
MPI-IO on DAFS over VIA: Implementation and
Performance Evaluation

�

Jiesheng Wu and Dhabaleswar K. Panda
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210�

wuj, panda � @cis.ohio-state.edu

Abstract

In this paper, we describe an implementation of MPI-IO
on top of the Direct Access File System (DAFS) standard.
The implementation is realized by porting ROMIO on top
of DAFS. We identify one of the main mismatches between
MPI-IO and DAFS is memory management. Three different
design alternatives for memory management are proposed,
implemented, and evaluated. We find that memory manage-
ment in the ADIO layer performs better in situations where
the DAFS Provider uses Direct data transfer to handle I/O
requests. For the other case of Inline data transfer, it may
hurt performance. We propose that the DAFS Provider can
expose such implementation information for applications to
take full advantage of Inline and Direct data transfers and
memory management. Comparative analysis of MPI-IO
performance over DAFS, network file system (NFS) and lo-
cal file system (LFS) shows that MPI-IO on DAFS over VIA
on cLAN performs 1.6-5.6 times better than on NFS over
UDP/IP on cLAN. The performance of MPI-IO on DAFS is
found to be comparable to the performance on local file sys-
tem. Additional experiments show that MPI-IO nonblocking
I/O primitives implemented by DAFS nonblocking opera-
tions can completely overlap I/O and computation. These
results show that MPI-IO on DAFS can take full advantage
of DAFS features to achieve high performance I/O over VI
Architectures.

1. Introduction

In recent years, user-level communication systems and
memory-to-memory networks are increasingly used in Net-
work Based Computing platforms and data center environ-
ment. The Virtual Interface (VI) Architecture [5] and In-
finiBand (IB) Architecture [10] standardize these communi-

�
This research is supported in part by Department of Energy’s Grant #

DE-FC02-01ER25506 and an NSF Grant #EIA-9986052.

cation systems for inter-processor-communication and I/O.
The Direct Access File System (DAFS) [6, 7], a new lo-
cal file-sharing standard, is designed to provide applica-
tions with high-throughput, low-latency access to shared
file servers over memory-to-memory networks with VI-
compliant capabilities. The DAFS Protocol is based on NFS
version 4 [13], with new features for direct data transfer,
asynchronous operations, scatter/gather list I/O, and lock-
ing and recovery features for a data-center or cluster envi-
ronment. It takes full advantage of memory-to-memory net-
works such as cLAN [8] with remote DMA support to pro-
vide high performance file I/O, improved CPU utilization
and reduced system overhead due to data copies, user/kernel
context switches, thread context switches, and network pro-
tocol processing. DAFS is a user level file system: a DAFS
client may access network storage directly with protection
and without kernel involvement. This offers the application
full control over data movement and caching.

MPI-IO, the I/O part of the MPI-2 standard [12], is to
provide an interface specifically intended for portable and
high performance parallel I/O. MPI-IO defines a compre-
hensive interface with many features for both portability
and performance. ROMIO [16] is a well-known imple-
mentation of MPI-IO with high-performance and portabil-
ity. The current version runs on different types of machines,
including parallel machines, SMP and networks of worksta-
tions (NOW). Supported file systems are IBM PIOFS, Intel
PFS, HP HFS, SGI XFS, NEC SFS, Clemson PVFS, NFS
and any Unix file system (UFS) [16].

Even though MPI-IO implementations are available for
different file systems, so far, there is no implementation to
take advantage of the emerging DAFS standard. In this pa-
per, we take on such a challenge. We design, develop, and
evaluate an implementation of MPI-IO (ROMIO) on DAFS
over cLAN VIA. We demonstrate that our implementation
can take full advantage of all DAFS features for high perfor-
mance. The main contributions of this paper are as follows:

� We analyze MPI-IO desired features and compare
them with the DAFS capabilities. We show that DAFS
meets almost all desired features for implementing
MPI-IO correctly with high performance.

� Memory management is a major issue in implement-
ing MPI-IO on DAFS. We propose three design alter-
natives for memory management.

� We implement MPI-IO on DAFS by porting the
ROMIO ADIO layer on DAFS APIs. Three design
alternatives of memory management are implemented
and evaluated. We find that there could be a dilemma
for DAFS applications to take advantage of Inline and
Direct data transfers when the effects of memory man-
agement are considered. We propose that the DAFS
Provider can export the threshold at which data trans-
fers switch from Inline to Direct so that the DAFS-
enabled applications can avoid the cost of memory
management by using Inline data transfer.

� We compare and analyze the performance of basic
MPI-IO operations in our implementation with imple-
mentations on two other file systems: network file sys-
tem (NFS) and local file system (LFS). We show that
MPI-IO can take full advantage of VI-compliant trans-
port and user-level file access employed by the DAFS
Protocol and interfaces. Compared to the two other
implementations, MPI-IO on DAFS delivers high-
throughput, low-latency performance and better capa-
bility for overlapping I/O and computation.

The rest of the paper is organized as follows. An
overview of DAFS is presented in Section 2. In Section 3,
we give a brief overview of ROMIO. In Section 4, we ana-
lyze and compare the MPI-IO demands and the DAFS capa-
bilities. Different approaches for memory management are
also discussed. Section 5 describes our implementation of
MPI-IO on DAFS. Various performance evaluation results
are presented in Section 6, followed by conclusions and fu-
ture work in Section 7.

2. Overview of DAFS

2.1. Communication model

The Direct Access File System (DAFS) [7] is a new
file sharing standard. It’s designed to provide applica-
tion servers with high-throughput and low-latency access
to shared file servers over memory-to-memory networks,
such as Virtual Interface (VI) Architecture [5] and Infini-
Band (IB) Architecture [10]. Memory-to-memory net-
works are characterized by remote direct memory access
(RDMA), user-level networking and offloading transport
protocol processing to the network adapters. The DAFS
protocol takes full advantage of these features to provide

low-latency, high-throughput, and low overhead data move-
ment. These capabilities are referred as the Direct Access
Transport (DAT) by the DAFS protocol.

DAT
Provider

Transport

DAT Consumer

Direct Access
 Transport Service

Provider Specific Protocol
(e.g, VIA, IB)

cLAN, Myrinet,
FC-VI, InfiniBand

Networks

Client

DAT Consumer

Sever

DAT
Provider

Figure 1. DAFS communication framework

The DAT semantic is the minimal set of transport ca-
pabilities that DAFS requires to provide high-performance
DAFS implementations. DAT can be mapped easily onto
networks that support features mentioned earlier, such as
VI Architecture and IB Architecture. Figure 1 shows the
communication framework of the DAFS protocol, in which
interactions between the local and remote DAT Consumers
are enabled through direct access transport (DAT) services.

DAFS provides two types of data transfer operations. In-
line data transfer uses a send-receive model to make data
movement. Usually, there is a data copy from user buffers
to pre-registered buffer pools. Another data transfer option
is Direct, in which I/O operations are translated to RDMA
I/O operations. The DAFS user is responsible to manage
the memory for Direct data transfer.

(a)

Hardware

DAFS NFS Local FS

(c) (b)

User

Kernel

STDLIB

Application
 Buffers

FS

File system

SCSI Driver

HBA Driver

Host Bus
Adapter(HBA)

Buffer
Cache

Application
 Buffers

FS

NFS

NIC Driver

NIC

Buffer
Cache

Packet
Buffer

Application

 Buffers
DAFS
VIPL

VI NIC
Driver

NIC

Control

DATA

STDLIB

TCP/IP

Figure 2. DAFS file access methods

2.2. DAFS file access methods

The DAFS protocol suggests a fundamental change in
file access method in order to take advantage of DAT capa-
bilities of underlying networks. Figures 2(a), (b) and (c) de-
scribe the general file access methods for local file systems,

network file systems and DAFS respectively. In DAFS, by
using the remote memory addressing capability of DAT, a
client’s read or write request causes the DAFS server to is-
sue RDMA operations back to the client, thus data can be
transfered directly to and from a client application’s buffer
without copy or any CPU overhead at all on the client’s side.

Applications can take advantage of DAFS capabilities in
several ways depending on DAFS implementation. Both
DAFS server and client can be implemented in two main
ways: user level and kernel level, several implementation
demonstrations are listed in [7].

3. Overview of ROMIO

MPI-IO, the I/O part of the MPI-2 [12] standard, is
to design a new interface specifically for portable, high-
performance parallel I/O. MPI-IO defines a comprehen-
sive interface with many features which specifically support
portable, high-performance parallel I/O. Details about these
features can be found in [9].

……

Network

Remote Site

ADIO ADIO

MPI-IO

File System-specific
Implementations

Portable
Implementations

DAFS
Intel IBM SGI HP
PFS PIOFS XFS HFS

Unix

NFS

NEC
SFS

Figure 3. ROMIO architecture (from [15]) and
our approach

Multiple implementations of MPI-IO, both portable and
machine specific, are available. ROMIO [16] is a well-
known implementation of MPI-IO with high-performance
and portability on different platforms [16, 15]. ROMIO has
a key internal layer called ADIO: an abstract-device inter-
face for parallel I/O, which consists of a small set of basic
functions for parallel I/O. ROMIO achieves portability and
high performance for MPI-IO by implementing MPI-IO on
top of ADIO, and implementing ADIO separately on each
different file system. Implementation of ADIO on a particu-
lar file system can be completely optimized for performance
on the targeted file system. An overview of ROMIO archi-
tecture is shown in Figure 3.

4. Challenges in implementing MPI-IO on
DAFS

In this section, we compare and analyze the desired fea-
tures of MPI-IO with DAFS capabilities. We show that the
major mismatch between MPI-IO and DAFS is that read
or write buffers must be registered for the DAFS Provider.
This is called memory management. We present and evalu-
ate different design alternatives for memory management.

4.1. Desired features and DAFS capabilities

Rajeev, et al. [15] proposed a list of features desired from
a file system that would help in implementing MPI-IO cor-
rectly and with high performance. We describe how these
features can be supported by DAFS capabilities in Table 1.

It is very interesting to note that DAFS provides all these
desired features, except control over file striping and file
preallocation. In addition, DAFS provides nonblocking I/O
which is optional in the MPI-IO demands list. Thus, it can
be expected that MPI-IO can exploit DAFS features to the
maximum extent possible. One of the main objectives of
our work is that the power and complexity of DAFS can
be encapsulated in the ADIO layer which is appropriate for
MPI-IO and subsequently MPI-IO applications take full ad-
vantage of DAFS features and high performance networks.

4.2. Memory management

A mismatch between MPI-IO and DAFS, not shown in
Table 1, is as follows: as a basic requirement for memory-
to-memory networks, all read or write buffers are required
to be in registered memory regions in DAFS. To enable ap-
plications to flexibly manage their buffers by their buffer ac-
cess patterns, memory registration is exported to the DAFS
applications by DAFS memory management APIs. This im-
portant difference from POSIX and WIN32 enables the per-
formance advantages of DAFS by removing memory regis-
tration operations and their user-to-kernel transitions from
the critical I/O paths. Thus, the DAFS Consumer’s explicit
registration is preferable, though the DAFS API accepts a
NULL memory handle,

Note that at the cost of pre-registering a system buffer
and an additional memory-to-memory copy, the constraint
of explicitly registering read and write buffers can be re-
moved, however this is beneficial only for small data trans-
fers. The DAFS Inline data transfer also takes advantage
of it. But the threshold at which data transfers switch from
Inline to Direct is not visible to the DAFS users. Based
on this and the above mentioned performance concern, it is
inevitable to register user buffers on top of the DAFS.

Memory management should address the following three
problems:

1. Allow applications to register memory once and then
subsequently use it for many times to avoid the per-
operation registration overhead.

2. Balance performance and critical resources (pinned
memory and resources on the network adapters),
may require memory management to be machine-
dependent.

3. Avoid memory registration in situations where regis-
tration is not required. For example, when a read or

Table 1. MPI-IO demands for correctness and high-performance and DAFS capabilities

MPI-IO Demands DAFS Capabilities Remark
High Performance Parallel File
Access: concurrent requests
(particularly writes) not serialized

• high-throughput, low-latency file access
• high-speed byte level locking
• session-based communication model
• write-batch

Data-Consistency Semantics:
byte-level consistency, the data
written by a process visible to other
processes immediately after the write
from this process returns without any
explicit cache flush

• byte-level locking
• various types of locking
• the delegation of file access authority
• no cache, read-ahead, or write-behind on the client

side

asynchronous operations
can be used by
applications to do read-
ahead and write-behind if
need.

Atomicity Semantics

• atomic write append
• atomicity semantics enforced by locking semantics

DAFS makes common
case fast.

File Attribute Consistency • mechanism to enable applications to maintain file
attribute consistency

• variable size of buffers used to fetch attribute data.

In DAFS, application
control achieves higher
performance

Interface Supporting
Noncontiguous Access

• gather/scatter list I/O
• noncontiguity in both memory and a file

DAFS request chaining
optimization

Support file larger than 2 Gbytes • support

Byte-Range locking • support

Control over File Striping • no Support

Variable Caching/Pre-fetching
Policies

• server caching hints
• variable caching/pre-fetching policies used in the

server side.

DAFS Client also can
provide application-
controlled read-ahead and
write-behind.

File Preallocation • no support
Leave Collective I/O to the MPI-
IO implementation

• no collective I/O
• collective I/O may benefit from DAFS

nonblocking operations
• collective I/O may benefit from DAFS cache hints

No shared file pointers • not support shared file pointers DAFS uses explicit offset
in operations

Nonblocking I/O optional • native nonblocking operations

extra threads or processes
are not needed

write request is small enough to fit for Inline data trans-
fer and registration is not required. This requires mem-
ory management to be dependent on the implementa-
tion of the DAFS API Provider library.

Since MPI-IO interface does not contain any function
related to memory registration, memory management only
can be done in the ADIO layer and/or in the DAFS layer.
We propose three design alternatives for memory manage-
ment in implementing MPI-IO on DAFS.

� ADIO-on-the-fly: In this approach, registration and
deregistration of buffers is done in the ADIO layer per
I/O call. The DAFS Provider is not required to provide
on-the-fly memory registration. Both the ADIO layer
and the DAFS Provider can be easily implemented.
With this approach, it can get benefits from the DAFS
Provider registration caching, if available. This ap-
proach incurs per-operation registration overhead. It
solves the second problem. To solve the third prob-
lem, implementation information about threshold of
data transfer from Inline to Direct must be exported
from the DAFS Provider.

� ADIO-CACHE-on-the-fly: In this approach, registra-
tion caching is deployed in the ADIO layer. Clearly,
this approach is not dependent on the DAFS Provider
registration caching for high performance, which is
suggested to be used sparingly [7]. Furthermore, appli-
cation specific caching scheme can be provided by the
ADIO layer according to the hints of application buffer
usage pattern dynamically. It solves the first problem.
Using a moderate number of caching entries, the sec-
ond problem for performance can be also solved. Sim-
ilarly, threshold of data transfer from Inline to Direct
is needed to solve the third problem.

� DAFS-on-the-fly: In this approach, the ADIO layer
calls DAFS APIs directly without pre-registering
buffers. Memory registration and deregistration are
offloaded to the DAFS Provider. Memory manage-
ment completely depends on the DAFS Provider. The
Provider may cache memory registrations. This ap-
proach solves the third problem, but it depends on
implementation of the DAFS API Provider library to
solve the first and second problems.

All these three approaches are used to hide memory man-
agement for MPI-IO applications. Alternatively, MPI-IO
can be extended to have explicit memory management func-
tions. However, compared to the ADIO-CACHE-on-the-fly
method, we believe the benefit of this extension may not
offset the cost for changing existing MPI-IO applications
with these extended functions. Thus, we believe future im-
plementations of MPI-IO will use one of the above men-
tioned memory management techniques. We implemented
these three approaches and evaluated their impact on MPI-
IO performance.

5 Implementation of MPI-IO on DAFS

In this section, we present details of our implementation
of MPI-IO on DAFS. As analyzed in Section 4.1, most of
MPI-IO features can be supported directly by DAFS capa-
bilities. From the interface point of view, most of ADIO
functions can be implemented by DAFS API functions in a
straightforward manner, including basic file operation, non-
contiguous access and nonblocking I/O.

Memory management was implemented using three dif-
ferent approaches as discussed in Section 4.2. To imple-
ment ADIO-CACHE-on-the-fly, we added a simple LRU
component in the ADIO layer with 200 cache entries (this
number is based on our analysis of NAS benchmark [1] in
communication aspect, registration hit can be up to 80%
with a LRU cache using 200 entries). Instead of DAFS
memory registration function, specific memory registration
function provided by the above LRU component is called
by the ADIO layer. Minor modifications were done to the
ADIO Init() and ADIO End() functions [14]. The third
approach of DAFS-on-the-fly was implemented directly by
passing a NULL memory handle into the DAFS API func-
tions in all cases when the ADIO layer calls the DAFS
API functions. In our current implementation, an applica-
tion can choose one of these three approaches by setting a
corresponding environment variable before it executes. We
are planing to enable applications to choose one of them
by adding an option in MPI Info set function dynamically.
By this method, an application can choose different mem-
ory management approaches during different phases of its
execution by calling MPI Info set function according to its
buffer usage pattern.

6. Performance evaluation

In this section, we evaluate three alternatives of memory
management in our implementation in order to consider the
impact of memory management on latency. We compare
and analyze the performance of basic MPI-IO operations
in our implementation with implementations on two other
file systems often used in cluster systems: local file system
(LFS) and network file system (NFS). We also compare the

capability of MPI-IO nonblocking operations for overlap-
ping I/O and computation in these three implementations.

6.1. Experimental setup

We used a cluster system consisting of 8 dual 1 GHz In-
tel PIII systems, built around the ServerWorks LE chipset,
which has a 64-bit 66MHz PCI bus for all experiments.
These nodes are equipped with 512MB of SDRAM and
256K L2-level cache. All systems run unmodified Linux
2.2.18 with kernel built-in NFS version 3 stack.

We installed user level DAFS package from Duke [11]
over an Emulex/Giganet cLAN switched VI network [8]
with 1.25Gb/s link speed. The DAFS server has a memory-
based file system. Local file system is a Linux ext2 file
system mounted over a RAM disk. We used NFS version 3
which is required by MPI-IO ROMIO [16]. NFS was con-
figured on UDP/IP over the same cLAN network. The rsize
and wsize [4], i.e., the buffer size network file system uses
to exchange data in a block are 8K bytes. The file system
exported by the NFS server is a Linux ext2 file system over
a RAM disk.

All MPI-IO experiments run over the above three file
systems. With such configuration, we can emphasize effects
of underlying communication protocols (VIA vs UDP/IP),
user-level file sharing protocols and user-level file access
on MPI-IO performance. In the rest of this paper, we refer
these three systems as ROMIO DAFS, ROMIO NFS and
ROMIO LFS, respectively.

6.2. Impact of memory management

Effects of memory management depend on three factors:
1) approach of memory management being used, 2) cost of
memory registration and deregistration, and 3) application
buffer access pattern. To consider these factors together, we
evaluated three memory management approaches discussed
in Section 4.2 with different buffer reuse ratio and buffer
sizes.

Figure 4 shows the impact of memory management on
read latency. The buffer size that an application uses on
each I/O request is called block size in the figures. Our
benchmark program sequentialy reads data from a file with
a certain block size for many times. Latency is the aver-
age time of each read operation. In Figure 4 (a), the block
size of each request is 1024 bytes, in (b) and (c), it is 2048
and 16384 bytes, respectively. Legend DAFS means DAFS-
on-the-fly approach is used. Legend ADIO means ADIO-
on-the-fly approach is used. Legend ADIO C means ADIO-
CACHE-on-the-fly approach is used. We make the follow-
ing four observations.

First, for small requests (less than 2048 bytes, Figure 4
(a)), registration provided by the DAFS Provider performs
better than other twos, since the DAFS Provider uses Inline

(a) Block Size=1024 Bytes

90

92

94

96

98

100

102

104

0 0.5 1

Buffer Reuse Ratio

L
at

en
cy

 (
u

s)

DAFS ADIO ADIO_C

(b) Block Size=2048 Bytes

0

50

100

150

200

250

300

0 0.5 1

Buffer Reuse Ratio

L
at

en
cy

 (
u

s)

DAFS ADIO ADIO_C

(c) Block Size=16384 Bytes

0

50

100

150

200

250

300

350

400

450

0 0.5 1

Buffer Reuse Ratio

L
at

en
cy

 (
u

s)

DAFS ADIO ADIO_C

Figure 4. Impact of memory management on read latency

data transfer to handle such requests. Thus, registration in
any layers other than the DAFS Provider is not efficient.

Second, memory management (with/out cache) in the
ROMIO layer performs significantly better than memory
management in the DAFS Provider when Direct data trans-
fer is used to handle requests (Figures 4 (b) and (c)). In
Duke’s implementation, there is a simple cache for the
DAFS Provider on-the-fly memory management. Our re-
sult shows that there is some room for optimization of their
cache implementation.

Third, ADIO-CACHE-on-the-fly reduces latency com-
pared to ADIO-on-the-fly. The difference in their perfor-
mance grows with the buffer reuse ratio and registration
and deregistration cost (block size). Figure 5 shows this
difference for read operations. When the buffer reuse ratio
is 0, ADIO-on-the-fly performs better, since cache in ADIO-
CACHE-on-the-fly adds 1.5 microseconds overhead. Note
that cLAN VIA has best performance of memory registra-
tion [2], in other platforms with more costly registration,
ADIO-CACHE-on-the-fly is expected to have more bene-
fits. It is also noted that this difference can be removed
or decreased when the DAFS Provider provides efficient
caching mechanism, though this feature should be used
sparingly [7].

Difference in Read Latency

-4

-2

0

2

4

6

8

10

12

0 0.2 0.4 0.5 0.6 0.8 1

Buffer Reuse Ratio

D
if

fe
re

n
ce

 in
 L

at
en

cy
(u

s) 1024

2048

16384

 Figure 5. Difference in read latency between
ADIO-CACHE-on-the-fly and ADIO-on-the-fly

Fourth, to take advantage of Inline data transfer, the
ADIO layer has to know the threshold to switch from In-
line to Direct in the DAFS Provider. We propose that the
DAFS API interface can be extended to export such infor-
mation about implementation of the DAFS API Provider to
the DAFS API Consumer.

Simliar results are achieved for write operations and can
be referred in [17]. Since the ADIO-CACHE-on-the-fly ap-
proach performs better in general, the implementation is
simple and the overhead is low, we use this approach for
evaluation in the remaining part of this paper.

6.3. Performance comparison

Figures 6 and 7 present latency and bandwidth of MPI-
IO blocking read and write on the three file systems. In
this experiment, we measured the latency and bandwidth for
MPI File read and MPI File write over ROMIO DAFS,
ROMIO NFS and ROMIO LFS, respectively. Figure 6
shows latency for both sequential and random read, and la-
tency for sequential write (append) only. Figure 7 shows
sequential read and write bandwidth. In the test for sequen-
tial read operations, the file location distance between two
consecutive read requests is block size. While in the test for
random read operations, the file location distance between
two consecutive read requests is 0.5Mbytes. This random
test is intended to eliminate read-ahead and caching effect
because we believe the system will not prefetch more than
0.5Mbytes data after each read request. Thus the latency for
random read operations can be considered as overhead for
each read operation.

As shown in Figure 6, for sequential read operations
(legend ”S”), local file system read-ahead can significantly
help ROMIO LFS achieve a much lower latency because
one read from RAM disk can make the following hun-
dreds of small read requests to read from I/O cache. It
takes only 1.5 microsecond in average for reading 4 bytes.
ROMIO NFS also benefits from read-ahead. A value of
rsize equals to 8K bytes helps ROMIO NFS to do sequen-
tial small reads. It takes 102.3 microseconds to read 4 bytes.
ROMIO DAFS takes 75 microseconds to read 4 bytes.

In random read test (legend ”R” in Figure 6), for
ROMIO LFS, every read request issues a new request to
RAM disk in the unit of Pagesize. For block sizes up to
Pagesize, it takes almost same time. ROMIO LFS takes 26
microseconds for reading 4 bytes, ROMIO NFS takes 310
microseconds and ROMIO DAFS takes 75 microseconds.
There is no difference between sequential and nonsequen-
tial versions of ROMIO DAFS read, since there is no cache

Sequential and Random Read Latency

0

100

200

300

400

500

600

700

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Block Size(Bytes)

L
at

en
cy

(u
s)

ROMIO-LFS-S

ROMIO-NFS-S

ROMIO-DAFS-S

ROMIO_LFS-R

ROMIO_NFS-R

ROMIO_DAFS-R

Sequential Write Latency

0

200

400

600

800

1000

1200

1400

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Block Size(Bytes)

L
at

en
cy

(u
s)

ROMIO-LFS

ROMIO-NFS

ROMIO-DAFS

Figure 6. MPI-IO blocking read and write latency on Local File System, NFS and DAFS. In read latency,
"S" stands for sequential reads and "R" means random reads.

Sequential Read Bandwidth

0

20

40

60

80

100

120

140

160

256 512 1024 1808 2048 4096 8192 16384 32678 65536 131072

Block Size(Bytes)

B
an

d
w

id
th

(M
B

yt
es

/s
)

ROMIO-LFS

ROMIO-NFS

ROMIO-DAFS

Sequential Write Bandwith

0

10

20

30

40

50

60

70

80

90

100

256 512 1024 1808 2048 4096 8192 16384 32678 65536 131072

Block(Bytes)

B
an

d
w

id
th

(M
B

/S
)

ROMIO-LFS

ROMIO-NFS

ROMIO-DAFS

Figure 7. MPI-IO blocking read and write bandwidth on Local File System, NFS and DAFS

on the client side and no disk activities on the server side.
As shown in Figure 7, the sequential read bandwidth of

ROMIO DAFS is 1.6-2.2 times better than ROMIO NFS.
Write bandwidth of ROMIO DAFS is 1.8-2.4 times higher
than ROMIO NFS with block sizes less than 2048 bytes and
4.4-5.6 times higher for block sizes larger than 2048 bytes.
There are three factors which contribute to this significant
improvement. First, overhead reducing features in DAFS
have been fully exploited by MPI-IO. Second, cLAN can
support 65519 bytes MTU frames. The MTU of UDP/IP
over cLAN is still 1500 bytes. Third, MPI-IO ROMIO im-
plementation over NFS requires clients to use ”noac” [4]
mount option to disable all forms of attribute caching en-
tirely for correctness. This extracts NFS server performance
penalty and increases interactions between the server and
clients, specifically for write operation.

At 2048 bytes, the write and read bandwidth of ROMIO-
DAFS drops slightly. This is because in Duke’s implemen-
tation, the DAFS Provider handles all requests with length
less than 2048 bytes (actually 2004 bytes payload) using
Inline data transfer. In addition, VIPL of cLAN does not
support RDMA read. Thus, by using Direct data transfer
to write data to the server, more message exchanges than
read operation are needed since a hand-shake is needed for
the client to get target buffers on the server before the client
can initiate RDMA write. This also reduces the write band-
width.

The threshold of Inline and Direct depends on system

memory performance (copy), cost of memory management
and performance of underlying communication layer (PIO
vs DMA [3]). Our experimental results shows a number
larger than 2048 bytes as the switch point.

It can be observed that ROMIO DAFS performs signifi-
cantly better than ROMIO NFS. This indicates that MPI-IO
applications can take full advantage of the features inherent
in DAFS file system to reduce end-to-end overhead.

6.4. Impact of nonblocking (asynchronous) I/O

In our implementation, MPI-IO nonblocking operations
use the counterparts of DAFS API directly. Nonblocking
operations are used to overlap I/O and computation. To
study the impact of nonblocking I/O on DAFS, we con-
ducted an additional experiment in which a variable amount
of computation was added after each non-blocking I/O op-
eration. Figure 8 presents the results when the I/O block
size is 64K bytes.

We note that nonblocking I/O has a large impact on the
performance of applications. The X axis in Figure 8 is the
CPU fraction given by T(len)/[T(len)+ T IO(len)], where
T IO(len) is a function of message length, indicating the la-
tency to read or write a block data with length of len using
blocking operations, and T(len) is computation time. When
the computation takes less time than the blocking MPI-IO
operations (points before 0.5 in the X axis), i.e., T(len)

�

T IO(len), the bandwidth achieved by ROMIO DAFS re-

mains almost same as bandwidth achieved by blocking op-
erations (CPU fraction is 0). This indicates that MPI-IO on
DAFS can perfectly overlap I/O and computation. There is
no overlap between I/O and computation in ROMIO NFS
and ROMIO LFS.

0
20
40
60
80

100
120
140
160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CPU fraction

Ba
nd

wi
dt

h(
M

B/
s) ROMIO_DAFS

ROMIO_NFS

ROMIO_LFS

Figure 8. Overlap between I/O and computa-
tion

7 Conclusions and future work

In this paper, we have presented a MPI-IO implemen-
tation on DAFS over VIA and compared its performance
with two other file systems in cluster environments. We de-
signed and implemented three approaches for memory man-
agement. Performance evaluation shows that memory man-
agement in the ROMIO ADIO layer with cache performs
better when Direct data transfer is used to handle I/O re-
quests in the DAFS Provider, while for requests handled by
Inline data transfer, memory management provided by the
DAFS Provider performs better. Based on this finding, we
propose that the DAFS Provider provides mechanism to ex-
port the threshold of Inline and Direct data transfers to the
DAFS Consumer.

We configured all file systems on memory-based file sys-
tem or RAM disk and focused on the effects of underly-
ing communication protocols (VIA in DAFS vs UDP/IP in
NFS), user-level file sharing protocols, and user-level file
access on MPI-IO performance. The performance of MPI-
IO on DAFS over VIA on cLAN was found to be 1.6-5.6
times better than the performance of MPI-IO on NFS over
UDP/IP on cLAN. Write bandwidth on DAFS was close
to LFS with large request size. We also demonstrate that
our implementation exploits all features of DAFS for high-
performance I/O and is capable of delivering better overlap
between I/O and computation.

We are working on improving the performance of col-
lective I/O operations by taking advantage of DAFS fea-
tures. We are also engaged in application-level evaluation.
Another direction for future work is studying how coherent
client-side caching intended for portable, high-performance
parallel I/O can be incorporated into the ADIO layer on
DAFS.

Acknowledgments
We would like to thank Duke DAFS team for giving

us the latest version of DAFS implementation and Richard

Kisley for providing us with insights into their implementa-
tion. We are also thankful to Dr. Pete Wyckoff and Jiuxing
Liu for many discussions with us.

References

[1] M. Banikazemi, B. Abali, and D. K. Panda. Compari-
son and Evaluation of Design Choices for Implementing
the Virtual Interface Architecture (VIA). In Fourth Int’l
Workshop on Communication, Architecture, and Applica-
tions for Network-Based Parallel Computing (CANPC ’00),
Jan 2000.

[2] M. Banikazemi, J. Liu, S. Kutlug, A. Ramakrishna, P. Sa-
dayappan, H. Sah, , and D. K. Panda. VIBe: A Micro-
benchmark Suite for Evaluating Virtual Interface Architec-
ture (VIA) Implementations. In IPDPS, April 2001.

[3] M. Banikazemi, V. Moorthy, L. Herger, D. K. Panda, and
B. Abali. Efficient Virtual Interface Architecture Support
for the IBM SP Switch-Connected NT Clusters. In IPDPS,
pages 33–42, May 2000.

[4] B. Callaghan. NFS Illustrated. Addison Wesley, 1999.
[5] Compaq, Intel, and Microsoft. VI Architecture Specification

V1.0, December 1997.
[6] DAFS Collaborative. Direct Access File System Application

Programming Interface(DAFS API), V1.0, November 2001.
[7] DAFS Collaborative. Direct Access File System Protocol,

V1.0, August 2001.
[8] Emulex Corp. cLAN: High Performance Host Bus Adapter,

September 2000.
[9] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,

B. Nitzberg, W. Saphir, and M. Snir. MPI - The Complete
Reference: Volume 2, The MPI-2 Extensions. MIT Press,
Cambridge, MA, USA, 1998.

[10] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.0, October 24 2000.

[11] R. Kisley. Structure, Performance, and Implementation of
the Direct Access File System (Master Thesis). Department
of Computer Science, Duke University, August 2001.

[12] Message Passing Interface Forum. MPI-2: A Message Pass-
ing Interface Standard. High Performance Computing Ap-
plications, 12(1–2):1–299, 1998.

[13] S. Shepler, B. Callaghan, D. Robinson, and et al. NFS Ver-
sion 4 Protocol. RFC 3010, December 2000.

[14] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device In-
terface for Implementing Portable Parallel-I/O Interfaces. In
Proceedings of Frontiers ’96: The Sixth Symposium on the
Frontiers of Massively Parallel Computation. IEEE Com-
puter Society, Oct. 27–31, 1996.

[15] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proceedings of
the 6th Workshop on I/O in Parallel and Distributed Systems,
pages 23–32. ACM Press, May 1999.

[16] R. Thakur, W. Gropp, and E. Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-IO Implemen-
tation(Revised Version). ANL/MCS-TM-234, Sept. 2000.

[17] J. Wu and D. K. Panda. MPI-IO on DAFS over VIA: Imple-
mentation and Performance Evaluation. Technical Report
OSU-CISRC-11/01-TR23, CIS Dept. the Ohio State Univer-
sity, Dec 2001.

