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Abstract. As high-end computing systems continue to grow, the need
for advanced networking capabilities, such as hot-spot avoidance and
fault tolerance, is becoming important. While the traditional approach
of utilizing intelligent network hardware has worked well to achieve high
performance, adding more and more features makes the hardware com-
plex and expensive. Consequently, protocol stacks such as iWARP and
MX for 10-Gigabit Ethernet and QLogic InfiniBand, utilize hybrid
hardware-software designs that take advantage of the processing power
of multi-core processors together with network hardware accelerators.
However, upper-layer stacks on these networks, such as the Sockets Di-
rect Protocol (SDP), have not kept pace with such shift in paradigm,
and have continued to assume complete hardware offload, leading to re-
dundant features and performance loss. In this paper, we propose an
enhanced design for SDP that allows network stacks to specify compo-
nents implemented in hardware and software, and uses this information
to optimize its execution.

1 Introduction

As high-end computing (HEC) systems continue to increase rapidly in size, their
communication subsystems must scale as well. For large-scale systems, in addi-
tion to raw performance, advanced communication features such as capability
to avoid hot-spot congestion [29,33] and hardware faults [15] are also becom-
ing increasingly important. While the traditional approach of utilizing intelli-
gent hardware support on the network adapters (e.g., Mellanox InfiniBand [2],
Myrinet 2000 [14], Quadrics [28], hardware iWARP [19,23]) has worked well to
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achieve high performance, adding more and more features makes the hardware
complex, error prone, and expensive.

At the same time, there have been prominent advances in processor technol-
ogy, especially powered by the advent of multi-core architectures [5,25]. Thus,
to take advantage of these two trends, several network stacks (e.g., QLogic In-
finiBand [30], Myri-10G [27], software iWARP [8]) have started to utilize hybrid
hardware-software stack designs (known as hybrid network stacks). These hybrid
network stacks take advantage of the processing power of multi-core processors
together with network hardware accelerators to achieve high performance while
providing the flexibility to add most communication features relevant to modern
HEC systems.

However, several upper-layer stacks on top of these networks have not been able
to keep pace with such shift in paradigm of network communication stacks. For ex-
ample, existing implementations of high-performance sockets on high-speed net-
works, such as the Sockets Direct Protocol (SDP) [10] over InfiniBand (IB) [24]
and 10-Gigabit Ethernet (10GE) iWARP [31], continue to assume complete hard-
ware offload. Consequently, they perform various tasks, such as data buffering to
optimize small message communication and message-level flow-control that allow
them to achieve high performance on hardware-offloaded network stacks but are
redundant on hybrid network stacks and can add significant performance over-
heads.

In this paper, we perform a case study with SDP on top of a hybrid hardware-
software iWARP design over 10GE, and study the drawbacks of its existing
implementation. We also propose an enhanced design for SDP that allows net-
work stacks to specify what components are implemented in hardware and what
are implemented in software, and uses this information to avoid redundancy
in the overall stack. We experimentally compare our proposed approach with
the traditional design of SDP using both micro-benchmarks as well as two real
applications (virtual microscope [17] and iso-surface oil-reservoir data visualiza-
tion [13]) built on top of the DataCutter library [12]. Our results demonstrate
that the proposed approach can outperform the traditional approach by nearly
20% in micro-benchmarks and about 5% in real applications.

2 Background

In this section, we present a brief overview of SDP and iWARP implementations.

2.1 Overview of SDP

SDP is a byte-stream transport protocol that closely mimics TCP sockets’ stream
semantics. It is an industry-standard specification for IB and iWARP that uti-
lizes advanced capabilities provided by the network stacks to achieve high per-
formance without requiring modifications to existing sockets-based applications.
SDP is layered on top of IB or iWARP’s message-oriented transfer model. The
mapping of the byte-stream protocol to the underlying message-oriented seman-
tics was designed to transfer application data by one of two methods: through
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intermediate private buffers (using buffer copy) or directly between application
buffers (zero copy).

Zero-copy Approach: Hardware-offloaded protocol stacks allow zero-copy
communication of application data. However, such communication comes with
several restrictions. For instance, communication buffers have to be registered: (i)
they need to be pinned so that their physical memory pages cannot be swapped
out and (ii) the virtual-to-physical address translation must be provided to the
communication stack to potentially be cached on the network adapter. Also, to
perform zero-copy communication in SDP, the sender and the receiver have to
synchronize on the source and destination buffers, which adds overhead. Thus,
while zero-copy communication avoids memory copies, it adds other overheads.
Accordingly, SDP uses it only for transferring large messages.

Buffer-copy Approach: Due to the overheads of zero-copy communication,
SDP utilizes a buffer-copy approach for small messages. In this approach, it
pre-registers private buffers at connection-establishment time. On a send, the
data is copied into the registered private buffers, communication carried out
from and to these buffers, and finally the data copied out to the destination
application buffer on the receiver side. However, the buffer-copy approach also
comes with two disadvantages. First, data that needs to be communicated has to
be copied on the sender and receiver side. Second, since the number of the private
registered buffers is limited, the sender has to perform flow-control to make sure
the receiver buffers are not overrun. SDP uses the buffer-copy approach only
for transferring small messages to avoid being penalized by the message-copy
overheads.

2.2 Overview of iWARP

The Internet Wide Area RDMA Protocol (iWARP) is a new initiative by the
Internet Engineering Task Force (IETF) [1] and the Remote Direct Memory
Access Consortium (RDMAC) [3]. The iWARP standard, when offloaded on
to the network adapter, provides two primary extensions to regular Ethernet:
(i) it exposes a rich interface including zero-copy, asynchronous and one-sided
communication primitives and (ii) it internally relies on an implementation of
the TCP/IP stack to allow such communication while maintaining backward
compatibility with existing TCP/IP. iWARP comprises three protocol layers
atop TCP/IP: (i) RDMAP verbs, (ii) Remote Direct Data Placement (RDDP)
protocol and (iii) Marker PDU Aligned (MPA) protocol.

RDMAP verbs [6] is a thin interface that allows applications to interact with
RDDP. RDDP provides reliable, in-order delivery using a reliable IP based pro-
tocol such as TCP. It distinguishes iWARP from other high-speed network stacks
based on its capability to decouple data placement and message delivery; that
is, even if packets arrive out-of-order, RDDP directly places them in the appro-
priate location of the final destination buffer (data placement), and the upper
layer is informed about the placement of the data only after the entire mes-
sage is placed (data delivery). This, of course, assumes that RDDP can correctly
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identify and understand the contents of out-of-order TCP/IP packets. The
Marker PDU Aligned (MPA) protocol provides RDDP with the necessary sup-
port for achieving this.

Switches that support splicing [18] (e.g., firewalls and port-forwarding switches)
can cause middle box fragmentation, i.e., packets going into the switch can be seg-
mented into multiple packets or multiple packets can be coalesced into a single
packet. This makes it impossible for the end node to recognize the RDDP head-
ers without additional information if packets arrive out of order. To tackle this
problem, iWARP uses MPA [20]. The MPA frame format, referred to as a Fram-
ing Protocol Data Unit (FPDU), is represented in Figure 1. Apart from additional
headers and footers, the FPDU introduces strips of data, known as markers, that
are spaced uniformly based on the TCP sequence number. These markers always
point to the RDDP header and provide the receiver with a deterministic way to
find them. When a packet arrives out-of-order, it can use these markers to identify
the start of the iWARP frame and, using that, the rest of the fields.

3 Hybrid Hardware-Software iWARP Stack

Several different implementations of iWARP exist, including complete software
implementations [9,21], complete hardware implementations [19] and hybrid
hardware-software implementations [8]. In general, hardware implementations
are optimized for performance but do not offer many advanced features; soft-
ware implementations tend to be more feature complete with respect to their
capability to efficiently handle out-of-order communication, packet drops, etc.,
but do not provide the best performance. The hybrid hardware-software imple-
mentation takes the best of both worlds by achieving high performance using
network hardware accelerators, while still providing the advanced features us-
ing the capabilities of host processors. In this section, we present a high-level
description of our previous work on a hybrid hardware-software iWARP stack [8].

The iWARP protocol layers perform various tasks corresponding to data or-
dering, data integrity, connection management, and backward compatibility. Of
these, three tasks are of particular importance as they can heavily impact the
performance of the stack: (i) CRC-based data integrity, (ii) connection demulti-
plexing, and (iii) placement of markers.
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CRC is easily the most compute intensive task in the iWARP stack. There
have been several attempts to improve its performance [32,16], often at the
cost of additional memory usage. However, its computational overhead is still
considered to be very high [26]. Thus, a complete software implementation can
be heavily impacted by this overhead.

Traditional TCP/IP performs demultiplexing (DEMUX) of packets in host-
space, i.e., the NIC hands over all packets to the host and the host identifies
the connection to which each packet belongs and places it in the appropriate
queue. While this is not a major concern for applications that only deal with a
single (active) connection, this introduces significant overheads for applications
dealing with several connections simultaneously (e.g., cache thrashing and CPU
interruption for non-critical data). Again, doing this in software is not the ideal
solution either.

Placement of markers is one of the trickiest components in the iWARP stack.
Since the markers have to be inserted within the data stream, data has to be
moved to achieve this. In a software implementation of iWARP, this is done by
performing an additional copy of the data. This task is difficult to implement
efficiently in hardware without using true scatter/gather DMA engines, which are
not commonly available (most DMA engines provide a scatter/gather DMA API,
but internally perform individual DMA operations). Thus, hardware iWARP
achieves sub-optimal performance for this component [8].

Hybrid iWARP, behaves like software iWARP for the placement of markers
(that is, it does this by performing an additional data copy), while using hard-
ware accelerators for the remaining tasks (such as CRC and DEMUX). Thus, in
summary, software iWARP performs everything in software, hardware iWARP
performs everything in hardware, and hybrid iWARP performs everything in
hardware except the placement of markers, which is done in software using an
extra buffer copy.

4 SDP for Hybrid Hardware-Software Network Stacks

As briefly described in Section 2.1, existing designs of SDP have been heavily
optimized for hardware offloaded protocol stacks. However, such designs are often
not the best when utilized on hybrid network stacks. In this Section, we present
a few sample existing designs that perform sub-optimally on hybrid iWARP
network stacks, and propose enhancements that can improve their performance.

4.1 Redundant Buffer Copy

SDP performs data buffering for small messages. Such buffering has several ad-
vantages on hardware-offloaded network stacks including avoiding registration
cost, and avoiding synchronization between the sender and receiver. However,
on hybrid network stacks, these designs are redundant. For example, the hybrid
iWARP stack internally performs data buffering before communication while
handling the placement of markers in software. Thus, buffering at both layers is
not required and causes performance overhead.
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However, avoiding such redundancy is not trivial. Buffering performed within
the iWARP stack allows the iWARP implementation to add markers within the
data stream; data is copied such that small gaps are left open where the markers
can be placed once the copy is complete. On the other hand, buffering within
the SDP implementation allows it to handle the socket stream semantics where
one large message sent by the sender can be read as multiple small messages by
the receiver. Since iWARP follows message-based semantics, it does not allow
for such capabilities. Thus, both stacks have specific purposes for buffering that
cannot be ignored.

In our approach, we allow the SDP and iWARP stacks to have integrated
data buffering. Specifically, the SDP stack performs buffering, but does so in a
manner that is compatible with iWARP’s buffering. That is, it copies data while
leaving small gaps based on the TCP sequence numbers of the data (retrieved
from the iWARP stack). The iWARP stack uses this buffering performed by
SDP and adds the markers in-place directly in the SDP buffers. While this
approach requires close interaction between the SDP and iWARP stacks, and
thus loses some amount of generality of the SDP stack, it can reduce the amount
of buffering required and thus improve performance.

4.2 Protocol Interface Extensions for Message Coalescing

Message coalescing has been shown to achieve high performance by reducing the
number of I/O bus and network transactions required for transferring data [7].
However, it is quite difficult to achieve in hardware-offloaded protocol stacks
owing to the hardware-design complexity and resource requirement associated
with such a design. For hybrid network stacks, on the other hand, this might not
be a concern when implemented in software using the host-memory resources.
The issue, however, is that most protocols (including iWARP) do not provide any
interface that allow upper layers (such as SDP) to coalesce multiple messages
before sending them out on the wire. Further, message coalescing inherently
suffers from issues of performance loss in cases where the sender process buffers
data hoping to coalesce it with more later arriving data, while the receiver process
waits for the message to be transmitted by the sender.

To solve this problem, we extended the interface provided by the hybrid
iWARP implementation to allow upper layers to “append” a new message to
a previously queued message whose communication has not yet been initiated.
Specifically, since hybrid iWARP implementations perform flow control, com-
munication requests that have been handed off to them might not be initiated
immediately. Therefore, a later initiated communication request can append it-
self to this message. This approach has multiple advantages. First, multiple small
messages that are being communicated in a short interval can be coalesced into
one large message, thus reducing the number of network transactions and improv-
ing performance. Second, this approach does not cause any loss of performance
as compared to a non-coalescing approach, since data is coalesced only when the
previous message was already waiting to be sent out due to flow control; that
is, a message is never artificially held back hoping to be coalesced with a later
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arriving message. Third, this approach reduces the number of iWARP headers
that are sent out on the network since coalesced messages are sent out with one
header as one single message. This is a big gain for small messages, where the
iWARP header forms a major fraction of the total frame size.

4.3 Asynchronous Flow Control

Traditional implementations of SDP over hardware-offloaded iWARP perform
explicit flow control. That is, if there are no credits to send data out, the sender
copies the data into the temporary private buffers and waits for more credits to
arrive (similar to advertised window in TCP). However, for hybrid iWARP im-
plementations, such flow control is redundant since the iWARP implementation
itself performs flow control as well. Furthermore, the iWARP flow control is more
sophisticated as it is implemented within the kernel and uses light-weight hard-
ware interrupts to perform asynchronous progress. Thus, in our approach, we
completely disable SDP-level flow control and only rely on iWARP flow control.

While this approach works well for synchronous sockets, for asynchronous
sockets, it has the drawback of its inability to call application-specific call-back
functions. That is, asynchronous sockets (such as those used in Windows) al-
low applications to specify call-back functions that are triggered when a mes-
sage send or receive is completed. To allow for such functionality, we extended
the iWARP interface to specify such details, including call-back functions and
message send/receive watermarks (that is, at what point the call-back should
be triggered). Again, while such functionality would be extremely cumbersome
and difficult to implement on hardware offloaded network stacks, it is relatively
straightforward on hybrid network stacks.

5 Experimental Results and Analysis

In this section, we first evaluate our proposed approach with the latency and
bandwidth micro-benchmarks in Section 5.2. We study the cache misses caused
by existing approaches and how our approach reduces them in Section 5.3. Fi-
nally, we evaluate two real applications comparing our proposed approach with
existing approaches in Section 5.4.

5.1 Experimental Testbed

For our experiments, we used a 4-node cluster built around SuperMicro SUPER
X5DL8-GG motherboards with ServerWorks GC LE chipsets, which include 133-
MHz PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz processors with a
512-KB cache, a 533 MHz front-side bus and 2 GB of 266-MHz DDR SDRAM.
The nodes are connected with Chelsio T110 10GE TCP offload engines through
a 12-port Fujitsu XG800 switch. The software stack on the machines is based on
linux-2.4.22smp and RedHat linux distribution. The driver version on the NICs
is 1.2.0. For each experiment, ten or more runs/executions are conducted, the
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Fig. 2. SDP Performance: (a) Latency and (b) Bandwidth

highest and lowest values dropped (to discard anomalies) and the average of the
remaining values is reported. For micro-benchmark evaluations, the results of
each run are an average of 10,000 or more iterations.

5.2 Micro-benchmark Evaluation

Ping-pong Latency: Figure 2(a) compares the ping-pong latency of traditional
SDP with our new approach. In this experiment, the sender sends a message of
size S to the receiver. On receiving this message, the receiver sends back another
message of the same size to the sender. This is repeated several times and the
total time averaged over the number of iterations, which gives the average round-
trip time. The ping-pong latency reported here is one half of the round trip time,
i.e., the time taken for a message to be transferred from one node to another.

As shown in the figure, our proposed approach (SDP (enhanced)) outper-
forms traditional SDP (SDP (basic)) by about 10%. This is attributed to several
reasons including the reduced buffer copies, and lack of redundant flow-control.

Unidirectional Bandwidth: Figure 2(b) shows a comparison of the unidirec-
tional bandwidth. In this experiment, the sender sends a single message of size
S a number of times to the receiver. On receiving all the messages, the receiver
sends back one small message to the sender informing that it has received the
messages. The sender calculates the total time, subtracts the one-way latency of
the message sent by the receiver, and based on the remaining time, calculates
the amount of data it had transmitted per unit time.

As shown in the figure, our proposed approach outperforms traditional SDP
by about 20% in this case. This behavior is expected as, for large messages,
traditional SDP gets significantly hurt by the additional buffer copy and loses
performance. Furthermore, as we will see in Section 5.3, its performance is further
affected by secondary issues such as increased cache misses.

5.3 Cache-Miss Analysis

Figure 3 shows the analysis of cache-to-network traffic ratio, comparing tradi-
tional SDP to our proposed approach; that is, how many bytes of data have to
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Fig. 3. SDP Cache to Network Traffic Ratio: (a) Transmit and (b) Receive

be fetched to or flushed from cache, for every byte of data sent on the network.
We see that traditional SDP requires nearly four bytes of cache traffic for every
byte of network traffic, as compared to our approach that requires only two.

Specifically, in the bandwidth micro-benchmark that we used, all messages are
sent from the same application buffer, but the SDP and iWARP private buffers
are used from a circular queue. Thus, the application buffer is always in cache, but
the private buffers are never in cache. When the application data is copied to the
SDP buffer, the SDP buffer needs to be fetched into cache. Next, when the data
is copied from the SDP buffer to the iWARP buffer, the iWARP buffers needs to
be fetched into cache. Finally, when the next set of buffers are fetched, both the
SDP and iWARP buffers have to be flushed out of cache, since they are both dirty.
Thus, there are two bytes fetched to cache and two bytes flushed from cache (total
of four bytes of cache traffic), for every byte of data sent over the network. For our
proposed approach, on the other hand, since the SDP/iWARP buffer is combined,
only this combined buffer needs to be fetched into cache and flushed out from there,
for a total of two bytes of cache traffic per network byte.

On the receive side (Figure 3(b)), the analysis is similar. For traditional SDP,
when the data arrives, it is directly DMA’ed into the iWARP private buffer. When
the data is copied to the SDP private buffer, both the iWARP and SDP private
buffers need to be fetched to cache. Since the same application buffer is used
throughout the experiment, it can be expected to stay in cache. However, since the
SDP buffer is dirty it has to be flushed out of cache when the next set of buffers are
fetched in. Thus, there are two bytes of data fetched and one byte of data flushed
for every byte of data sent over the network. For our proposed approach, the com-
bined SDP/iWARP buffer has to be fetched to cache to copy into the application
buffer, i.e., one byte of cache traffic per network byte. Note that this buffer does
not need to be flushed since it was never dirtied after fetching to cache.

5.4 Application-Level Evaluation

In this section, we evaluate our proposed approach based on two different appli-
cations, virtual microscope [17] and iso-surface visual rendering [13], that have
been developed using the DataCutter library [11].
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Overview of the DataCutter Library: DataCutter is a component-based
framework [12] developed at the University of Maryland. It provides a frame-
work, called filter-stream programming, for developing data-intensive applica-
tions. In this framework, the application-processing structure is implemented as
a set of components, called filters. Data exchange between filters is performed
through a stream abstraction that denotes a unidirectional data flow from one
filter to another. The overall processing structure of an application is realized
by a filter group, which is a set of filters connected through logical streams. An
application query is handled as a unit of work (UOW) by the filter group. The
size of the UOW also represents the granularity in which data segments are dis-
tributed in the system and the granularity in which data processing is pipelined.
Several data-intensive applications have been designed and developed by using
the DataCutter run-time framework, such as the virtual-microscope application
and the iso-surface visual-rendering application.

Virtual Microscope: Virtual microscope [17] is a digitized microscopy applica-
tion. The software support required to store, retrieve, and process digitized slides
to provide interactive response times for the standard behavior of a physical
microscope is a challenging issue [4,17]. The main difficulty stems from the han-
dling of large volumes of image data, which can range from a few hundreds of
megabytes to several gigabytes. At a basic level, the software system should
emulate the use of a physical microscope, including continuously moving the
stage and changing magnification. The processing of client queries requires pro-
jecting high-resolution data onto a grid of suitable resolution and appropriately
composing pixels mapping onto a single grid point.

Iso-surface Visual Rendering: Iso-surface rendering [22] is a widely used tech-
nique in many areas, including environmental simulations, biomedical images,
and oil reservoir simulators, for extracting and simplifying visualization of large
datasets within a 3D volume. In this paper, we utilize a component-based im-
plementation of such rendering [13].

Evaluating the Applications: Figure 4 shows the performance of the vir-
tual microscope and iso-surface visual-rendering applications for the different
SDP designs. The applications were executed with a UOW of 1KB and 8KB,
respectively. The complete dataset is about 1 GB in size and is hosted on a
RAM disk in order to avoid disk fetch overheads in the experiment. The virtual-
microscope application used five filters: read data, decompress, clip, zoom, and
view. The iso-surface visual-rendering application used four filters: read dataset,
iso-surface extraction, shade and rasterize, and merge/view. Each filter performs
some computation and communicates the processed data to the next filter. Once
the communication is initiated, the filter starts computation on the next UOW,
thus attempting to overlap communication with computation.

For the virtual-microscope application, as shown in Figure 4(a), our proposed
approach outperforms traditional SDP by nearly 5%. This benefit is mainly
attributed to the benefits of message coalescing. Since the UOW size used in
this application is quite small, the buffer-copy overhead would not be too high.
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Fig. 4. Application Performance: (a) Virtual Microscope and (b) Iso-surface Oil Reser-
voir Data Visualization

Similarly, since after coalescing, the number of messages is fewer, running out of
buffer credits happens rarely, and hence flow-control does not play a major role
either.

As shown in the Figure 4(b), for the iso-surface application, our proposed ap-
proach outperforms traditional SDP by more than 5%. This benefit is attributed
to mainly the reduction in buffer copies and the lack of redundant flow-control.
Message coalescing would likely have little effect since the virtual microscope
application uses about 8KB data chunks (UOW is 8KB), where the bandwidth
is already close to the peak and coalescing would not help it much. Also, Data-
Cutter relies only on synchronous sockets, so asynchronous sockets optimizations
would not help either.

6 Conclusions and Future Work

In this paper, we proposed an extended design for SDP that uses information on
which components of the network protocol stack are implemented in hardware
and which are implemented in software to optimize its execution. We compared
our proposed approach with existing implementations and showed that we can
achieve significant performance improvements. As a part of our future work, we
would like to study such enhancements in other protocol stacks, including MPI,
as well. Furthermore, we would like to generalize our model so that all upper-
layer protocols can query for which components are implemented in hardware
and software in a uniform manner.
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