
Sockets vs RDMA Interface over 10-Gigabit Networks: An In-depth analysis of
the Memory Traffic Bottleneck

�

Pavan Balaji
Computer Science and Engg.,

The Ohio State University,
Columbus, OH 43210,

balaji@cse.ohio-state.edu

Hemal V. Shah
Intel Corporation,

PTL1, 5000 Plaza on the Lake,
Austin, Texas 78746,

hemal.shah@intel.com

D. K. Panda
Computer Science and Engg.,

The Ohio State University,
Columbus, OH 43210,

panda@cse.ohio-state.edu

Abstract
The compute requirements associated with the TCP/IP protocol

suite have been previously studied by a number of researchers.
However, the recently developed 10-Gigabit Networks such as 10-
Gigabit Ethernet and InfiniBand have added a new dimension of
complexity to this problem, Memory Traffic. While there have
been previous studies which show the implications of the memory
traffic bottleneck, to the best of our knowledge, there has been no
study which shows the actual impact of the memory accesses gen-
erated by TCP/IP for 10-Gigabit networks. In this paper, we do
an in-depth evaluation of the various aspects of the TCP/IP proto-
col suite including the memory traffic and CPU requirements, and
compare these with RDMA capable network adapters, using 10-
Gigabit Ethernet and InfiniBand as example networks. Our mea-
surements show that while the host based TCP/IP stack has a high
CPU requirement, up to about 80% of this overhead is associated
with the core protocol implementation especially for large mes-
sages and is potentially offloadable using the recently proposed
TCP Offload Engines. However, the host based TCP/IP stack also
requires multiple transactions of data over the current moderately
fast memory buses (up to a factor of four in some cases), i.e., for
10-Gigabit networks, it generates enough memory traffic to satu-
rate a typical memory bus while utilizing less than 35% of the peak
network bandwidth. On the other hand, we show that the RDMA
interface requires up to four times lesser memory traffic and has
almost zero CPU requirement for the data sink. These measure-
ments show the potential impacts of having an RDMA interface
over IP on 10-Gigabit networks.

1 Introduction

High-speed network interconnects that offer low latency
and high bandwidth have been one of the main reasons
attributed to the success of commodity cluster systems.
Some of the leading high-speed networking interconnects
include Ethernet [11, 1], InfiniBand [2], Myrinet [7] and
Quadrics [18]. Two common features shared by these in-
terconnects are User-level networking and Remote Direct

�

This research is supported in part by National Science Foundation
grants #CCR-0204429 and #CCR-0311542 to Dr. D. K. Panda at the Ohio
State University.

Memory Access (RDMA). Gigabit and 10-Gigabit Ethernet
offer an excellent opportunity to build multi-gigabit per sec-
ond networks over the existing Ethernet installation base
due to their backward compatibility with Ethernet. Infini-
Band Architecture (IBA) is a newly defined industry stan-
dard that defines a System Area Network (SAN) to enable
a low latency and high bandwidth cluster interconnect. IBA
mainly aims at reducing the system processing overhead by
decreasing the number of copies associated with the mes-
sage transfer and removing the kernel from the critical mes-
sage passing path.
The Transmission Control Protocol (TCP) is one of the

universally accepted transport layer protocols in today’s
networking world. The introduction of gigabit speed net-
works a few years back had challenged the traditional
TCP/IP implementation in two aspects, namely perfor-
mance and CPU requirements. In order to allow TCP/IP
based applications achieve the performance provided by
these networks while demanding lesser CPU resources, re-
searchers came up with solutions in two broad directions:
user-level sockets [19, 3] and TCP Offload Engines [20].
Both these approaches concentrate on optimizing the proto-
col stack either by replacing the TCP stack with zero-copy,
OS-bypass protocols such as VIA, EMP or by offloading
the entire or part of the TCP stack on to hardware.
The advent of 10-Gigabit networks such as 10-Gigabit

Ethernet and InfiniBand has added a new dimension of com-
plexity to this problem, Memory Traffic. While there have
been previous studies which show the implications of the
memory traffic bottleneck, to the best of our knowledge,
there has been no study which shows the actual impact of
the memory accesses generated by TCP/IP for 10-Gigabit
networks.
In this paper, we evaluate the various aspects of the TCP/IP

protocol suite for 10-Gigabit networks including the mem-
ory traffic and CPU requirements, and compare these with
RDMA capable network adapters, using 10-Gigabit Eth-
ernet and InfiniBand as example networks. Our measure-
ments show that while the host based TCP/IP stack has a
high CPU requirement, up to about 80% of this overhead is
associated with the core protocol implementation especially

1

for large messages and is potentially offloadable using the
recently proposed TCP Offload Engines or user-level sock-
ets layers.
Further, our studies reveal that for 10-Gigabit networks,

the sockets layer itself becomes a significant bottleneck for
memory traffic. Especially when the data is not present
in the L2-cache, network transactions generate significant
amounts of memory bus traffic for the TCP protocol stack.
As we will see in the later sections, each byte transferred
on the network can generate up to 4 bytes of data traffic on
the memory bus. With the current moderately fast mem-
ory buses (e.g., 64bit/333MHz) and low memory efficien-
cies (e.g., 65%), this amount of memory traffic limits the
peak throughput applications can achieve to less than 35%
of the network’s capability. Further, the memory bus and
CPU speeds have not been scaling with the network band-
width [4], pointing to the fact that this problem is only going
to worsen in the future.
We also evaluate the RDMA interface of the InfiniBand

architecture to understand the implications of having an
RDMA interface over IP in two aspects: (a) the CPU re-
quirement for the TCP stack usage and the copies associated
with the sockets interface, (b) the difference in the amounts
of memory traffic generated by RDMA compared to that
of the traditional sockets API. Our measurements show that
the RDMA interface requires up to four times lesser mem-
ory traffic and has almost zero CPU requirement for the data
sink. These measurements show the potential impacts of
having an RDMA interface over IP on 10-Gigabit networks.
The remaining part of the paper is organized as follows: In

Section 2, we provide a brief background about InfiniBand,
the RDMA interface and the TCP protocol suite. Section 3
provides details about the architectural requirements asso-
ciated with the TCP stack. We present some experimental
results in Section 4, other related work in Section 5 and
draw our conclusions in Section 6.

2 Background
In this section, we provide a brief background about the

InfiniBand Architecture, the RDMA interface and the TCP
protocol suite.

2.1 InfiniBand Architecture

InfiniBand Architecture (IBA) is an industry standard that
defines a System Area Network (SAN) to design clusters
offering low latency and high bandwidth. In a typical IBA
cluster, switched serial links connect the processing nodes
and the I/O nodes. The compute nodes are connected to the
IBA fabric by means of Host Channel Adapters (HCAs).
IBA defines a semantic interface called as Verbs for the con-
sumer applications to communicate with the HCAs.
IBA mainly aims at reducing the system processing over-

head by decreasing the number of copies associated with
a message transfer and removing the kernel from the crit-
ical message passing path. This is achieved by providing
the consumer applications direct and protected access to the
HCA.

2.1.1 RDMA Communication Model

IBA supports two types of communication semantics: chan-
nel semantics (send-receive communication model) and
memory semantics (RDMA communication model).
In channel semantics, every send request has a correspond-

ing receive request at the remote end. Thus there is one-to-
one correspondence between every send and receive opera-
tion. Failure to post a receive descriptor on the remote node
results in the message being dropped and if the connection
is reliable, it might even result in the breaking of the connec-
tion. In memory semantics, Remote Direct Memory Access
(RDMA) operations are used. These operations are trans-
parent at the remote end since they do not require a receive
descriptor to be posted. There are two kinds of RDMA op-
erations: RDMA Write and RDMA Read. In an RDMA
write operation, the initiator directly writes data into the re-
mote node’s user buffer. Similarly, in an RDMA Read op-
eration, the initiator reads data from the remote node’s user
buffer.

2.2 TCP/IP Protocol Suite

The data processing path taken by the TCP protocol stack
is broadly classified into the transmission path and the re-
ceive path. On the transmission side, the message is copied
into the socket buffer, divided into MTU sized segments,
data integrity ensured through checksum computation (to
form the TCP checksum) and passed on to the underlying
IP layer. Linux-2.4 uses a combined checksum and copy
for the transmission path, a well known optimization first
proposed by Jacobson, et al. [8]. The IP layer extends the
checksum to include the IP header and form the IP check-
sum and passes on the IP datagram to the device driver. Af-
ter the construction of a packet header, the device driver
makes a descriptor for the packet and passes the descriptor
to the NIC. The NIC performs a DMA operation to move
the actual data indicated by the descriptor from the socket
buffer to the NIC buffer. The NIC then ships the data with
the link header to the physical network and raises an inter-
rupt to inform the device driver that it has finished transmit-
ting the segment.
On the receiver side, the NIC receives the IP datagrams,

DMAs them to the socket buffer and raises an interrupt
informing the device driver about this. The device driver
strips the packet off the link header and hands it over to the
IP layer. The IP layer verifies the IP checksum and if the
data integrity is maintained, hands it over to the TCP layer.
The TCP layer verifies the data integrity of the message and
places the data into the socket buffer. When the applica-
tion calls the read() operation, the data is copied from
the socket buffer to the application buffer.

3 Understanding TCP/IP Requirements

In this section, we study the impact of cache misses not
only on the performance of the TCP/IP protocol stack, but
also on the amount of memory traffic associated with these
cache misses; we estimate the amount of memory traffic for

2

a typical throughput test. In Section 4, we validate these
estimates through measured values.
Memory traffic comprises of two components: Front Side

Bus (FSB) reads and writes generated by the CPU(s) and
DMA traffic generated through the I/O bus by other devices
(NIC in our case). We study the memory traffic associated
with the transmit path and the receive paths separately. Fur-
ther, we break up each of these paths into two cases: (a)
Application buffer fits in cache and (b) Application buffer
does not fit in cache. In this section, we describe the path
taken by the second case, i.e., when the application buffer
does not fit in cache. We also present the final memory traf-
fic ratio of the first case, but refer the reader to [4] for the
actual data path description due to space restrictions. Fig-
ures 1a and 1b illustrate the memory accesses associated
with network communication.

3.1 Transmit Path

As mentioned earlier, in the transmit path, TCP copies the
data from the application buffer to the socket buffer. The
NIC then DMAs the data from the socket buffer and trans-
mits it. The following are the steps involved on the trans-
mission side:
CPU reads the application buffer (step 1): The appli-

cation buffer has to be fetched to cache on every iteration
since it does not completely fit into it. However, it does
not have to be written back to memory each time since it
is only used for copying into the socket buffer and is never
dirtied. Hence, this operation requires a byte of data to be
transferred from memory for every byte transferred over the
network.
CPU writes to the socket buffer (step 2): The default

socket buffer size for most kernels including Linux and
Windows Server 2003 is 64KB, which fits in cache (on most
systems). In the first iteration, the socket buffer is fetched
to cache and the application buffer is copied into it. In the
subsequent iterations, the socket buffer stays in one of Ex-
clusive, Modified or Shared states, i.e., it never becomes
Invalid. Further, any change of the socket buffer state from
one to another of these three states just requires a notifi-
cation transaction or a Bus Upgrade from the cache con-
troller and generates no memory traffic. So ideally this op-
eration should not generate any memory traffic. However,
the large application buffer size can force the socket buffer
to be pushed out of cache. This can cause up to 2 bytes of
memory traffic per network byte (one transaction to push
the socket buffer out of cache and one to fetch it back).
Thus, this operation can require between 0 and 2 bytes of
memory traffic per network byte.
NIC does a DMA read of the socket buffer (steps 3 and

4): When a DMA request from the NIC arrives, the seg-
ment of the socket buffer corresponding to the request can
be either in cache (dirtied) or in memory. In the first case,
during the DMA, most memory controllers perform an im-
plicit write back of the cache lines to memory. In the second
case, the DMA takes place from memory. So, in either case,
there would be one byte of data transferred either to or from

memory for every byte of data transferred on the network.
Based on these four steps, we can expect the memory traf-

fic required for this case to be between 2 to 4 bytes for ev-
ery byte of data transferred over the network. Also, we can
expect this value to move closer to 4 as the size of the appli-
cation buffer increases (forcing more cache misses for the
socket buffer).
Further, due to the set associative nature of some caches, it

is possible that some of the segments corresponding to the
application and socket buffers be mapped to the same cache
line. This requires that these parts of the socket buffer be
fetched from memory and written back to memory on every
iteration. It is to be noted that, even if a cache line cor-
responding to the socket buffer is evicted to accommodate
another cache line, the amount of memory traffic due to the
NIC DMA does not change; the only difference would be
that the traffic would be a memory read instead of an im-
plicit write back. However, we assume that the cache map-
ping and implementation are efficient enough to avoid such
a scenario and do not expect this to add any additional mem-
ory traffic.

3.2 Receive Path

The memory traffic associated with the receive path is sim-
pler compared to that of the transmit path. The following
are steps involved on the receive path:
NIC does a DMA write into the socket buffer (step 1):

When the data arrives at the NIC, it does a DMA write of
this data into the socket buffer. During the first iteration,
if the socket buffer is present in cache and is dirty, it is
flushed back to memory by the cache controller. Only after
the buffer is flushed out of the cache is the DMA write re-
quest allowed to proceed. In the subsequent iterations, even
if the socket buffer is fetched to cache, it would not be in
a Modified state (since it is only being used to copy data
into the application buffer). Thus, the DMA write request
would be allowed to proceed as soon as the socket buffer in
the cache is invalidated by the North Bridge (Figure 1), i.e.,
the socket buffer does not need to be flushed out of cache for
the subsequent iterations. This sums up to one transaction
to the memory during this step.
CPU reads the socket buffer (step 2): Again, at this

point the socket buffer is not present in cache, and has to
be fetched, requiring one transaction from the memory. It is
to be noted that even if the buffer was present in the cache
before the iteration, it has to be evicted or invalidated for
the previous step.
CPU writes to application buffer (steps 3, 4 and 5):

Since the application buffer does not fit into cache entirely,
it has to be fetched in parts, data copied to it, and written
back to memory to make room for the rest of the applica-
tion buffer. Thus, there would be two transactions to and
from the memory for this step (one to fetch the application
buffer from memory and one to write it back).
This sums up to 4 bytes of memory transactions for ev-

ery byte transferred on the network for this case. It is to be
noted that for this case, the number of memory transactions

3

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
��� ��

���

NIC

1

2

3

L2 Cache Memory

Application
Buffer

SocketSocket
Buffer Buffer

Application
Buffer

I/O

4

Implicit Write
Back

Bridge
North

Controller
Memory

Controller
Cache

NIC

1

2

3

4

5

Socket
Buffer

Application
Buffer

Application
Buffer

Socket
Buffer

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �

	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
 ���
���

L2 Cache Memory

I/O

North
Bridge

Cache
Controller Controller

Memory

Figure 1. Memory Traffic for Sockets: (a) Transmit Path; (b) Receive Path

does not depend on the cache policy. Table 1 gives a sum-
mary of the memory transactions expected for each of the
above described cases. Theoretical refers to the possibil-
ity of cache misses due to inefficiencies in the cache policy,
set associativity, etc. Practical assumes that the cache pol-
icy is efficient enough to avoid cache misses due to mem-
ory to cache mappings. While the actual memory access
pattern is significantly more complicated than the one de-
scribed above due to the pipelining of data transmission to
and from the socket buffer, this model captures the bulk of
the memory transactions and provides a fair enough esti-
mate.

Table 1. Memory to Network traffic ratio

fits in cache does not fit in cache

Transmit (Theoretical) 1-4 2-4
Transmit (Practical) 1 2-4
Receive (Theoretical) 2-4 4
Receive (Practical) 2 4

4 Experimental Results
In this section, we present some of the experiments we

have conducted over 10 Gigabit Ethernet and InfiniBand.
The test-bed used for evaluating the 10-Gigabit Ethernet

stack consisted of two clusters.
Cluster 1: Two Dell2600 Xeon 2.4 GHz 2-way SMP

nodes, each with 1GB main memory (333MHz, DDR), In-
tel E7501 chipset, 32Kbyte L1-Cache, 512Kbyte L2-Cache,
400MHz/64-bit Front Side Bus, PCI-X 133MHz/64bit I/O
bus, Intel 10GbE/Pro 10-Gigabit Ethernet adapters.
Cluster 2: Eight P4 2.4 GHz IBM xSeries 305 nodes, each

with 256Kbyte main memory and connected using the Intel
Pro/1000 MT Server Gigabit Ethernet adapters. We used
Windows Server 2003 and Linux kernel 2.4.18-14smp for
our evaluations. The multi-stream tests were conducted us-
ing a FoundryNet 10-Gigabit Ethernet switch.
The test-bed used for evaluating the InfiniBand stack con-

sisted of the following cluster.
Cluster 3: Eight nodes built around SuperMicro SUPER

P4DL6 motherboards and GC chipsets which include 64-
bit 133 MHz PCI-X interfaces. Each node has two Intel
Xeon 2.4GHz processors with a 512Kbyte L2 cache and a

400MHz front side bus. The machines are connected with
Mellanox InfiniHost MT23108 DualPort 4x HCA adapter
through an InfiniScale MT43132 Eight 4x Port InfiniBand
Switch. The Mellanox InfiniHost HCA SDK version is
thca-x86-0.2.0-build-001. The adapter firmware version
is fw-23108-rel-1 17 0000-rc12-build-001. We used the
Linux 2.4.7-10smp kernel version.

4.1 10-Gigabit Ethernet

In this section we present the performance delivered by
10-Gigabit Ethernet, the memory traffic generated by the
TCP/IP stack (including the sockets interface) and the CPU
requirements of this stack.

4.1.1 Micro-Benchmark Evaluation

For the micro-benchmark tests, we have studied the impacts
of varying different parameters in the system as well as the
TCP/IP stack including (a) Socket Buffer Size, (b) Maxi-
mum Transmission Unit (MTU), (c) Network adapter of-
floads (checksum, segmentation), (d) PCI burst size (PBS),
(e) Switch Behavior, (f) TCP window size, (g) Adapter
Interrupt delay settings, (h) Operating System (Linux and
Windows Server 2003) and several others. Most of these
micro-benchmarks use the same buffer for transmission re-
sulting in maximum cache hits presenting the ideal case per-
formance achievable by 10-Gigabit Ethernet. Due to this
reason, these results tend to hide a number of issues related
to memory traffic. The main idea of this paper is to study
the memory bottleneck in the TCP/IP stack. Hence, we have
shown only a subset of these micro-benchmarks in this pa-
per. The rest of the micro-benchmarks can be found in [4].
Single Stream Tests: Figure 2a shows the one-way ping-

pong latency achieved by 10-Gigabit Ethernet. We can see
that 10-Gigabit Ethernet is able to achieve a latency of about
37 s for a message size of 256bytes on the Windows Server
2003 platform. The figure also shows the average CPU uti-
lization for the test. We can see that the test requires about
50% CPU on each side. We have also done a similar anal-
ysis on Linux where 10-Gigabit Ethernet achieves a latency
of about 20.5 s (Figure 3a).
Figure 2b shows the throughput achieved by 10-Gigabit

4

Ethernet on the Windows Server 2003 platform. The param-
eter settings used for the experiment were a socket buffer
size of 64Kbytes (both send and receive on each node),
MTU of 16Kbytes, checksum offloaded on to the network
card and the PCI burst size set to 4Kbytes. 10-Gigabit Eth-
ernet achieves a peak throughput of about 2.5Gbps with a
CPU usage of about 110% (dual processor system). We can
see that the amount of CPU used gets saturated at about
100% though we are using dual processor systems. This is
attributed to the interrupt routing mechanism for the “x86”
architecture. The x86 architecture routes all interrupts to
the first processor. For interrupt based protocols such as
TCP, this becomes a huge bottleneck, since this essentially
restricts the transmission side to about one CPU. This be-
havior is also seen in the multi-stream transmission tests (in
particular the fan-out test) which are provided in the later
sections. The throughput results for the Linux platform are
presented in Figure 3b.
Multi-Stream Tests: For the multi-stream results, we

study the performance of the host TCP/IP stack in the pres-
ence of multiple data streams flowing from or into the node.
The environment used for the multi-stream tests consisted
of one node with a 10-Gigabit Ethernet adapter and several
other nodes connected to the same switch using a 1-Gigabit
Ethernet adapter.
Three main experiments were conducted in this category.

The first test was a Fan-in test, where all the 1-Gigabit
Ethernet nodes push data to the 10-Gigabit Ethernet node
through the common switch they are connected to. The sec-
ond test was a Fan-out test, where the 10-Gigabit Ethernet
node pushes data to all the 1-Gigabit Ethernet nodes through
the common switch. The third test was Dual test, where the
10-Gigabit Ethernet node performs the fan-in test with half
the 1-Gigabit Ethernet nodes and the fan-out test with the
other half. It is to be noted that the Dual test is quite differ-
ent from a multi-stream bi-directional bandwidth test where
the server node (10-Gigabit Ethernet node) does both a fan-
in and a fan-out test with each client node (1-Gigabit Eth-
ernet node). The message size used for these experiments
is 10Mbytes. This forces the message not to be in L2-cache
during subsequent iterations.
Figures 4a and 4b show the performance of the host

TCP/IP stack over 10-Gigabit Ethernet for the Fan-in and
the Fan-out tests. We can see that we are able to achieve a
throughput of about 3.5Gbps with a 120% CPU utilization
(dual CPU) for the Fan-in test and about 4.5Gbps with a
100% CPU utilization (dual CPU) for the Fan-out test. Fur-
ther, it is to be noted that the server gets saturated in the
Fan-in test for 4 clients. However, in the fan-out test, the
throughput continues to increase from 4 clients to 8 clients.
This again shows that with 10-Gigabit Ethernet, the receiver
is becoming a bottleneck in performance mainly due to the
high CPU overhead involved on the receiver side.
Figure 4c shows the performance achieved by the host

TCP/IP stack over 10-Gigabit Ethernet for the Dual test.
The host TCP/IP stack is able to achieve a throughput of

about 4.2Gbps with a 140% CPU utilization (dual CPU).

4.1.2 TCP/IP CPU Pareto Analysis

In this section we present a module wise break-up (Pareto
Analysis) for the CPU overhead of the host TCP/IP stack
over 10-Gigabit Ethernet. We used the NTttcp throughput
test as a benchmark program to analyse this. Like other
micro-benchmarks, the NTttcp test uses the same buffer for
all iterations of the data transmission. So, the pareto anal-
ysis presented here is for the ideal case with the maximum
number of cache hits. For measurement of the CPU over-
head, we used the Intel VTune

���

Performance Analyzer.
In short, the VTune

���

Analyzer interrupts the processor
at specified events (e.g., every ‘n’ clock ticks) and records
its execution context at that sample. Given enough sam-
ples, the result is a statistical profile of the ratio of the time
spent in a particular routine. More details about the Intel
VTune

���

Performance Analyzer can be found in [4].
Figures 5 and 6 present the CPU break-up for both the

sender as well as the receiver for small messages (64bytes)
and large messages (16Kbytes) respectively. It can be seen
that in all the cases, the kernel and the protocol stack add
up to about 80% of the CPU overhead. For small messages,
the overhead is mainly due to the per-message interrupts.
These interrupts are charged into the kernel usage, which
accounts for the high percentage of CPU used by the kernel
for small messages. For larger messages, on the other hand,
the overhead is mainly due to the data touching portions in
the TCP/IP protocol suite such as checksum, copy, etc.
As it can be seen in the pareto analysis, in cases where the

cache hits are high, most of the overhead of TCP/IP based
communication is due to the TCP/IP protocol processing
itself or due to other kernel overheads. This shows the po-
tential benefits of having TCP Offload Engines in such sce-
narios where these components are optimized by pushing
the processing to the hardware. However, the per-packet
overheads for small messages such as interrupts for sending
and receiving data segments would still be present inspite
of a protocol offload. Further, as we’ll see in the mem-
ory traffic analysis (the next section), for cases where the
cache hit rate is not very high, the memory traffic associ-
ated with the sockets layer becomes very significant form-
ing a fundamental bottleneck for all implementations which
support the sockets layer, including high performance user-
level sockets as well as TCP Offload Engines.

4.1.3 TCP/IP Memory Traffic
For the memory traffic tests, we again used the VTune

���

Performance Analyzer. We measure the number of cache
lines fetched and evicted from the processor cache to calcu-
late the data traffic on the Front Side Bus. Further, we mea-
sure the data being transferred from or to memory from the
North Bridge to calculate the memory traffic (on the Mem-
ory Bus). Based on these two calculations, we evaluate the
amount of traffic being transferred over the I/O bus (differ-
ence in the amount of traffic on the Front Side Bus and the

5

Latency Vs Message Size
(Socket Buffer Size = 64K; MTU = 1.5K;

Checksum Offloaded; PCI Burst Size = 4K)

0

5

10

15

20

25

30

35

40

45

50

256 512 768 1024 1280 1460

Message Size (bytes)

L
at

en
cy

 (
u

se
c)

0

10

20

30

40

50

60

Send CPU Recv CPU Latency

Throughput Vs Message Size
(Socket Buffer Size = 64K; MTU = 16K;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

140

Send CPU Recv CPU Throughput

Figure 2. Micro-Benchmarks for the host TCP/IP stack over 10-Gigabit Ethernet on the Windows
Platform: (a) One-Way Latency (MTU 1.5K); (b) Throughput (MTU 16K)

��������	
���

�������

�����������������������������������

� ���
�!�"��#��$�$��%�&����
����������'

�

�

��

��

��

��

��

��� ��� ��� ���	 ���� �	��

��

���������(���
'

�
�
��
�
�
�
��
�

�
�
'

��

��

	�

	�

		

	�

	�

��

������ �������� �������

����������	
�	�����	���

������	�����	���	�	����	���	�	����

�������	 ��!��""�	#�$	�����	���	�	��%

�

���

����

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�&'��%

�
�
��
�
�
�
�
�
�	
��
&
�
�
%

�

��

��

��

��

���

���

���

������ �������� ���������

Figure 3. Micro-Benchmarks for the host TCP/IP stack over 10-Gigabit Ethernet on the Linux Platform:
(a) One-Way Latency (MTU 1.5K); (b) Throughput (MTU 16K)

Fan-in Test
(128K Socket Buffer Size; 9K MTU;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8

Number of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

140

CPU Fan-in

Fan-out Test
(128K Socket Buffer Size; 9K MTU;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8

Number of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

CPU Fan-out

Dual (Fan-in/Fan-out)
(128K Socket Buffer Size; 9K MTU;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8

Number of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

140

160

CPU Dual

Figure 4. Multi-Stream Micro-Benchmarks: (a) Fan-in, (b) Fan-out, (c) Dual (Fan-in/Fan-out)

Kernel
44%

Sockets Driver
6%

TCP/IP
8%

Others
7%

Kernel Libraries
32%

Sockets Libraries
1%

10Gig Drivers
1%

NDIS Drivers
1%

Kernel
43%

Kernel Libraries
28%

Sockets Driver
15%

TCP/IP
2%

NDIS Drivers
1%

10Gig Drivers
2%

Sockets Libraries
4%

Others
5%

Figure 5. Throughput Test: CPU Pareto Analysis for small messages (64bytes): (a) Transmit Side, (b)
Receive Side

6

Kernel
16%

Kernel Libraries
37%Sockets Driver

17%

TCP/IP
5%

NDIS Drivers
4%

10Gig Drivers
9%

Others
11%

Sockets Libraries
1%

Kernel
25%

Kernel Libraries
12%

Sockets Driver
11%

Sockets Libraries
1%

TCP/IP
43%

NDIS Drivers
2%

10Gig Drivers
5%

Others
1%

Figure 6. Throughput Test: CPU Pareto Analysis for large messages (16Kbytes): (a) Transmit Size,
(b) Receive Side

Memory Bus).
Single Stream Tests: Figure 7a shows the memory traffic

associated with the data being transferred on the network
for the sender and the receiver sides. As discussed in Sec-
tion 3, for small message sizes (messages which fit in the
L2-cache), we can expect about 1 byte of memory traffic
per network byte on the sender side and about 2 bytes of
memory traffic per network byte on the receiver side. How-
ever, the amount of memory traffic seems to be large for
very small messages. The reason for this is the TCP control
traffic and other noise traffic on the memory bus. Such traf-
fic would significantly affect the smaller message sizes due
to the less amount of memory traffic associated with them.
However, when the message size becomes moderately large
(and still fits in L2-cache), we can see that the message traf-
fic follows the trend predicted.
For large message sizes (messages which do not fit in the

L2-cache), we can expect between 2 and 4 bytes of mem-
ory traffic per network byte on the sender side and about
4 bytes of memory traffic per network byte on the receiver
side. We can see that the actual memory to network traffic
ratio follows this trend.
These results show that even without considering the host

CPU requirements for the TCP/IP protocol stack, the mem-
ory copies associated with the sockets layer can generate
up to 4 bytes of memory traffic per network byte for traffic
in each direction, forming what we call the memory-traffic
bottleneck. It is to be noted that while some TCP Offload
Engines try to avoid the memory copies in certain scenarios,
the sockets API can not force a zero copy implementation
for all cases (e.g., transactional protocols such as RPC, File
I/O, etc. first read the data header and decide the size of the
buffer to be posted). This forces the memory-traffic bottle-
neck to be associated with the sockets API.
Multi-Stream Tests: Figure 7b shows the actual mem-

ory traffic associated with the network data transfer during
the multi-stream tests. It is to be noted that the message
size used for the experiments is 10Mbytes, so subsequent
transfers of the message need the buffer to be fetched from
memory to L2-cache.

The first two legends in the figure show the amount of
bytes transferred on the network and the bytes transferred
on the memory bus per second respectively. The third leg-
end shows 65% of the peak bandwidth achievable by the
memory bus. 65% of the peak memory bandwidth is a gen-
eral rule of thumb used by most computer companies to es-
timate the peak practically sustainable memory bandwidth
on a memory bus when the requested physical pages are
non-contiguous and are randomly placed. It is to be noted
that though the virtual address space could be contiguous,
this doesn’t enforce any policy on the allocation of the phys-
ical address pages and they can be assumed to be randomly
placed.
It can be seen that the amount of memory bandwidth re-

quired is significantly larger than the actual network band-
width. Further, for the Dual test, it can be seen that the
memory bandwidth actually reaches within 5% of the peak
practically sustainable bandwidth.

4.2 InfiniBand Architecture

In this section, we present briefly the performance
achieved by RDMA enabled network adapters such as In-
finiBand.
Figure 8a shows the one-way latency achieved by the

RDMA write communication model of the InfiniBand stack
for the polling based approach for completion as well as an
event based approach. In the polling approach, the applica-
tion continuously monitors the completion of the message
by checking the arrived data. This activity makes the polling
based approach CPU intensive resulting in a 100% CPU uti-
lization. In the event based approach, the application goes
to sleep after posting the descriptor. The network adaptor
raises an interrupt for the application once the message ar-
rives. This results in a lesser CPU utilization for the event
based scheme.
We see that RDMA write achieves a latency of about 5.5 s

for both the polling based scheme as well as the event based
scheme. The reason for both the event based scheme and the
polling based scheme performing alike is the receiver trans-
parency for RDMA Write operations. Since, the RDMA

7

Network bytes/Memory bytes
(Socket Buffer Size = 64K; MTU = 9K;

Checksum Offloaded; PCI Burst Size = 4K)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

64 1024 16384 65536 262144 1048576 4194304

Message Size (Bytes)

M
em

 b
yt

e
p

er
 N

et
w

o
rk

 b
yt

e Receive
Send

Multi-Stream Memory Traffic
(Socket Buffer 128K; MTU = 9K;

Checksum Offloaded; PCI Burst Size = 4K)

0

8,525

17,050

25,574

34,099

42,624

Fan-in Fan-out Bi-dir

B
an

d
w

id
th

 (
M

b
p

s)

Network BW Memory BW Sustain Memory Bandwidth (65%)

Figure 7. Throughput Test Memory Traffic Analysis: (a) Single Stream, (b) Multi Stream

Latency (RDMA Write)

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128 256 512 1k 2k 4k

Message Size (bytes)

T
im

e
(u

s)

0

10

20

30

40

50

60

70

80

90

100

CPU Utilization Latency (Poll) Latency (Event)

Throughput (RDMA Write)

0

1000

2000

3000

4000

5000

6000

7000

8000

1 4 16 64 25
6 1k 4k 16
k

64
k

25
6k

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)
0

10

20

30

40

50

60

70

80

90

100

Send CPU Recv CPU

Throughput (Poll) Throughput (Event)

Figure 8. IBA Micro-Benchmarks for RDMA Write: (a) Latency and (b) Throughput

Latency Comparison
(Socket Buffer Size = 64K; MTU = 1.5K;

Checksum Offloaded; PCI Burst Size = 4K)

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256 512 1K

Message Size (bytes)

L
at

en
cy

 (
u

se
c)

Sockets
RW (Poll)
RR (Poll)

Throughput Comparison
(Socket Buffer Size = 64K; MTU = 1.5K;

Checksum Offloaded; PCI Burst Size = 4K)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K
Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Sockets
RW
RR

Figure 9. Latency and Throughput Comparison: Host TCP/IP over 10-Gigabit Ethernet Vs InfiniBand

CPU Requirement

0

20

40

60

80

100

120

Send (64) Send (64K) Recv (64) Recv (64K)

P
er

ce
n

ta
g

e
C

P
U

Sockets RW RR

Memory Traffic Comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

64 1K 16K 64K 256K 1M 4M

Message Size (bytes)

M
em

o
ry

 t
o

 N
et

w
o

rk
 T

ra
ff

ic

R
at

io

Sockets (Send) RDMA (Send) Sockets (Recv) RDMA (Recv)

Figure 10. CPU Requirement and Memory Traffic Comparisons: Host TCP/IP over 10-Gigabit Ethernet
Vs InfiniBand

8

write operation is completely receiver transparent, the only
way the receiver can know that the data has arrived into its
buffer is by polling on the last byte. So, in an event-based
approach only the sender would be blocked on send com-
pletion using a notification event; the notification overhead
at the sender is however parallelized with the data transmis-
sion and reception. Due to this the time taken by RDMA
write for the event-based approach is similar to that of the
polling based approach. Due to the same reason, the CPU
overhead in the event-based approach is 100% (similar to
the polling based approach).
RDMA Read on the other hand achieves a latency of about

12.5 s for the polling based scheme and about 24.5 s for
the event based scheme. The detailed results for RDMA
read and the other communication models such as send-
receive and RDMA write with immediate data can be found
in [4].
Figure 8 shows the throughput achieved by RDMA write.

Again, results for both the polling based approach as well
as the event-based approach are presented.
Both approaches seem to perform very close to each other

giving a peak throughput of about 6.6Gbps. The peak
throughput is limited by the sustainable bandwidth on the
PCI-X bus. The way the event-based scheme works is that,
it first checks the completion queue for any completion en-
tries present. If there are no completion entries present, it
requests a notification from the network adapter and blocks
while waiting for the data to arrive. In a throughput test,
data messages are sent one after the other continuously.
So, the notification overhead can be expected to be over-
lapped with the data transmission overhead for the consec-
utive messages. This results in a similar performance for the
event-based approach as well as the polling based approach.
The CPU utilization values are only presented for the

event-based approach; those for the polling based approach
stay close to 100% and are not of any particular interest.
The interesting thing to note is that for RDMA, there is
nearly zero CPU utilization for the data sink especially for
large messages.

4.3 10-Gigabit Ethernet/InfiniBand Comparisons

Figures 9a and 9b show the latency and throughput com-
parisons between IBA and 10-Gigabit Ethernet respectively.
In this figure we have skipped the event based scheme and
shown just the polling based scheme. The reason for this
is the software stack overhead in InfiniBand. The perfor-
mance of the event based scheme depends on the perfor-
mance of the software stack to handle the events generated
by the network adapter and hence would be specific to the
implementation we are using. Hence, to get an idea of the
peak performance achievable by InfiniBand, we restrict our-
selves to the polling based approach.
We can see that InfiniBand is able to achieve a signifi-

cantly higher performance than the host TCP/IP stack on
10-Gigabit Ethernet; a factor of three improvement in the
latency and a up to a 3.5 times improvement in the through-
put. This improvement in performance is mainly due to the

offload of the network protocol, direct access to the NIC and
direct placement of data into the memory.
Figures 10a and 10b show the CPU requirements and the

memory traffic generated by the host TCP/IP stack over 10-
Gigabit Ethernet and the InfiniBand stack. We can see that
the memory traffic generated by the host TCP/IP stack is
much higher (more than 4 times in some cases) as compared
to InfiniBand; this difference is mainly attributed to the
copies involved in the sockets layer for the TCP/IP stack.
This result points to the fact that inspite of the possibility of
an offload of the TCP/IP stack on to the 10-Gigabit Ethernet
network adapter TCP’s scalability would still be restricted
by the sockets layer and its associated copies. On the other
hand, having an RDMA interface over IP together with the
offloaded TCP stack can be expected to achieve all the ad-
vantages seen by InfiniBand.
Some of the expected benefits are (1) Low overhead inter-

face to the network, (2) Direct Data Placement (significantly
reducing intermediate buffering), (3) Support for RDMA
semantics, i.e., the sender can handle the buffers allocated
on the receiver node and (4) Most importantly, the amount
of memory traffic generated for the network communication
will be equal to the number of bytes going out to or coming
in from the network, thus improving scalability.

5 Related Work

Several researchers have worked on implementing high
performance user-level sockets implementations over high
performance networks. Kim, Shah, Balaji and several oth-
ers have worked on such pseudo sockets layers over Gigabit
Ethernet [5], GigaNet cLAN [16, 19, 6] and InfiniBand [3].
However, these implementations try to maintain the sock-
ets API in order to allow compatibility for existing appli-
cations and hence still face the memory traffic bottlenecks
discussed in this paper.
There has been some previous work done by Foong et.

al. [10] which does a similar analysis of the bottlenecks
associated by the TCP/IP stack and the sockets interface.
This research is notable in the sense that this was the one
of the first to show the implications of the memory traffic
associated with the TCP/IP stack. However, this analysis
was done using much slower networks, in particular Giga-
bit Ethernet adapters following which the memory traffic
did not show up as a fundamental bottleneck and the con-
clusions of the work were quite different from ours. Wu-
Chun Feng, et. al. [12, 9], have done some initial perfor-
mance evaluation of 10-Gigabit Ethernet adapters. Their
work focuses only on the peak performance deliverable by
the adapters and does not consider the memory traffic issues
for the TCP/IP stack present.
We would also like to mention some previous research to

optimize the TCP stack [8, 13, 17, 15, 14]. However, in this
paper, we question the sockets API itself and propose issues
associated with this API. Further, we believe that most of
the previously proposed techniques would still be valid for
the proposed RDMA interface over TCP/IP and can be used

9

in a complementary manner.

6 Concluding Remarks and Future Work

The compute requirements associated with the TCP/IP
protocol suite have been previously studied by a number
of researchers. However, the recently developed 10 Giga-
bit networks such as 10-Gigabit Ethernet and InfiniBand
have added a new dimension of complexity to this problem,
Memory Traffic. While there have been previous studies
which show the implications of the memory traffic bottle-
neck, to the best of our knowledge, there has been no study
which shows the actual impact of the memory accesses gen-
erated by TCP/IP for 10-Gigabit networks.
In this paper, we first do a detailed evaluation of various

aspects of the host-based TCP/IP protocol stack over 10-
Gigabit Ethernet including the memory traffic and CPU re-
quirements. Next, we compare these with RDMA capable
network adapters, using InfiniBand as an example network.
Our measurements show that while the host based TCP/IP
stack has a high CPU requirement, up to 80% of this over-
head is associated with the core protocol implementation
especially for large messages and is potentially offloadable
using the recently proposed TCP Offload Engines. How-
ever, the current host based TCP/IP stack also requires mul-
tiple transactions of the data (up to a factor of four in some
cases) over the current moderately fast memory buses, curb-
ing their scalability to faster networks; for 10-Gigabit net-
works, the host based TCP/IP stack generates enough mem-
ory traffic to saturate a 333MHz/64bit DDR memory band-
width even before 35% of the available network bandwidth
is used.
Our evaluation of the RDMA interface over the InfiniBand

network tries to nail down some of the benefits achievable
by providing an RDMA interface over IP. In particular, we
try to compare the RDMA interface over InfiniBand not
only in performance, but also in other resource requirements
such as CPU usage, memory traffic, etc. Our results show
that the RDMA interface requires up to four times lesser
memory traffic and has almost zero CPU requirements for
the data sink. These measurements show the potential im-
pacts of having an RDMA interface over IP on 10-Gigabit
networks.
As a part of the future work, we would like to do a de-

tailed memory traffic analysis of the 10-Gigabit Ethernet
adapter on 64-bit systems and for various applications such
as SpecWeb and multimedia streaming servers.

7 Acknowledgments

We would like to thank Annie Foong for all the help she
provided while using the performance tools. We would also
like to thank Gary Tsao, Gilari Janarthanan and J. L. Gray
for the valuable discussions we had during the course of the
project.

References

[1] 10 Gigabit Ethernet Alliance. http://www.10gea.org/.

[2] InfiniBand Trade Association. http://www.infinibandta.org.

[3] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu,
and D. K. Panda. Sockets Direct Protocol over InfiniBand in Clus-
ters: Is it Beneficial? In ISPASS ’04.

[4] P. Balaji, H. V. Shah, and D. K. Panda. Sockets vs RDMA Inter-
face over 10-Gigabit Networks: An In-depth analysis of the Memory
Traffic Bottleneck? Technical Report OSU-CISRC-2/04-TR11, The
Ohio State University, 2003.

[5] P. Balaji, P. Shivam, P. Wyckoff, and D. K. Panda. High Performance
User Level Sockets over Gigabit Ethernet. In Cluster ’02.

[6] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz.
Impact of High Performance Sockets on Data Intensive Applications.
In HPDC ’03.

[7] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W. K. Su. Myrinet: A Gigabit-per-Second Local
Area Network. http://www.myricom.com.

[8] D. Clark, V. Jacobson, J. Romkey, and H.Salwen. An Analysis of
TCP processing overhead. IEEE Communications, June 1989.

[9] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin,
F. Coccetti, C. Jin, D. Wei, and S. Low. Optimizing 10-Gigabit Ether-
net for Networks of Workstations, Clusters and Grids: A Case Study.
In Proceedings of the IEEE International Conference on Supercom-
puting, Phoenix, Arizona, November 2003.

[10] A. Foong, H. Hum, T. Huff, J. Patwardhan, and G. Regnier. TCP
Performance Revisited. In ISPASS ’03.

[11] H. Frazier and H. Johnson. Gigabit Ethernet: From 100 to
1000Mbps.

[12] J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Eth-
ernet on Commodity Systems. IEEE Micro, January 2004.

[13] V. Jacobson. 4BSD Header Prediction. In SIGCOMM ’90.

[14] Hyun-Wook Jin, Chuck Yoo, and Sung-Kyun Park. Stepwise Op-
timizations of UDP/IP on a Gigabit Network. In The Proceedings
of the 8th International Euro-Par Conference on Parallel Processing
(Euro-Par 2002), August 2002.

[15] J. Kay and J. Pasquale. The Importance of Non-Data Touching Pro-
cessing Overheads in TCP/IP. In SIGCOMM ’93.

[16] J. Kim, K. Kim, and S. Jung. SOVIA: A User-level Sockets Layer
Over Virtual Interface Architecture. In Cluster Computing, 2001.

[17] P. E. McKenney and K. F. Dove. Efficient Demultiplexing of Incom-
ing TCP Packets. In SIGCOMM ’92.

[18] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The
Quadrics Network (QsNet): High-Performance Clustering Technol-
ogy. In the Proceedings of the IEEE International Conference on Hot
Interconnects, August 2001.

[19] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Perfor-
mance Sockets and RPC over Virtual Interface (VI) Architecture. In
CANPC ’99.

[20] E. Yeh, H. Chao, V. Mannem, J. Gervais, and B. Booth. Introduction
to TCP/IP Offload Engine (TOE). http://www.10gea.org, May 2002.

10

