
Exploiting Remote Memory Operations to Design Efficient Reconfiguration for
Shared Data-Centers over InfiniBand

�

P. Balaji K. Vaidyanathan S. Narravula K. Savitha H. -W. Jin D. K. Panda
Computer Science and Engineering,

The Ohio State University,
2015 Neil Avenue,

Columbus, OH-43210�
balaji, vaidyana, narravul, savitha, jinhy, panda � @cse.ohio-state.edu

Abstract
In this paper, we present a novel design to provide dy-

namic reconfigurability of the nodes in the data-center en-
vironment. This technique enables the nodes in the data-
center environment to efficiently adapt their functionality
based on the system load and traffic pattern. While recon-
figurability is a widely used technique for clusters, the data-
center environment poses several interesting challenges for
the design and implementation of such a scheme. In our
approach, we use the advanced features of InfiniBand such
as Remote Direct Memory Access (RDMA) operations and
network based atomic operations to tackle these challenges
in an efficient manner without requiring any modifications
to the existing data-center applications. Our experimen-
tal results show that the reconfigurability scheme provides
a significantly higher performance (up to a factor of 2.5
improvement in the throughput) with the same resources or
provides a similar performance while using fewer resources
(up to half the nodes) as compared to a rigidly configured
data-center. More importantly, our scheme takes advantage
of the one-sided communication primitives offered by Infini-
Band making it resilient and well-conditioned to the load on
the servers as compared to two-sided communication pro-
tocols such as TCP/IP (sockets).

1 Introduction

Cluster systems have become the main system architec-
ture for a number of environments mainly due to their high
performance-to-cost ratio. In the past, they had replaced
mainstream supercomputers as a cost-effective alternative
in a number of scientific domains. During the last few years,
research and industry communities have been proposing
and implementing several high performance communica-
tion systems to address some of the problems associated
with the traditional networking protocols for cluster-based
systems. InfiniBand Architecture (IBA) [2] has been re-

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429, and #CCR-0311542

cently standardized by the industry to design next genera-
tion high-end clusters.
IBA is envisioned as the default interconnect for several

environments in the near future. IBA relies on two key fea-
tures, namely User-level Networking and One-Sided Com-
munication Operations. User-level Networking allows ap-
plications to directly and safely access the network inter-
face without going through the operating system. One-sided
communication allows the network interface to transfer data
between local and remote memory buffers without any in-
teraction with the operating system or processor interven-
tion. It also provides features for performing network based
atomic operations on the remote memory regions. These
can be leveraged in providing efficient support for multiple
environments [15, 23].
On the other hand, with the increasing adoption of Inter-

net as the primary means of interaction and communication,
highly scalable and available web servers have become a
critical requirement. Based on these two trends, researchers
and industries have proposed the feasibility and potential of
cluster-based data-centers [21, 9, 3, 17].
Figure 1 represents a typical cluster-based data-center. The

various nodes in the traditional data-center are logically par-
titioned to provide various related services including web
and messaging services, transaction processing, business
logic, databases, etc. These nodes interact with each other
depending on the query to provide the service requested by
the end user.
In the past few years several researchers have proposed and

configured data-centers providing multiple independent ser-
vices, known as shared data-centers [8, 13]. For example,
several ISPs and other web service providers host multiple
unrelated web-sites on their data-centers allowing potential
differentiation in the service provided to each of them. The
increase in such services results in a growing fragmentation
of the resources available and ultimately in the degradation
of the performance provided by the data-center.
Over-provisioning of nodes in the data-center for each ser-

vice provided is a widely used approach. In this approach,
nodes are alloted to each service depending on the worst
case estimates of the load expected and the nodes available

1

���

���

�����������������������������������

������
������
������
���

��

������������������������������������	�	�	�	�	�	
�
�
�
�

��
��

��
��

��������������������

��

��
��

��
��

��

��

��
��

��
��

���������������������������������
���

��
��

��
��

���������������������������
 � � � � � � � � � � � � !�!�!�!�!!�!�!�!�!"�"�"�"�""�"�"�"�"

##
##

$$
$$%�%�%�%�%%�%�%�%�%&�&�&�&�&&�&�&�&�&

''
''

((
((

)�)�)�)�))�)�)�)�))�)�)�)�))�)�)�)�)

��*�*�**�*�*�*�**�*�*�*�**�*�*�*�*+�+�+�+�+,�,�,�,�,

--
--

..
..

/�/�/�/�//�/�/�/�//�/�/�/�//�/�/�/�/

0�0�0�0�00�0�0�0�00�0�0�0�00�0�0�0�01�1�1�1�12�2�2�2�2

33
33

44
44

5�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�5

6�6�6�6�66�6�6�6�66�6�6�6�66�6�6�6�67�7�7�7�78�8�8�8�8

99
99

::
::

;�;�;�;�;;�;�;�;�;;�;�;�;�;
<�<�<�<�<<�<�<�<�<<�<�<�<�<=�=�=�=�==�=�=�=�=>�>�>�>�>>�>�>�>�>

??
??
??

@@
@@
@@

A�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�A

B�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BC�C�C�C�C�C�C�CC�C�C�C�C�C�C�CD�D�D�D�D�D�DD�D�D�D�D�D�D

EE
EE
EE

FF
FF
F

G�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�G

H�H�H�H�H�HH�H�H�H�H�HH�H�H�H�H�HH�H�H�H�H�HH�H�H�H�H�H

II
II
II

JJ
JJ
J

K�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�K

L�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�LM�M�M�M�M�M�MM�M�M�M�M�M�MM�M�M�M�M�M�M
N�N�N�N�N�N�NN�N�N�N�N�N�NN�N�N�N�N�N�N O�O�OO�O�OO�O�OO�O�OO�O�OO�O�OO�O�O

P�PP�P
P�PP�P
P�PP�P
P�P

Q�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�Q

R�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RS�S�S�S�S�S�S�S�SS�S�S�S�S�S�S�S�ST�T�T�T�T�T�T�T�TT�T�T�T�T�T�T�T�T

UU
UU

VV
VV

W�W�W�W�WW�W�W�W�WW�W�W�W�W
X�X�X�X�XX�X�X�X�XX�X�X�X�X

Y�Y�Y�Y�Y�Y�YY�Y�Y�Y�Y�Y�YZ�Z�Z�Z�Z�Z�ZZ�Z�Z�Z�Z�Z�Z
Internet

Network
Enterprise

Applications Applications

Services
Edge

Front−end
Mid−tier Back−end

Applications

Figure 1. A Typical Cluster-Based Data-
Center (courtesy CSP Architecture de-
sign [21])

in the data-center. For example, if a data-center hosts two
web-sites, each web-site is provided with a fixed subset of
nodes in the data-center based on the traffic expected for
that web-site. It is easy to see that though this approach
gives the best possible performance, it might incur severe
under utilization of resources especially when the traffic is
bursty and directed to a single web-site.
In this paper, we present a novel design to provide dynamic

reconfigurability of the nodes in the data-center environ-
ment. This technique enables the nodes in the data-center
environment to efficiently adapt their functionality based on
the system load and traffic pattern. Dynamic reconfigura-
bility attempts to provide benefits in several directions: (i)
cutting down the time needed for configuring and assigning
the resources available by dynamically transferring the traf-
fic load to the best available node/server, (ii) improving the
performance achievable by the data-center by reassigning
under-utilized nodes to loaded services, (iii) cutting down
the cost of the data-center by reducing over-provisioning of
nodes and improving the utilization of the resources avail-
able inside the data-center and several others.
While reconfigurability is a widely used technique for

clusters, the data-center environment poses several interest-
ing challenges for the design and implementation of such
a scheme. In our approach, we use the advanced fea-
tures of InfiniBand such as Remote Direct Memory Access
(RDMA) operations and network based atomic operations
to tackle these challenges in an efficient manner without re-
quiring any modifications to the existing data-center appli-
cations.
This work has several research contributions. Primarily,

we extend on our previous work [3, 17] in understanding the
role of the InfiniBand architecture in next-generation data-
centers. The other main contributions are:

1. We propose an architecture for dynamically reconfig-
uring the nodes present based on the load on the dif-
ferent services provided by the data-center. This archi-
tecture requires no changes to the legacy data-center
applications.

2. As we will see in the next few sections, though a re-
configurability scheme can be implemented based on

the standard sockets interface, the high computation
load typical in the data-center environment can signif-
icantly hurt the performance achieved. With the focus
on this observation, we design our approach to utilize
the remote memory capabilities of the InfiniBand ar-
chitecture to remotely monitor and manage the nodes
in the data-center environment. Our results also show
that this one-sided communication based architecture
is mostly resilient and well-conditioned to the load on
the servers as compared to two-sided protocols such as
TCP/IP (sockets).

3. InfiniBand provides several opportunities to revise the
design and implementation of many subsystems, pro-
tocols, and communication mechanisms in the data-
center environment. The rich features of IBA offer a
flexible design space and tremendous optimization po-
tential.

Our experimental results show that the reconfigurability
scheme provides a significantly higher performance (up to
a factor of 2.5 improvement in the throughput) with the
same resources or provides a similar performance while us-
ing fewer resources (up to half the nodes) as compared to a
rigidly configured data-center.
The remaining part of the paper is organized as follows:

Section 2 provides a brief background of the InfiniBand ar-
chitecture and clustered data-center environments. In Sec-
tion 3, we describe the design methodology and implemen-
tation details of the dynamic reconfigurability approach. We
describe our experimental results in Section 4, present some
previous related work in Section 5 and draw our conclusions
and possible future work in Section 6.

2 Background
In this section, we provide a brief background on (i) the In-

finiBand architecture and its advanced one-sided operations
like RDMA and atomic operations and (ii) the Clustered
data-center environment.

2.1 InfiniBand Architecture

The InfiniBand Architecture (IBA) is an industry standard
that defines a System Area Network (SAN) to design clus-
ters offering low latency and high bandwidth. The com-
pute nodes are connected to the IBA fabric by means of
Host Channel Adapters (HCAs). IBA defines a semantic
interface called as Verbs for the consumer applications to
communicate with the HCAs. VAPI is one such interface
developed by Mellanox Technologies.

2.1.1 RDMA Communication Model
IBA supports two types of communication semantics: chan-
nel semantics (send-receive communication model) and
memory semantics (RDMA communication model).
In channel semantics, every send request has a correspond-

ing receive request at the remote end. Thus, there is one-to-
one correspondence between every send and receive opera-
tion.

2

In memory semantics, RDMA operations are used. These
operations are transparent at the remote end, i.e., they do
not require the remote end to be involved in the communi-
cation. Therefore, an RDMA operation has to specify both
the memory address for the local buffer as well as that for
the remote buffer. There are two kinds of RDMA opera-
tions: RDMA Write and RDMA Read. In an RDMA write
operation, the initiator directly writes data into the remote
node’s user buffer. Similarly, in an RDMA Read operation,
the initiator reads data from the remote node’s user buffer.

2.1.2 Atomic Operations Over IBA

In addition to RDMA, the reliable communication classes
also optionally include atomic operations directly against
the memory at the end node. Atomic operations are posted
as descriptors as in any other type of communication. How-
ever, the operation is completely handled by the HCA.
The atomic operations supported are Fetch-and-Add and
Compare-and-Swap, both on 64-bit data. The Fetch-and-
Add operation performs an atomic addition at the remote
end. The Compare-and-Swap is used to compare two 64-bit
values and swap the remote value with the data provided if
the comparison succeeds.

2.2 Shared Cluster-Based Data-Center Environ-
ment

A clustered data-center environment essentially tries to
utilize the benefits of a cluster environment (e.g., high
performance-to-cost ratio) to provide the services requested
in a data-center environment (e.g., web hosting, transaction
processing). As mentioned earlier, researchers have pro-
posed and configured data-centers to provide multiple inde-
pendent services, such as hosting multiple web-sites, form-
ing what is known as shared data-centers.
Figure 2 shows a higher level layout of a shared data-

center architecture hosting multiple web-sites. External
clients request documents or services from the data-center
over the WAN/Internet through load-balancers using higher
level protocols such as HTTP. The load-balancers on the
other hand serve the purpose of exposing a single IP address
to all the clients while maintaining a list of several internal
IP addresses to which they forward the incoming requests
based on a pre-defined algorithm (e.g., round-robin).
While hardware load-balancers are commonly available

today, they suffer from being based on a pre-defined al-
gorithm and are difficult to be tuned based on the require-
ments of the data-center. On the other hand, though soft-
ware load-balancers are easy to modify and tuned based on
the data-center requirements, they can potentially form bot-
tlenecks themselves for highly loaded data-centers. In the
past, several researchers have proposed the use of an ad-
ditional cluster of nodes (known as the edge tier) [21] to
perform certain services such as intelligent load-balancing,
caching, etc [13]. Requests can be forwarded to this cluster
of software load-balancers either by the clients themselves
by using techniques such as DNS aliasing, or by using an
additional hardware load-balancer.

Load Balancing
Cluster

Load Balancing
Cluster

Load Balancing
Cluster

Servers

Servers

Servers

Web−Site ’B’

Web−Site ’A’

Web−Site ’A’

Web−Site ’B’

Web−Site ’C’

Web−Site ’C’

WAN

Clients

Figure 2. A Shared Cluster-Based Data-
Center Environment

The servers inside the clustered data-center provide the ac-
tual services such as web-hosting, transaction processing,
etc. Several of these services require computationally in-
tensive processing such as CGI scripts, Java servlets and
database query operations (table joins, etc). This makes the
processing on the server nodes CPU intensive in nature.

3 Design of Reconfiguration Based on Re-
mote Memory Operations

In this section, we describe the basic design issues in the
dynamic reconfigurability scheme and the details about the
implementation of this scheme using the native Verbs layer
over InfiniBand (VAPI).

3.1 Reconfigurability Support

Request patterns seen over a period of time, by a shared
data-center, may vary significantly in terms of the ratio of
requests for each co-hosted web-site. For example, interest-
ing documents or dynamic web-pages becoming available
and unavailable might trigger bursty traffic for some web-
site at some time and for some other web-site at a different
time. This naturally changes the resource requirements of a
particular co-hosted web site from time to time. The basic
idea of reconfigurability is to utilize the idle nodes of the
system to satisfy the dynamically varying resource require-
ments of each of the individual co-hosted web-sites in the
shared data-center. Dynamic reconfigurability of the system
requires some extent of functional equivalence between the
nodes of the data-center. We provide this equivalence by
enabling software homogeneity such that each node is capa-
ble of belonging to any web-site in the shared data-center.
Depending on the current demands (e.g., due to a burst of
requests to one web-site), nodes reconfigure themselves to
support these demands.
Support for Existing Applications: A number of appli-

cations have been developed in the data-center environment
over the span of several years to process requests and pro-

3

vide services to the end user; modifying them to allow dy-
namic reconfigurability is impractical. To avoid making
these cumbersome changes to the existing applications, our
design makes use of external helper modules which work
alongside the applications to provide effective dynamic re-
configuration. Tasks related to system load monitoring,
maintaining global state information, reconfiguration, etc.
are handled by these helper modules in an application trans-
parent manner. These modules, running on each node in
the shared data-center, reconfigure nodes in the data-center
depending on current request and load patterns. They use
the run-time configuration files of the data-center applica-
tions to reflect these changes. The servers on the other hand,
just continue with the request processing, unmindful of the
changes made by the modules.
Load-Balancer Based Reconfiguration: Two different

approaches could be taken for reconfiguring the nodes:
Server-based reconfiguration and Load-balancer based re-
configuration. In server-based reconfiguration, when a par-
ticular server detects a significant load on itself, it tries to
reconfigure a relatively free node that is currently serving
some other web-site content. Though intuitively the loaded
server itself is the best node to perform the reconfiguration
(based on its closeness to the required data and the number
of messages required), performing reconfiguration on this
node adds a significant amount of load to an already loaded
server. Due to this reason, reconfiguration does not happen
in a timely manner and the overall performance is affected
adversely. On the other hand, in load-balancer based recon-
figuration, the edge servers (functioning as load-balancers)
detect the load on the servers, find a free server to alleviate
the load on the loaded server and perform the reconfigu-
ration themselves. Since the shared information like load,
server state, etc. is closer to the servers, this approach in-
curs the cost of requiring more network transactions for its
operations.
Remote Memory Operations Based Design: As men-

tioned earlier, by their very nature the server nodes are com-
pute intensive. Execution of CGI-Scripts, business-logic,
servlets, database processing, etc. are typically very taxing
on the server CPUs. So, the helper modules can potentially
be starved for CPU on these servers. Though in theory the
helper modules on the servers can be used to share the load
information through explicit two-sided communication, in
practice, such communication does not perform well [17].
InfiniBand, on the other hand, provides one-sided remote

memory operations (like RDMA and Remote Atomics) that
allow access to remote memory without interrupting the re-
mote node. In our design, we use these operations to per-
form load-balancer based server reconfiguration in a server
transparent manner. Since the load-balancer is perform-
ing the reconfiguration with no interruptions to the server
CPUs, this RDMA based design is highly resilient to server
load.
The major design challenges and issues involved in dy-

namic adaptability and reconfigurability of the system are

listed below.

� Providing a System Wide Shared State

� Concurrency Control to avoid Live-locks and Starva-
tion

� Avoiding server thrashing through history aware re-
configuration

� Tuning the reconfigurability module sensitivity

We present these challenges in the following few sub-
sections.

3.1.1 System Wide Shared State

As discussed earlier, the external helper modules present in
the system handle various issues related to reconfigurability.
However, the decision each module needs to make is perti-
nent to the global state of the system and cannot be made
based on the view of a single node. So, these modules need
to communicate with each other to share such information
regarding the system load, current configuration of the sys-
tem, etc. Further, these communications tend to be asyn-
chronous in nature. For example, the server nodes are not
aware about when a particular load-balancer might require
their state information.
An interesting point to note in this communication pattern

is the amount of replication in the information exchanged
between the nodes. For example, let us consider a case
where the information is being shared between the web-site
’A’ and the load-balancers in the shared data-center. Here,
each node serving web-site ’A’ provides its state informa-
tion to each one of the load-balancing nodes every time they
need it, i.e., the same information needs to be communi-
cated with every node that needs it.
Based on these communication patterns, intuitively a

global shared state seems to be the ideal environment for
efficient distribution of data amongst all the nodes. In this
architecture each node can write its relevant information
into the shared state and the other nodes can asynchronously
read this information without interrupting the source node.
This architecture essentially depicts a producer-consumer
scenario for non-consumable resources.
One approach for implementing such a shared state, is by

distributing the data across the physical memories of vari-
ous nodes and allowing the nodes in the data-center to read
or write into these memory locations. While an implemen-
tation of such a logical shared state is possible using the tra-
ditional TCP/IP based sockets interface (with the modules
explicitly reading and communicating the data upon request
from other nodes), such an implementation would lose out
on all the benefits a shared state could provide. In particu-
lar: (i) All communication needs to be explicitly performed
by the server nodes by sending (replicated) information to
each of the load-balancers and (ii) Asynchronous requests
from the nodes need to be handled by either using a signal
based mechanism (using the SIGIO signal handler) or by

4

having a separate thread block for incoming requests, both
of which require the server node host intervention.
Further, as mentioned earlier and observed in our previous

work [17], due to various factors such as the skew and the
load on the server nodes, even a simple two sided commu-
nication operation might lead to a significant degradation in
the performance.
On the other hand, InfiniBand provides several advanced

features such as one-sided communication operations, in-
cluding RDMA operations. In our implementation, each
node writes information related to itself on its local mem-
ory. Other nodes needing this information can directly read
this information using an RDMA read operation without dis-
turbing this node at all. This implementation of a logical
shared state retains the efficiencies of the initially proposed
shared state architecture, i.e., each node can write data into
its shared state and the other nodes can read data asyn-
chronously from the shared state without interrupting the
source node.

3.1.2 Shared State with Concurrency Control

The logical shared state described in Section 3.1.1 is a very
simplistic view of the system. The nodes use the informa-
tion available and change the system to the best possible
configuration. However, for using this logical shared state,
several issues need to be taken into consideration.
As shown in Figure 3, each load-balancer queries the load

on each server at regular intervals. On detecting a high load
on one of the servers, the load-balancer selects a lightly
loaded node serving a different web-site, and configures it
to ease the load on the loaded server. However, to avoid
multiple simultaneous transitions and hot-spot effects dur-
ing reconfiguration, additional logic is needed.
In our design, we propose an architecture using a two-level

hierarchical locking with dual update counters to address
these problems.
As shown in Figure 4, each web-site has an unique inter-

nal lock. This lock ensures that exactly one of the multiple
load-balancers handling requests for the same web-site, can
attempt a conversion of a server node, thus avoiding mul-
tiple simultaneous conversions. After acquiring this inter-
nal lock (through a remote atomic compare-and-swap op-
eration), the load-balancer selects a lightly loaded server
and performs a second remote atomic operation to configure
that server to serve the loaded web-site. This second atomic
operation (atomic compare-and-swap) also acts as a mutu-
ally exclusive lock between load-balancers that are trying to
configure the free server to serve their respective web-sites.
It is to be noted that after a reconfiguration is made, some

amount of time is taken for the load to get balanced. How-
ever, during this period of time other load balancers can still
detect a high load on the servers and can possibly attempt to
reconfigure more free nodes. To avoid this unnecessary re-
configuration of multiple nodes, each relevant load-balancer
needs to be notified about any recent reconfiguration done,
so that it can wait for some amount of time before it checks
the system load and attempts a reconfiguration. In our de-

sign, each load-balancer keeps a local update counter and
a shared update counter to keep track of all reconfigura-
tions. Before making a reconfiguration, a check is made
to see if the local update counter and the shared update
counter are equal. In case they are equal, a reconfigura-
tion is made and the shared update counters of all the other
relevant load-balancers is incremented (using atomic fetch-
and-add). Otherwise, if the shared update counter is more
than the local update counter, it indicates a very recent re-
configuration, so no reconfiguration is made at this instance
by this load-balancer. However, the local update counter
is updated to the shared update counter. This ensures that
each high load event is handled by only one load-balancer.

Load
Balancer

Server

Website B Website A

Server

(Loaded)
Load Query

RDMA Read

RDMA Read

Load Query

Successful Atomic

Lock

Change Server Status

Successful Atomic

Unlock

Successful Atomic

(Not Loaded)

(Load Shared)(Load Shared)

Successful Atomic

Shared Update CounterChange

Figure 3. Concurrency Control for Shared
State

Internal Locking

Servers

Balancers
Load

Web−Site ’A’ Web−Site ’B’

Internal Locking

Load
Balancers

Servers

Servers

Load
Balancers

Web−Site ’C’

Atomic Node
Reconfiguration

Figure 4. Hot-Spot Avoidance with Hierarchi-
cal Locking

5

3.1.3 History Aware Reconfiguration

Due to the irregular nature of the incoming requests, a
small burst of similar requests might potentially trigger a
re-configuration in the data-center. Because of this, small
bursts of similar requests can cause nodes in the shared data-
center to be moved between the various co-hosted web-sites
to satisfy the instantaneous load, resulting in thrashing in
the data-center configuration.
To avoid such thrashing, in our scheme, we allow a history

aware reconfiguration of the nodes, i.e., the nodes serving
one web-site are re-allocated to a different web-site only if
the load to the second web-site stays high for a pre-defined
period of time T. However, this approach has its own trade-
offs. A small value for T could result in thrashing in the
data-center environment. On the other hand, a large value
of T could make the approach less respondent to bursty
traffic providing a similar performance as that of the non-
reconfigurable or rigid system. The optimal value of T de-
pends on the kind of workload and request pattern. While
we recognize the importance of the value of T, in this paper,
we do not concentrate on the effect of its variation and fix it
to a pre-defined value for all the experiments.

3.1.4 Reconfigurability Module Sensitivity

As mentioned earlier, the modules on the load-balancers oc-
casionally read the system information from the shared state
in order to decide the best configuration at that instant of
time. The time interval between two consecutive checks is
a system parameter S referring to the sensitivity of the ex-
ternal helper modules. A small value of S allows a high
degree of sensitivity, i.e., the system is better respondent
to a variation in the workload characteristics. However, it
would increase the overhead on the system due to the fre-
quent monitoring of the state. On the other hand, a large
value of S allows a low degree of sensitivity, i.e., the sys-
tem is less respondent to variation in the workload charac-
teristics. At the same time, it would also result in a lower
overhead on the system to monitor the state.

4 Experimental Results

In this section, we present various performance results.
First, in Section 4.1, we present the ideal case raw perfor-
mance achievable by the native Verbs API (VAPI) over In-
finiBand and TCP/IP over InfiniBand (IPoIB) using micro-
benchmark results. In Section 4.2, we present the impact
of the load conditions in the data-center environment on the
performance achievable by VAPI and IPoIB. Finally, in Sec-
tion 4.3 we present the performance of our VAPI based re-
configuration scheme in a shared data-center environment.
For all our experiments we used two clusters whose de-

scriptions are as follows:
Cluster1: A cluster system consisting of 8 nodes built

around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 kB L2 cache and a 400 MHz front side bus and 512 MB

of main memory. We used the RedHat 9.0 Linux distribu-
tion.
Cluster2: A cluster system consisting of 8 nodes built

around SuperMicro SUPER X5DL8-GG motherboards
with ServerWorks GC LE chipsets which include 64-bit
133 MHz PCI-X interfaces. Each node has two Intel Xeon
3.0 GHz processors with a 512 kB L2 cache and a 533 MHz
front side bus and 512 MB of main memory. We used the
RedHat 9.0 Linux distribution.
The following interconnect was used to connect all the

nodes in Clusters 1 and 2.
Interconnect: InfiniBand network with Mellanox Infini-

Host MT23108 DualPort 4x HCA adapter through an In-
finiScale MT43132 twenty-four 4x Port completely non-
blocking InfiniBand Switch. The Mellanox InfiniHost
HCA SDK version is thca-x86-3.1-build-003. The adapter
firmware version is fw-23108-rel-3 00 0001-rc4-build-001.
The IPoIB driver for the InfiniBand adapters was provided
by Voltaire Incorporation [9]. The version of the driver used
was 2.0.5 10.
Cluster 1 was used to represent the software load-

balancers and Cluster 2 was used to represent the server
nodes in the data-center environment. We used Apache
version 2.0.50 in all our data-center experiments. Requests
from the software load-balancers were generated using six-
teen threads on each load-balancer.
We have considered two shared data-center scenarios: (i)

a data-center hosting three web-sites with nodes alloted in
the ratio 3:3:2, (ii) a data-center hosting four web-sites with
nodes alloted in the ratio 2:2:2:2.

4.1 Basic Microbenchmarks

The ideal case performance achievable by the Verbs API
(VAPI) over InfiniBand and IPoIB using micro-benchmark
tests are presented in this section. VAPI provides multi-
ple communication models for transferring data namely: (a)
Send-Receive, (b) RDMA write, (c) RDMA write with im-
mediate data and (d) RDMA Read. In this paper, we show
the performance achieved by the RDMA Read communi-
cation model and that achieved by TCP/IP over InfiniBand
(IPoIB). Results for the other communication models can
be found in [4].
InfiniBand provides two mechanisms for completion noti-

fication. The first approach is polling-based which requires
the host application to continuously poll on the completion
queue and check for the completion of the message trans-
mission or reception. The second approach is notification-
based which allows the host application to request an in-
terrupt based notification from the network adapter. The
notification based approach incurs the additional cost of an
interrupt. The polling based approach does not incur this
additional cost, but results in a high CPU utilization due to
the continuous polling of the completion queue. In this sec-
tion, we present results for both the polling based approach
as well as the notification based approach on Cluster 2.
The latency achieved by the VAPI RDMA Read commu-

nication model and IPoIB (round-trip latency) for various

6

message sizes is shown in Figure 5a. RDMA Read, using
the polling based approach, achieves a latency of 11.89 � s
for 1 byte messages compared to the round trip latency of
53.8 � s achieved by IPoIB. The event based approach, how-
ever, achieves a latency of 23.97 � s. Further, with increasing
message sizes, the difference between the latency achieved
by VAPI and IPoIB tends to increase. The figure also shows
the CPU utilized by RDMA Read (notification based) and
IPoIB. We can see that RDMA utilizes negligible CPU on
the receiver side, i.e., with RDMA, the initiator can read
or write data from the remote node without requiring any
interaction with the remote host CPU.
Figure 5b shows the uni-directional bandwidth achieved

by RDMA Read and IPoIB. RDMA Read (with polling as
well as with notification) is able to achieve a peak band-
width of 839.1 MBps as compared to a 231 MBps achieved
by IPoIB. Again, the CPU utilization for RDMA is negligi-
ble on the receiver side.

4.2 One-sided vs Two-sided Communication
In this section, we present performance results showing

the impact of the loaded conditions in the data-center envi-
ronment on the performance of RDMA Read and IPoIB on
Cluster 2. The results for the other communication models
can be found in [4].
We emulate the loaded conditions in the data-center envi-

ronment by performing background computation and com-
munication operations on the server while the load-balancer
performs the test with a separate thread on the server. This
environment emulates a typical cluster-based shared data-
center environment where multiple server nodes commu-
nicate periodically and exchange messages, while the load
balancer, which is not as heavily loaded, attempts to get the
load information from the heavily loaded machines.
The performance comparison of RDMA Read and IPoIB

for this experiment is shown in Figure 6. We observe that
the performance of IPoIB degrades significantly with the
increase in the background load. On the other hand, one-
sided communication operations such as RDMA show ab-
solutely no degradation in the performance. These results
show the capability of one-sided communication primitives
in the data-center environment.

4.3 Performance of Reconfigurability
In this section, we present the basic performance benefits

achieved by the dynamic reconfigurability scheme as com-
pared to a traditional data-center which does not have any
such support.

4.3.1 Performance with Burst Length
In this section, we present the performance of the dynamic
reconfigurability scheme as compared to the rigid configu-
ration and the over-provisioning schemes in two scenarios
with (i) the data-center hosting three web-sites (nodes al-
loted in the ratio 3:3:2) and (ii) the data-center hosting four
web-sites (nodes alloted in the ratio 2:2:2:2).
For the workload, we have used a single file trace with a

file size of 1 KB. Results for other file sizes, ZipF based

traces [24] and a real World-Cup trace [1] are skipped in
this paper due to space constraints and can be found in [4].
Figure 7a shows the performance of the dynamic reconfig-

urability scheme as compared to the rigid configuration and
over-provisioning schemes for varying burst length in the
traffic for the first scenario (hosting three web-sites).
In a rigid configuration if there is a burst of traffic for the

first website only three nodes are used and the remaining 5
nodes are relatively idle. The rigid configuration achieves
an aggregate throughput of about 26,000 Transactions Per
Second (TPS) in this scenario. In the over-provisioning
scheme, a maximum of 6 nodes are assigned to the web-
site being loaded. The maximum throughput achievable in
this best configuration is around 51,000 TPS. However, in
the reconfiguration scheme we see that the performance de-
pends mainly on the burstiness of the traffic. If the burst
length is too short, reconfiguration seems to perform com-
parably with the rigid scheme but for huge bursts recon-
figuration achieves performance close to that of the over-
provisioning scheme. The performance of reconfiguration
for low burst lengths is comparable with the rigid scheme
mainly due to the switching time overhead, i.e., the time re-
quired for the nodes to be reconfigured to the optimal con-
figuration. This switching time, however, can be tuned by
varying the sensitivity value addressed in Section 3.1.4. For
high bursts, the reconfiguration switching time is negligible
and gets amortized.
Figure 7b shows a similar trend for the second scenario

(hosting four web-sites); reconfigurability scheme achieves
up to a factor of 2.5 improvement in the performance while
using the same resources as the rigid scheme. Also, for high
burstiness, it achieves a comparable performance with that
of the over-provisioning scheme while utilizing only half
the nodes.

4.3.2 Node Utilization

In case of shared data-centers, the logically partitioned sets
of nodes serve the individual web-sites. Due to this par-
titioning and possible unbalanced request load, the nodes
serving a particular web-site might be over-loaded even
when other nodes in the system are not being utilized. These
un-utilized servers could typically be used to share the load
on the loaded web-site to yield better overall data-center
performance.
In this section we measure the effective node utilization of

our appraoch and compare it with the rigid and the over-
provisioned cases. The effective node utilization is mea-
sured as the total number of nodes being fully used by the
data-center to serve a particular web-site.
Figure 8 shows the node utilization for a shared data-center

having three co-hosted web-sites. The rigid case has a con-
stant node utilization of three nodes since it is statically con-
figured. The over-provisioned case can use a maximum of
6 nodes (leaving 1 node for each of the other web-sites).
In figure 8a, we can see that for non-bursty traffic (burst

length = 512), the reconfiguration scheme is not able to
completely utilize the maximum available nodes because

7

0

20

40

60

80

100

120

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Message Size (bytes)

L
at

en
cy

 (
u

se
c)

0
5
10
15
20
25
30
35
40
45

%
 C

P
U

 U
ti

liz
at

io
n

Send CPU Recv CPU IPoIB CPU
RDMA Event RDMA poll IPoIB

0
100
200
300
400
500
600
700
800
900

1 4 16 64 25
6 1k 4k 16

k
64

k

Message Size (bytes)

B
an

d
w

id
th

 (
M

b
yt

es
/s

ec
)

0

10

20

30

40

50

60

%
 C

P
U

 U
ti

liz
at

io
n

Send CPU Recv CPU IPoIB CPU
RDMA Event RDMA poll IPoIB

Figure 5. Micro-Benchmarks for RDMA Read and IPoIB: (a) Latency and (b) Bandwidth

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

La
te

nc
y

(u
se

c)

Number of background threads

64byte RDMA read
64byte IPoIB

0

200

400

600

800

1000

1 2 4 8 16 32 64
B

an
dw

id
th

 (
M

by
te

/s
ec

)
Number of background threads

32K RDMA
32K IPoIB

Figure 6. Performance of IPoIB and RDMA Read with background threads: (a) Latency and (b)
Bandwidth

0

10000

20000

30000

40000

50000

60000

512 1024 2048 4096 8192 16384

Burst Length

T
P

S

Rigid Reconf Over-Provisioning

0

10000

20000

30000

40000

50000

60000

512 1024 2048 4096 8192 16384

Burst Length

T
P

S

Rigid Reconf Over-Provisioning

Figure 7. Impact of Burst Length (a) Number of co-hosted web-sites = 3 (b) Number of co-hosted
web-sites = 4

0

1

2

3

4

5

6

1 251 501 751 1001 1251 1501 1751 2001 2251 2501

Iterations

N
u

m
b

er
 o

f
b

u
sy

 n
o

d
es

Reconf Node Utilization Rigid Over-provisioning

0

1

2

3

4

5

6

0 3486 6986 10454 13954 17438 20929 24429 27903 31403

Iterations

N
u

m
b

er
 o

f
b

u
sy

 n
o

d
es

Reconf Node Utilization Rigid Over provisioning

Figure 8. Node Utilization in a data-center hosting 3 web-sites with burst length (a) 512 (b) 8k

8

the switching time between configurations is comparable to
the time required to serve the burst length of requests. It
is to be noted that it performs comparably with the rigid
scheme.
Further, nodes switching to one of the web-sites incurs a

penalty for the requests coming to the other web-sites. For
example, a burst of requests for web-site ’A’ might cause all
the nodes to shift accordingly. So, at the end of this burst
web-site ’A’ would have six nodes while the other 2 web-
sites have one node each. At this time, a burst of requests to
any of the other web-sites would result in a node utilization
of one. This causes a drop in the number of nodes used for
reconfigurability as shown in the figure.
Figure 8b shows the node utilization with a burst length of

8096. We can see that for large burst lengths the switching
time for our reconfigurability scheme is negligible. And for
large periods of time, the maximum number of nodes are
fully utilized.
Figure 9 shows similar trends for the scenario with a

shared data-center hosting four web-sites. It is to be noted
that in this scenario the rigid scheme has only two nodes
for each web-site while the over-provisioned scheme has 5
nodes. The reconfigurability scheme starts with the rigid
scheme’s configuration and reconfigures nodes as required.

5 Related Work

Several researchers have focussed on the design of adap-
tive systems that can react to changing workloads in the
context of web servers [16, 10, 20, 7, 19]. There has
been some previous research which focus on dynamism
in the data-center environment by HP labs and IBM Re-
search [14, 18]. These are notable in the sense that they
were the first to show the capabilities of a dynamic allo-
cation of system resources in the data-center environment.
However, some of the solutions focus on lower level archi-
tectural requirements mainly for storage related issues, rely
on specific hardware and are hard to look at as commod-
ity component based solutions; some others require kernel-
level modifications. On the other hand, in our approach,
we try to propose a solution that is not geared toward any
specific hardware and try to give a generic solution at the
application level without requiring any changes to exist-
ing applications. Further, some of these approaches rely
on the servers to intelligently reconfigure the other nodes.
While these approaches are quite intuitive, in a real data-
center scenario, the high server loads can make them inef-
ficient and potentially unusable. Our approach of placing
the onus of reconfigurability on the relatively lightly loaded
edge servers by utilizing the remote memory operations of-
fered by InfiniBand tries to tackle these challenges in an
efficient manner.
Shah, Kim, Balaji, et. al., have done significant re-

search in User Level High Performance Sockets implemen-
tations [22, 11, 12, 6, 5, 3]. In one of our previous works [3],
we had evaluated the capabilities of such a pseudo-sockets
layer over InfiniBand in the data-center environment. How-

ever, as we had observed in [17], the two-sided nature of
Sockets API becomes an inherent bottleneck due to the high
load conditions common in data-center environments. Due
to this, we focused on the one-sided nature of InfiniBand
to develop our external modules. Further, the existing data-
center framework (Apache, PHP, etc.,) is still based on the
sockets API and can benefit from such high-performance
sockets implementations. Thus, these approaches can be
used in a complementary manner with our reconfigurability
technique to make better utilization of system resources and
provide high performance in a data-center environment.

6 Concluding Remarks and Future Work

In a typical cluster-based data-center, various nodes are
logically partitioned to provide various related services in-
cluding web and messaging services, transaction process-
ing, business logic, databases, etc. In the past few years sev-
eral researchers have proposed and configured data-centers
providing multiple independent services, known as shared
data-centers. The increase in such services results in a
growing fragmentation of the resources available and ulti-
mately in the degradation of the performance provided by
the data-center.
In this paper, we presented a novel design to provide dy-

namic reconfigurability of the nodes in the data-center en-
vironment. This technique enables the nodes in the data-
center environment to efficiently adapt their functionality
based on the system load and traffic pattern. While recon-
figurability is a widely used technique for clusters, the data-
center environment poses several interesting challenges for
the design and implementation of such a scheme. In our
approach, we use the advanced features of InfiniBand such
as Remote Direct Memory Access (RDMA) operations and
network based atomic operations to tackle these challenges
in an efficient manner without requiring any modifications
to the existing data-center applications. Our experimental
results show that the reconfigurability scheme provides a
significantly higher performance (up to a factor of 2.5 im-
provement in the throughput) with the same resources or
provides a similar performance while using fewer resources
(up to half the nodes) as compared to a rigidly configured
data-center. More importantly, our scheme takes advan-
tage of the one-sided communication primitives offered by
InfiniBand making it resilient and well-conditioned to the
load on the servers as compared to two-sided communica-
tion protocols such as TCP/IP (sockets).
We are currently working on multi-stage reconfigurations.

In the scheme presented, the least loaded node reconfigures
itself to belong to the highest loaded tier in an attempt to
share the load. However, due to the heterogeneity (hard-
ware components available) in the cluster, this might not be
the optimal solution. On the other hand, a multi-stage re-
configuration, where a sequence of changes in the different
tiers allowing the most appropriate node be reconfigured to
the high load tier, could be more beneficial. We are also
looking at utilizing the reconfigurability scheme for more

9

0

1

2

3

4

5

0 349 698 1047 1396 1745 2094 2443

Iterations

N
u

m
b

er
 o

f
b

u
sy

 n
o

d
es

Reconf Node Utilization Rigid Over-provisioning

0

1

2

3

4

5

0 7491 14962 22423 29901 37345

Iterations

N
u

m
b

er
 o

f
b

u
sy

 n
o

d
es

Reconf Node Utilization Rigid Over-provisioning

Figure 9. Node Utilization in a data-center hosting 4 web-sites with burst length (a) 512 (b) 8k

specific services provided by the data-center such as Qual-
ity of Service guarantees for each web-site hosted, etc.

References

[1] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/traces.html.

[2] Infiniband Trade Association. http://www.infinibandta.org.

[3] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu,
and D. K. Panda. Sockets Direct Protocol over InfiniBand in Clus-
ters: Is it Beneficial? In the Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software,
Austin, Texas, March 10-12 2004.

[4] P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. W. Jin, and
D. K. Panda. Exploiting Remote Memory Operations to Design Ef-
ficient Reconfiguration for Shared Data-Centers. Technical Report
OSU-CISRC-7/04-TR44, The Ohio State University, July 2004.

[5] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz.
Impact of High Performance Sockets on Data Intensive Applications.
In the Proceedings of the IEEE International Conference on High
Performance Distributed Computing (HPDC 2003), June 2003.

[6] Pavan Balaji, Piyush Shivam, Pete Wyckoff, and Dhabaleswar K.
Panda. High Performance User Level Sockets over Gigabit Ethernet.
In the Proceedings of the IEEE International Conference on Clus-
ter Computing, pages 179–186, Chicago, Illinois, September 23-26
2002.

[7] C. Lu and T. Abdelzaher and J. Stankovic and S. Son. A Feedback
Control Approach for Guaranteeing Relative Delays in Web Servers.
In Proceedings of the IEEE Real-Time Technology and Applications
Symposium, June 2001.

[8] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic
Resource Allocation for Shared Data Centers Using Online Measure-
ments. In Proceedings of ACM Sigmetrics 2003, San Diego, CA, June
2003.

[9] Voltaire Inc. http://www.voltaire.com/.

[10] J. Carlstrom and R. Rom. Application-Aware Admission Control
and Scheduling in Web Servers. In Proceedings of the IEEE Infocom
2002, June 2002.

[11] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. Building a High-
Performance Communication Layer over Virtual Interface Architec-
ture on Linux Clusters. In the Proceedings of the IEEE International
Conference on Supercomputing (ICS), pages 335–347, Naples, Italy,
June 16-21 2001.

[12] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. SOVIA: A User-level
Sockets Layer Over Virtual Interface Architecture. In the Proceed-
ings of the IEEE International Conference on Cluster Computing,
pages 399–408, California, USA, October 8-11 2001.

[13] Cherkasova L. and Ponnekanti S. R. Optimizing a content-aware
load balancing strategy for shared Web hosting service. In 8th Inter-
national Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, pages 492 – 499, 29 Aug - 1
Sep 2000.

[14] HP Labs. HP virtualization solutions: IT sup-
ply meets business demand: White Paper. In
http://h30046.www3.hp.com/uploads/infoworks/, July.

[15] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Perfor-
mance RDMA-Based MPI Implementation over InfiniBand. In SC,
June 2003.

[16] N. Bhatti and R. Friedrich. Web server support for tiered services. In
IEEE Network, September 1999.

[17] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu,
and D. K. Panda. Supporting Strong Coherency for Active Caches in
Multi-Tier Data-Centers over InfiniBand. In SAN, 2004.

[18] Daniel OHare, Pankaj Tandon, Hemanth Kalluri, and Phil Mills.
SNIA SSF Virtualization Demonstration. In IBM Systems Group -
TotalStorage Software: White Paper, October.

[19] P. Pradhan and R. Tewari and S. Sahu and A. Chandra and P.
Shenoy. An Observation-based Approach Towards Self-Managing
Web Servers. In Proceedings of the Tenth International Workshop on
Quality of Service (IWQoS 2002), May 2002.

[20] S. Lee and J. Lui and D. Yau. Admission control and dynamic adap-
tation for a proportionaldelay diffserv-enabled web server. In Pro-
ceedings of SIGMETRICS, 2002.

[21] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S.
Madukkarumukumana, and G. J. Regnier. CSP: A Novel System
Architecture for Scalable Internet and Communication Services. In
USITS, 2001.

[22] Hemal V. Shah, Calton Pu, and Rajesh S. Madukkarumukumana.
High Performance Sockets and RPC over Virtual Interface (VI) Ar-
chitecture. In the Proceedings of the CANPC workshop (held in con-
junction with HPCA Conference), pages 91–107, 1999.

[23] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand: Design
and Performance Evaluation. In ICPP, 2003.

[24] George Kingsley Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley Press, 1949.

10

