based on vari-

ous factors, such as message size, system size, platforms, etc. With our new

designs of point-to-point communication, such as kernel assisted direct copy

and I/OAT based design, we need to reconsider the collective algorithms and

find out the optimal solution. We might also need to propose new collective

algorithms to efficiently utilize the intra-node point-to-point communication

schemes.

• Efficient MPI One-sided Communication - MPI defines one-sided com-

munication operations that allow users to directly read from or write to the

memory of a remote process [61]. One-sided communication both is conve-

nient to use and has the potential to deliver higher performance than regular

point-to-point (two-sided) communication. The semantic of one-sided com-

munication matches well with the kernel assisted direct copy approach such

as LiMIC/LiMIC2 in the sense that one process can access the memory of

another process. In the future, we would like to explore efficient algorithms to

use LiMIC/LiMIC2 for MPI one-sided communication operations.
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• Comprehensive Analysis of Intra-node Communication over AMD

Barcelona System - As mentioned in Section 1.1, AMD Barcelona processor

is an emerging innovative quad-core architecture. A Barcelona chip includes

four cores that have separate L2 cache but share the same L3 cache. The

L3 cache is not a traditional inclusive cache, it is acting as a spill-over cache

for items evicted by the L2 cache. And when L1 cache loads data from L3

cache (L2 cache is always bypassed) the data can be removed or retained in

the L3 cache, depending on whether other cores are likely to access the data in

the future. All these features make Barcelona very different from the systems

we have studied on. We would like to carry out comprehensive and in-depth

performance evaluation on AMD Barcelona systems, and find ways to optimize

MPI intra-node communication performance on such systems.

• Study and Optimizations on Future Multi-core Architectures - Multi-

core technoogy is advancing rapidly. Both Intel and AMD are planning to ship

6/8/12/16-core systems in the near future. In these systems, new architectures

are being prososed for better performance and scalability. We will need to

carefully study the intra-socket topology and communication characteristics

of these new processors and optimize communication performance on them.

131



BIBLIOGRAPHY

[1] http://lse.sourceforge.net/numa/faq/.

[2] http://valgrind.org/.

[3] AMD’s dual-core Opteron processors. http://techreport.com/articles.x/8236.

[4] Cluster (Computing). http://en.wikipedia.org/wiki/Computer cluster.

[5] HP Message Passing Interface library (HP-MPI).

http://h21007.www2.hp.com/portal/site/dspp/menuitem.
863c3e4cbcdc3f3515b49c108973a801/

?ciid=a308a8ea6ce02110a8ea6ce02110275d6e10RCRD.

[6] InfiniBand Trade Association. http://www.infinibandta.com.

[7] Intel Clovertown Quad Core Processor Review.
http://www.maxitmag.com/hardware-reviews/processors/intel-clovertown-

quad-core-processor-review.html.

[8] Intel Cluster Toolkit 3.1. http://www.intel.com/cd/software/products/asmo-

na/eng/cluster/clustertoolkit/219848.htm.

[9] Intel Dual-core Technology. http://www.intel.com/technology/computing/dual-

core/index.htm.

[10] Intel MPI Library 3.2 for Linux or Win-

dows. http://www.intel.com/cd/software/products/asmo-

na/eng/cluster/mpi/308295.htm.

[11] Intel Quad-core Technology. http://www.intel.com/technology/quad-

core/index.htm.

[12] Intel’s Woodcrest processor previewed. http://techreport.com/articles.x/10021/1.

[13] iWARP. http://en.wikipedia.org/wiki/IWARP.

132



[14] MPI: A Message-Passing Interface Standard. http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report.html.

[15] MPI over InfiniBand Project. http://nowlab.cse.ohio-state.edu/projects/mpi-
iba/.

[16] MPICH2. http://www.mcs.anl.gov/mpi/.

[17] Open MPI : Open Source High Performance Computing. http://www.open-

mpi.org.

[18] OpenFabrics Alliance. http://www.openfabrics.org.

[19] OProfile. http://oprofile.sourceforge.net.

[20] Parallel Spectral Transform Shallow Water Model.
http://www.csm.ornl.gov/chammp/pstswm/.

[21] Product Brief: Quad-Core AMD Opteron Processor. http://www.amd.com/us-
en/Processors/ProductInformation/0,,30 118 8796 15223,00.html.

[22] QLogic. http://www.qlogic.com.

[23] The Cell project at IBM Research. www.research.ibm.com/cell/.

[24] Top 500 SuperComputer Sites. http://www.top500.org/.

[25] UltraSPARC Processors. http://www.sun.com/processors/.

[26] Olivier Aumage and Guillaume Mercier. MPICH/MADIII: a Cluster of Clusters
Enabled MPI Implementation. In 3rd IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid2003), 2003.

[27] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-Second Local Area
Network. IEEE Micro, pages 29–35, Feb 1995.

[28] Darius Buntinas, Guillaume Mercier, and William Gropp. The Design and
Evaluation of Nemesis, a Scalable Low-Latency Message-Passing Communica-

tion Subsystem. In International Symposium on Cluster Computing and the
Grid, 2006.

[29] Thomas W. Burger. Intel Multi-Core Processors: Quick Reference Guide.
http://cache-www.intel.com/cd/00/00/23/19/231912 231912.pdf.

[30] L. Chai, A. Hartono, and D. K. Panda. Designing High Performance and
Scalable MPI Intra-node Communication Support for Clusters. In The IEEE

International Conference on Cluster Computing, 2006.

133



[31] L. Chai, S. Sur, H.-W. Jin, and D. K. Panda. Analysis of Design Considerations
for Optimizing Multi-Channel MPI over InfiniBand. In CAC 2005, 2005.

[32] G. Ciaccio. Using a Self-connected Gigabit Ethernet Adapter as a memcpy()
Low-Overhead Engine for MPI. In EuroPVM/MPI, 2003.

[33] Giuseppe Ciaccio. Using a Self-connected Gigabit Ethernet Adapter as a mem-
cpy() Low-Overhead Engine for MPI. In Euro PVM/MPI, 2003.

[34] DAT Collaborative. uDAPL: User Direct Access Programming Library Version
1.2. http://www.datcollaborative.org/udapl.html, July 2004.

[35] Rob F. Van der Wijngaart and Haoqiang Jin. NAS Parallel Benchmarks, Multi-

Zone Versions. Technical report.

[36] Max Domeika and Lerie Kane. Optimization Techniques for In-

tel Multi-Core Processors. http://www3.intel.com/cd/ids/developer/asmo-
na/eng/261221.htm?page=1.

[37] Per Ekman and Philip Mucci. Design Considerations for Shared Memory MPI
Implementations on Linux NUMA Systems: An MPICH/MPICH2 Case Study.

http://www.cs.utk.edu/ mucci/latest/pubs/AMD-MPI-05.pdf.

[38] D. H. Bailey et al. The NAS Parallel Benchmarks. volume 5, pages 63–73, Fall

1991.

[39] Matthew Curtis-Maury et al. An Evaluation of OpenMP on Current and

Emerging Multithreaded/Multicore Processors. In IWOMP, 2005.

[40] Sadaf R. Alam et al. Characterization of Scientific Workloads on Systems with

Multi-Core Processors. In International Symposium on Workload Characteri-

zation, 2006.

[41] I. Foster and N. T. Karonis. A Grid-Enabled MPI: Message Passing in Het-

erogenous Distributed Computing Systems. In Proceedings of the Supercomput-
ing Conference (SC), 1998.

[42] Kittur Ganesh. Optimization Techniques for Optimiz-
ing Application Performance on Multi-Core Processors.

http://tree.celinuxforum.org/CelfPubWiki/ELC2006Present
ations?action=AttachFile&do=get&target=Ganesh-CELF.pdf.

[43] P. Geoffray, C. Pham, and B. Tourancheau. A Software Suite for High-
Performance Communications on Clusters of SMPs. Cluster Computing,

5(4):353–363, October 2002.

134



[44] Andrew Gover and Christopher Leech. Accelerating Network Receiver Process-
ing. http://linux.inet.hr/files/ols2005/grover-reprint.pdf.

[45] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable
Implementation of the MPI, Message Passing Interface Standard. In Parallel

Computing, 2006.

[46] Yun He and Chris Ding. Hybrid OpenMP and MPI Programming and Tuning.

www.nersc.gov/nusers/services/training/classes/NUG/Jun04
/NUG2004 yhe hybrid.ppt.

[47] Innovative Computing Laboratory (ICL). HPC Challenge Benchmark.
http://icl.cs.utk.edu/hpcc/.

[48] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Design and Performance Evalu-

ation of LiMIC (Linux Kernel Module for MPI Intra-node Communication) on
InfiniBand Cluster. In International Conference on Parallel Processing, 2005.

[49] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic: Support for high-
performance mpi intra-node communication on linux cluster. In International

Conference on Parallel Processing, 2005.

[50] Hyun-Wook Jin, Sayantan Sur, Lei Chai, and Dhabaleswar K. Panda.

Lightweight Kernel-Level Primitives for High-performance MPI Intra-Node
Communication over Multi-Core Systems. In IEEE International Conference

on Cluster Computing (poster presentation), 2007.

[51] I. Kadayif and M. Kandemir. Data Space-oriented Tiling for Enhancing Local-

ity. ACM Transactions on Embedded Computing Systems, 4(2):388–414, 2005.

[52] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implemen-
tation of the Message Passing Interface. Journal of Parallel and Distributed

Computing (JPDC), 63(5):551–563, May 2003.

[53] M. Koop, W. Huang, A. Vishnu, and D. K. Panda. Memory Scalability Eval-

uation of the Next-Generation Intel Bensley Platform with InfiniBand. In Hot
Interconnect, 2006.

[54] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand. In SC, June 2003.

[55] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-based MPI imple-
mentation over InfiniBand. Int’l Journal of Parallel Programming, In Press,

2005.

135



[56] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-Protocol Active
Messages on a Cluster of SMP’s. In SC ’97, 1997.

[57] S. Makineni and R. Iyer. Architectural Characterization of TCP/IP Packet
Processing on the Pentium Microprocessor. In High Performance Computer

Architecture, HPCA-10, 2004.

[58] Amith R Mamidala, Rahul Kumar, Debraj De, and Dhabaleswar K Panda.

MPI Collectives on Modern Multicore Clusters: Performance Optimizations
and Communication Characteristics. In Proceedings of IEEE International

Sympsoium on Cluster Computing and the Grid, 2008.

[59] Mellanox Technologies. Mellanox InfiniBand InfiniHost MT23108 Adapters.

http://www.mellanox.com, July 2002.

[60] Mellanox Technologies. Mellanox VAPI Interface, July 2002.

[61] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

Mar 1994.

[62] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing

Interface, Jul 1997.

[63] Myricom Inc. Portable MPI Model Implementation over GM, March 2004.

[64] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan
Frachtenberg. The Quadrics Network: High Performance Clustering Tech-

nology. IEEE Micro, 22(1):46–57, January-February 2002. Available from
http://www.c3.lanl.gov/~fabrizio/papers/ieemicro.pdf.

[65] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular

Simulation on Thousands of Processors. In SuperComputing, 2002.

[66] R. Rabenseifner and A. E. Koniges. The Parallel Commu-

nication and I/O Bandwidth Benchmarks: beff and beffio.
http://www.hlrs.de/organization/par/services/models/mpi/b eff/.

[67] R. Recio, P. Culley, D. Garcia, and J. Hillard. IETF Draft: RDMA Protocol
Specification, November 2002.

[68] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli,
D. Newell, L. Cline, and A. Foong. TCP Onloading for Data Center Servers.

In IEEE Computer, Nov 2004.

[69] SGI. Message passing toolkit (mpt) user guide.

136



[70] Suresh Siddha. Multi-core and Linux Kernel.
http://oss.intel.com/pdf/mclinux.pdf.

[71] Sun Microsystems Inc. Memory Placement Optimization (MPO).
www.opensolaris.org/os/community/performance/ mpo overview.pdf.

[72] Toshiyuki Takahashi, Shinji Sumimoto nd Atsushi Hori, Hiroshi Harada, and
Yutaka Ishikawa. PM2: High Performance Communication Middleware for

Heterogeneous Network Environments. In SuperComputing (SC), 2000.

[73] Tian Tian and Chiu-Pi Shih. Software Techniques for Shared-

Cache Multi-Core Systems. http://www.intel.com/cd/ids/developer/asmo-
na/eng/recent/286311.htm?page=1.

[74] Li Zhao, Ravi Iyer, Srihari Makineni, Laxmi Bhuyan, and Don Newell. Hard-

ware Support for Bulk Data Movement in Server Platforms. In Proceedings of
International Conference on Computer Design, 2005.

137


