
High Performance User Level Sockets over Gigabit Ethernet
�

Pavan Balaji* Piyush Shivam* Pete Wyckoff
�

Dhabaleswar Panda*

*Computer and Information Science
The Ohio State University

2015 Neil Avenue
Columbus, OH 43210�

balaji, shivam, panda � @cis.ohio-state.edu

�
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212
Phone: 614 247 7956

pw@osc.edu

Abstract
While a number of User-Level Protocols have been devel-

oped to reduce the gap between the performance capabil-
ities of the physical network and the performance actually
available, applications that have already been developed
on kernel based protocols such as TCP have largely been
ignored. There is a need to make these existing TCP ap-
plications take advantage of the modern user-level proto-
cols such as EMP or VIA which feature both low-latency
and high bandwidth. In this paper, we have designed, im-
plemented and evaluated a scheme to support such applica-
tions written using the sockets API to run over EMP without
any changes to the application itself. Using this scheme,
we are able to achieve a latency of 28.5 � s for the Data-
gram sockets and 37 � s for Data Streaming sockets com-
pared to a latency of 120 � s obtained by TCP for 4-byte
messages. This scheme attains a peak bandwidth of around
840 Mbps. Both the latency and the throughput numbers
are close to those achievable by EMP. The ftp application
shows twice as much benefit on our sockets interface while
the web server application shows up to six times perfor-
mance enhancement as compared to TCP. To the best of our
knowledge, this is the first such design and implementation
for Gigabit Ethernet.

Keywords: Gigabit Ethernet, Sockets, User-level proto-
col, Interprocessor Architecture

1 Introduction
Networks of Workstations (NOWs) have been accepted

as a viable alternative to mainstream supercomputing for
a broad subset of computation intensive applications. Much
of the success of these NOWs lies in the use of commod-
ity based components, giving a high ratio of performance
to cost to the end users. With the advent of modern high
speed interconnects such as Myrinet [4], Gigabit Ethernet
[7] and Quadrics [13], the bottleneck in the communication

�
This research is supported by Sandia National Labs (contract number

12652 dated 31 Aug) and NSF grant # EIA-9986052

has shifted to the messaging software at the sending and the
receiving side.

Earlier generation protocols relied upon the kernel for
processing the messages. This caused multiple copies and
many context switches [17]. Thus, the communication la-
tency was high. Researchers have been looking at the al-
ternatives by which one could increase the communication
performance delivered by the NOWs in the form of low-
latency and high-bandwidth user-level protocols such as FM
[12] for Myrinet [4], U-Net [18] for ATM and Fast Ethernet,
GM [5] for Myrinet, and others.

In the past few years, several industries have taken up
the initiative to standardize high-performance user-level
protocols such as the Virtual Interface Architecture (VIA)
[8, 3, 10]. It has also led to the development of the Infini-
Band Architecture (IBA) [1]. These developments are min-
imizing the gap between the performance capabilities of the
physical network and that obtained by the end users.

One such physical network which is of particular interest
is Gigabit Ethernet [7] as most of world’s networks today
use Ethernet. Gigabit Ethernet offers an excellent opportu-
nity to build Gbps networks over the existing Ethernet in-
stallation base due to its backward compatibility with Eth-
ernet. However, the user applications have not been able to
take advantage of the high performance of Gigabit Ethernet
because a vast majority of them still use the sockets inter-
face, which has traditionally been implemented on kernel-
based protocols like TCP and UDP.

One way to get around this problem would be to develop
a very low overhead user-level protocol similar to VIA over
Gigabit Ethernet. This motivated us towards the develop-
ment of Ethernet Message Passing (EMP) protocol [16, 15],
using which the applications can take full advantage of the
bandwidth offered by Gigabit Ethernet with minimum la-
tency. While this approach is good for writing new applica-
tions, it might not be so beneficial for the already existing
socket applications which were developed over a span of
several years.

1

Sockets is a generalized library which can be implemented
over numerous protocols. In this paper, we take on a chal-
lenge of developing a low overhead, user-level sockets inter-
face on Gigabit Ethernet which uses EMP as the underlying
protocol. There is no exact parallel between EMP and TCP
or UDP. We analyze the semantic mismatches between the
two protocols like connection management and unexpected
message arrival to name a few. To capture these differences,
we suggest various approaches for two commonly used op-
tions with sockets, namely data streaming and datagram.
Finally, we suggest several performance enhancement tech-
niques while providing these options and analyze each of
them in detail.

Using our approach one will be able to transport the ben-
efits of Gigabit Ethernet to the existing sockets application
without necessitating changes in the user application itself.
Our sockets interface is able to achieve a latency of 28.5 � s
for the Datagram sockets and 37 � s for Data Streaming
sockets compared to a latency of 120 � s obtained by TCP
for 4-byte messages. We also attained a peak bandwidth of
around 840 Mbps using our interface. In addition we tested
our implementation on real applications like ftp and web
server. For ftp we got almost twice the performance benefit
as TCP while the web server application showed as much
as six times performance enhancement.

2 Overview of EMP
In the past few years, a large number of user-level pro-

tocols have been developed to reduce the gap between the
performance capabilities of the physical network and that
achievable by an application programmer. The Ethernet
Message Passing (EMP) protocol specifications [16, 15]
have been developed at The Ohio Supercomputing Center
and The Ohio State University to fully exploit the benefits
of Gigabit Ethernet.

EMP is a complete zero-copy, OS-bypass, NIC-level mes-
saging system for Gigabit Ethernet (Figure 1). This is the
first protocol of its kind on Gigabit Ethernet. It has been
implemented on a Gigabit Ethernet network interface chip-
set based around a general purpose embedded microproces-
sor design called the Tigon2 [11] (produced by Alteon Web
Systems, now owned by Nortel Networks). This is a fully
programmable NIC, whose novelty lies in its two CPUs.

In EMP, message transmission follows a sequence of steps
(Figure 1). First the host posts a transmit descriptor to the
NIC (T1), which contains the location and length of the
message in the host address space, destination node, and
an MPI [6] specified tag. Once the NIC gets this informa-
tion (T2-T3), it DMAs this message from the host (T4-T5),
one frame at a time, and sends the frames on the network.
Message reception follows a similar sequence of steps (R1-
R6) with the difference that the target memory location in
the host for incoming messages is determined by perform-
ing tag matching at the NIC (R4). Both the source index of
the sender and an arbitrary user-provided 16-bit tag are used

USERUSER

Send Descriptor
Queue

DMA
Engine

DMA
Engine

Send Descriptor
Queue

NIC CPU

GigE Interface (MAC)

Host Descriptors

KERNEL

NIC

Translation
Address

Mlock

R1

R2

R3

R4

R5

 R6

NIC CPU

GigE Interface (MAC)

Host Descriptors

KERNEL

NIC

Translation
Address

Mlock

T1

T2

T3

T4

Message Message

 T5

Figure 1. EMP protocol architecture show-
ing operation for transmit (left), and receive
(right).

by the NIC to perform this matching, which allows EMP to
make progress on all messages without host intervention.

EMP is a reliable protocol. This mandates that for each
message being sent, a transmission record be maintained
(T3). This record keeps track of the state of the message
including the number of frames sent, a pointer to the host
data, the sent frames, the acknowledged frames, the mes-
sage recipient and so on.

EMP is a zero-copy protocol as there is no buffering of the
message at either the NIC or the host, in both the send and
receive operations. It is OS bypass in that the kernel is not
involved in the bulk of the operations. However, to ensure
correctness, each transmit or receive descriptor post must
make a call to the operating system for two reasons. First,
the NIC accesses host memory using physical addresses,
unlike the virtual addresses which are used by application
programs. Only the operating system can make this trans-
lation. Second, the pages to be accessed by the NIC must
be pinned in physical memory to protect against the cor-
ruption that would occur if the NIC wrote to a physical ad-
dress which no longer contained the application page due
to kernel paging activity. We do both operations in a sin-
gle system call (T2/R2). One of the main features of this
protocol is that it is a complete NIC based implementation.
This gives maximum benefit to the host in terms of not just
bandwidth and latency but also CPU utilization.

3 Current Approaches
The traditional communication architecture involves just

the application and the libraries in user space, while pro-
tocol implementations such as TCP/UDP, IP, etc reside in
kernel space [9] (Figure 2a). This approach not only en-
tails multiple copies for each message, but also requires a
context switch to the kernel for every communication step,
thus adding a significant overhead. Most of the current
NIC drivers, including the standard Acenic driver on Alteon
NICs, use this style of architecture.

2

Application

Library

Sockets

TCP / UDP

IP

NIC Driver

NIC

User Space

Kernel Space

Hardware

(a)

Application

Library

Sockets

TCP / UDP

IP

IP−to−VI layer

VI Kernel Agent

NIC

User Space

Kernel Space

Hardware

(b)

Application

Library

EMP Substrate

EMP Library

OS
Agent

NICHardware

User Space

Kernel Space

(c)

Figure 2. Approaches to the Sockets Interface: (a) Traditional, (b) Mapping IP to the user-level protocol
layer (such as VIA), and (c) Mapping the Sockets layer to the User-level protocol

Researchers have been coming out with different ap-
proaches for providing a sockets interface over VIA. One
such approach was used by GigaNet Incorporation (now
known as Emulex) to develop their LAN Emulator (LANE)
[8] driver to support the TCP stack over their VIA-aware
cLAN cards.

The LANE driver supplied by GigaNet for its cLAN
adapters used a simple approach. They provide a IP-to-VI
layer which maps IP communications onto VI NICs (Figure
2b). However, TCP is still required for reliable communi-
cations, multiple copies are necessary, and the entire setup
is in the kernel as with the traditional architecture outlined
in Figure 2a. Although this approach gives us the compati-
bility, it does not give any performance improvement.

Some other socket implementations over VIA [9, 14] take
good advantage of the user-level protocol. But, the motiva-
tion for our work is to provide a high performance sockets
layer over Gigabit Ethernet given the advantages associated
with Gigabit Ethernet. M-VIA [10], while providing a VIA
interface over Gigabit Ethernet, is a kernel-based protocol
and hence the current sockets interface over VIA will not be
able to exploit the benefits of Gigabit Ethernet. To the best
of our knowledge EMP is the only complete OS-bypass,
zero-copy and NIC-driven protocol over Gigabit Ethernet.
Thus, we focus our research on the EMP protocol.

The solution proposed in this paper creates an interme-
diate layer which maps the sockets library onto EMP. This
layer ensures that no change is required to the application it-
self. This intermediate layer will be referred to as the “EMP
Substrate”. Figure 2c provides an overview of the proposed
Sockets-over-EMP architecture.

4 Design Challenges
While implementing the substrate to support sockets ap-

plications on EMP, we faced a number of challenges. In this
section, we mention a few of them, discuss the possible al-
ternatives, the pros and cons of each of the alternatives and
the justifications behind the solutions.

4.1 API Mismatches
The mismatches between TCP and EMP are not limited to

the syntax alone. The motivation for developing TCP was
to obtain a reliable, secure and fault tolerant protocol. How-
ever, EMP was developed to obtain a low-overhead protocol
to support high performance applications on Gigabit Ether-
net.

While developing the EMP substrate to support applica-
tions written using the sockets interface (on TCP and UDP),
it must be kept in mind that the application was designed
around the semantics of TCP. We have identified the fol-
lowing significant mismatches in these two protocols and
given solutions so as to maintain the semantics for each of
the mismatches with regard to TCP. More importantly, this
has been done without compensating much on the perfor-
mance given by EMP.

4.1.1 Connection Management
TCP is a connection based protocol, unlike EMP. At first
sight, this does not appear to be too much of a problem as
the connection can always be assumed to be present. How-
ever, by doing so, we overlook certain essential features of
the connection requests.

In TCP, when a connection request is sent to the server,
it contains information about the client requesting the con-
nection. In this approach, this information is not available
since there’s no explicit message for the connection.

In our solution, the client sends an explicit message to
the server containing information about the client request-
ing the connection. However, this puts an additional re-
quirement on the substrate to post descriptors for the con-
nection management messages too. When the application
calls the listen() call, the substrate posts a number of de-
scriptors equal to the usual sockets parameter of a backlog
which limits the number of connections that can be simul-
taneously waiting for an acceptance. When the application
calls accept(), the substrate blocks on the completion of the
descriptor at the head of the backlog queue.

3

4.1.2 Unexpected message arrivals
Like most other user-level protocols, EMP has a constraint
that before a message arrives, a descriptor must have been
posted so that the NIC knows where to DMA the arriving
message. However, EMP is a reliable protocol. So, when a
message arrives, if a descriptor is not posted, the message
is dropped by the receiver and eventually retransmitted by
the sender. This facility relaxes the descriptor posting con-
straint to some extent. However, allowing the nodes to re-
transmit packets indefinitely might congest the network and
harm performance. Posting a descriptor before the message
arrives is not essential for the functionality, but is crucial
for performance issues. In our solution, we explicitly han-
dle unexpected messages at the substrate, and avoid these
retransmissions. We examined three separate mechanisms
to deal with this.

Separate Communication Thread: In the first approach,
we post a number of descriptors on the receiver side and
have a separate communication thread which watches for
descriptors being used and reposts them. This approach was
evaluated and found to be too costly. With both threads
polling, the synchronization cost of the threads themselves
comes to about 20 � s. Also, the effective percentage of CPU
cycles the main thread can utilize would go down to about
50%, assuming equal priority threads. In case of a blocking
thread, the Operating System scheduling granularity makes
the response time too coarse (order of milliseconds) for any
performance benefit.

Rendezvous Approach: The second approach (similar to
the approach indicated by [9]) is through rendezvous com-
munication with the receiver as shown in Figure 3. Initially,
the receive side posts a descriptor for a request message,
not for a data message. Once the sender sends the request,
it blocks until it receives an acknowledgment. The receiver
on the other hand, checks for the request when it encoun-
ters a read() call, and posts two descriptors – one for the ex-
pected data message and the other for the next request, and
sends back an acknowledgment to the sender. The sender
then sends the data message.

Effectively, the sender is blocked till the receiver has syn-
chronized and once this is done, it is allowed to send the
actual data message. This adds an additional synchroniza-
tion cost in the latency.

Though this approach is straight-forward, it has a few
disadvantages. One of the high points of TCP is its data-
streaming option. In this option, the message boundaries
supplied by the transmitter are not enforced at the receiver.
When a message arrives, the receiving node has the option
of reading any number of bytes at any time. For example,
if the sender sends 10 bytes of data, TCP allows the user to
read it as two sets of 5 bytes each, potentially into different
user buffers. In EMP, when a message arrives, the data is
directly transferred to the user space, and thus this option is
disabled.

Eager with Flow Control: This approach is similar to the

SQ RQ SQ RQ
Sender Receiver

Request

Ack

Data

Figure 3. Rendezvous approach

rendezvous approach. The receiver initially posts a descrip-
tor. When the sender wants to send a data message, it goes
ahead and sends the message. However, for the next data
message, it waits for an acknowledgment from the receiver
confirming that another descriptor has been posted. Once
this acknowledgment has been received, the sender can send
the next message. On the receiver side, when a data mes-
sage comes in, it uses up the pre-posted descriptor. Since
this descriptor was posted without synchronization with the
read() call in the application, the descriptor does not point
to the user buffer address, but to some temporary memory
location. Once the receiver calls the read() call, the data is
copied into the user buffer, another descriptor is posted and
an acknowledgment is sent back to the sender. This involves
an extra copy on the receiver side. Figure 4 illustrates the
eager approach with flow control.

SQ RQ SQ RQ
Sender Receiver

Ack

Data

Data

Figure 4. Eager with Flow Control

In Section 5.1, we have proposed an extension of this idea
(with additional credits) to enhance its performance.

The first solution, using a separate communication thread,
was not found to give any significant benefit in perfor-
mance. However, the second and third approaches, namely
the rendezvous and eager with flow control respectively,
were found to give significant benefit in latency and band-
width. Both these approaches have been implemented in the
substrate, giving the user an option of choosing either one
of them.

4

4.2 Overloading function name-space
Applications built using the sockets interface use a num-

ber of standard UNIX system calls including specialized
ones such as listen(), accept() and connect(), and generic
overloaded calls such as open(), read() and write(). The
generic functions are used for a variety of external commu-
nication operations including local files, named pipes and
other devices. In the substrate, these calls were mapped to
the corresponding EMP calls (sets of calls). This mapping
can be done in a number of ways.

Function Overriding: In this approach, the TCP function
calls are directly mapped to the corresponding EMP func-
tion calls by overriding them. This approach works for calls
such as listen(), which have just one interpretation. But,
for calls such as read() and write(), this approach does not
work, as the read can be on a socket or on a file. Overriding
cannot distinguish between these two interpretations.

Application changes: In this approach, minor changes
are made to the application by adding a parameter which
allows the substrate to distinguish between a call to the EMP
library and one to the libc library. This approach gives the
flexibility of using both sockets over EMP as well as over
TCP. However, since the aim of the substrate was to avoid
any changes to the application, this approach was not used.

File descriptor tracking: In the approach used in our
substrate, no changes are made to the application. We cause
our functions to be loaded into the application before the
standard C library, and monitor library calls which change
the state of file descriptors, including open(), close() and
socket(). In this way, on a read() or write(), for instance, our
functions can decide whether to call into the EMP substrate
or to pass the parameters on to the standard system function
of the same name.

5 Performance Enhancement
While implementing the substrate, the functionality of the

calls was taken into account so that the application does not
have to suffer due to the changes. However, these adjust-
ments do affect the performance the substrate is able to de-
liver. In order to improve the performance given by the sub-
strate, we have come up with some techniques, which are
summarized below. More details on these techniques are
are included in [2].

5.1 Credit-based flow control
As mentioned earlier (Section 4.1.2), the scheme we have

chosen for handling unexpected messages can be extended
to enhance its performance.

The sender is given a certain number of credits (tokens).
It loses a token for every message sent and gains a token for
every acknowledgment received. If the sender is given �
credits, the substrate has to make sure that there are enough
descriptors and buffers pre-posted for � unexpected mes-
sage arrivals on the receiver side. In this way, the substrate
can tolerate up to � outstanding write() calls before the cor-
responding read() for the first write() is called (Figure 5).

SQ RQ SQ RQ
Sender Receiver

Data

Data

Ack

Ack

Pre−posted
Descriptors

N

Figure 5. The Credit Based Approach

One problem with applying this algorithm directly is that
the acknowledgment messages also use up a descriptor and
there is no way the receiver would know when it is reposted,
unless the sender sends back another acknowledgment, thus
forming a cycle. To avoid this problem, we have proposed
the following solutions:

Blocking the send: In this approach, the write() call is
blocked until an acknowledgment is received from the re-
ceiver, which would increase the time taken for a send to a
round-trip latency.

Piggy-back acknowledgment: In this approach, the ac-
knowledgment is sent along with the next data message
from the receiver node to the sender node. This approach
again requires synchronization between both the nodes.
Though this approach is used in the substrate when a mes-
sage is available to be sent, we cannot always rely on this
approach and need an explicit acknowledgment mechanism
too.

Post more descriptors: In this approach, ��� number of
descriptors are posted where � is the number of credits
given. It can be proved that at any point of time, the number
of unattended data and acknowledgment messages will not
exceed 2 � . On the basis of the same, this approach was
used in the substrate.

5.2 Disabling Data Streaming
As mentioned earlier, TCP supports the data streaming

option, which allows the user to read any number of bytes
from the socket at any time (assuming that at-least so many
bytes have been sent). To support this option, we use a tem-
porary buffer to contain the message as soon as it arrives
and copy it into the user buffer as and when the read() call
is called. Thus, there would be an additional memory copy
in this case.

However, there are a number of applications which do
not need this option. To improve the performance of these
applications, we have provided an option in the substrate
which allows the user to disable this option. In this case,
we can avoid the memory copy for larger message sizes
by switching to the rendezvous approach to synchronize
with the receiver and DMA the message directly to the user
buffer space. This approach is referred to as Datagram sock-
ets.

5

5.3 Delayed Acknowledgments
To improve performance, we delay the acknowledgments

so that an acknowledgment message is sent only after half
the credits have been used up, rather than after every mes-
sage. This reduces the overhead per byte transmitted and
improves the overall throughput.

These delayed acknowledgments bring about an improve-
ment in the latency too. When the number of credits given
is small, half of the total descriptors posted are acknowl-
edgment descriptors. So, when the message arrives, the tag
matching at the NIC takes extra time to walk through the
list that includes all the acknowledgment descriptors. This
time was calculated to be about 550 ns per descriptor. How-
ever, with the increase in the number of credits given, the
fraction of acknowledgment descriptors decreases, and thus
reducing the effect of the time required for tag matching.

5.4 EMP Unexpected Queue
EMP supports a facility for unexpected messages. The

user can post a certain number of unexpected queue de-
scriptors, and when the message comes in, if a descriptor
is not posted, the message is put in the unexpected queue
and when the actual receive descriptor is posted, the data
is copied from this temporary memory location to the user
buffer. The advantage of this unexpected queue is that the
descriptors posted in this queue are the last to be checked
during tag matching, which means that access to the more
time-critical pre-posted descriptors is faster.

The only disadvantage with this queue is the additional
memory copy which occurs from the temporary buffer to
the user buffer. In our substrate, we use this unexpected
queue to accommodate the acknowledgment buffers. The
memory copy cost is not a concern, since the acknowledg-
ment messages do not carry data payload. Further, there is
the additional advantage of removing the acknowledgment
messages from the critical path.

These enhancements have been incorporated in the sub-
strate and are found to give a significant improvement in
the performance.

6 Performance Results
For the purpose of this paper, the experimental test-bed

used included 4 Pentium III 700MHz Quads, each with a
Cache Size of 1MB and 1GB main memory. The intercon-
nect was a Gigabit Ethernet network with Alteon NICs on
each machine connected using a Packet Engine switch. The
linux kernel version used was 2.4.18.

6.1 Implementation Alternatives
This section gives the performance evaluation of the ba-

sic substrate without any performance enhancement and
shows the advantage obtained incrementally with each per-
formance enhancement technique.

In Figure 6 the basic performance given by the substrate
for data streaming sockets is labeled as DS and that for data-
gram sockets is labeled as DG. DS DA refers to the per-

formance obtained by incorporating Delayed Acknowledg-
ments as mentioned in Section 5.3. DS DA UQ refers to the
performance obtained with both the Delayed Acknowledg-
ments and the Unexpected Queue option turned on (Section
5.4). For this experiment, for the Data Streaming case, we
have chosen a credit size of 32 with each temporary buffer
of size 64KB. With all the options turned on, the substrate
performs very close to raw EMP. The Datagram option per-
forms the closest to EMP with a latency of 28.5 � s (an over-
head of as low as 1 � s over EMP) for 4-bytes messages. The
Data Streaming option with all enhancements turned on, is
able to provide a latency of 37 � s for 4-byte messages.

20

40

60

80

100

120

140

160

180

4 16 64 256 1024 4096

T
im

e
(u

s)

Message Size (bytes)

DS
DS_DA

DS_DA_UQ
DG

EMP

Figure 6. Micro-Benchmarks: Latency

Figure 7 shows the drop in latency with delayed acknowl-
edgment messages. The reason for this is the decrease in the
amount of tag matching that needs to be done at the NIC
with the reduced number of acknowledgment descriptors.
For a credit size of 1, the percentage of acknowledgment
descriptors would be 50%, which leads to an additional tag
matching for every data descriptor. However, for a credit
size of 32, the percentage of acknowledgment descriptors
would be 6.25%, thus reducing the tag matching time.

The bandwidth results have been found to stay in the same
range with each performance evaluation technique.

6.2 Latency and Bandwidth
Figure 8 shows the latency and the bandwidth achieved by

the substrate compared to TCP. The Data Streaming label
corresponds to DS DA UQ (Data Streaming sockets with
all performance enhancements turned on).

Again, for the data streaming case, a credit size of 32 has
been chosen with each temporary buffer of size 64 Kbytes.
In default, TCP allocates 16 Kbytes of kernel space for the
NIC to use for communication activity. With this amount
of kernel space, TCP has been found to give a bandwidth of
about 340 Mbps. However, since the modern systems allow
much higher memory registration, we changed the kernel
space allocated by TCP for the NIC to use. With increasing
buffer size in the kernel, TCP is able to achieve a band-
width of about 550 Mbps (after which increasing the kernel
space allocated does not make any difference). Further, this

6

0

50

100

150

200

250

4 16 64 256 1024 4096

T
im

e
(u

s)

Message Size (bytes)

Data Streaming
Datagram

TCP

0
100
200
300
400
500
600
700
800
900

4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

B
an

dw
id

th
 (

M
bp

s)

Message Size (bytes)

Data Streaming
Datagram

TCP

Figure 8. Micro-Benchmark Results: Latency (left) and Bandwidth (right)

0

50

100

150

200

250

300

350

1 2 4 8 16 32

La
te

nc
y

(u
s)

Credit Size

4 bytes
64 bytes
1 Kbytes

16 Kbytes

Figure 7. Micro-Benchmarks: Latency vari-
ation for Delayed Acknowledgments with
Credit Size

change in the amount of kernel buffer allocated does not
affect the latency results obtained by TCP to a great extent.

The substrate is found to give a latency as low as 28.5 � s
for Datagram sockets and 37 � s for Data Streaming sockets
achieving a performance improvement of 4.2 and 3.4 re-
spectively, compared to TCP. The peak bandwidth achieved
was above 840Mbps with the Data Streaming option.

6.3 FTP Application
We have measured the performance of the standard File

Transfer Protocol (ftp) given by TCP on Gigabit Ethernet
and our substrate. To remove the effects of disk access and
caching, we have used RAM disks for this experiment.

With our substrate, the FTP application takes 6.84 secs
for Data Streaming and Datagram sockets, compared to the
11.8 secs taken by TCP for transferring a 512MB file. For
small files, FTP takes 13.6 � s for Data Streaming and Data-
gram sockets, compared to the 25.6 � s taken by TCP [2].

The application is not able to achieve the peak bandwidth
illustrated in Section 6.2, due to the File System overhead.

There is a minor variation in the bandwidth achieved by
the data streaming and the datagram options in the stan-
dard bandwidth test. The overlapping of the performance

achieved by both the options in ftp application, is also at-
tributed to the file system overhead.

Note that this application requires both a socket read as
well as a file read, thus requiring the substrate to be compat-
ible with UNIX sockets. We have attained it by overloading
the function name-space as mentioned in Section 4.2.

6.4 Web Server Application
We have measured the performance obtained by the Web

Server application for a 4 node cluster (with one server and
three clients). The experiment was designed in the follow-
ing manner – the server keeps accepting requests from the
clients. The clients connect to the server and send in a
request message (which can typically be considered a file
name) of size 16 bytes. The server accepts the connection
and sends back a message of size � bytes to the client. We
have shown results for � varying from 4 bytes to 8 Kbytes.
Once the message is sent, the connection is closed (as per
HTTP/1.0 specifications). However, this was slightly mod-
ified in the HTTP/1.1 specifications, which we also discuss
in this section.

A number of things have to be noted about this applica-
tion. First, the latency and the connection time results ob-
tained by the substrate in the micro-benchmarks play a dom-
inant role in this application. For connection management,
we use a data message exchange scheme as mentioned ear-
lier. This gives an inherent benefit to the Sockets-over-EMP
scheme since the time for the actual request is hidden, as
the connection message descriptors are pre-posted.

Figure 9 gives the results obtained by the Web Server ap-
plication following the HTTP/1.0 specifications.

In the substrate, once the “connection request” message
is sent by the substrate, the application can start sending
the data messages. This reduces the connection time of the
substrate to the time required by a message exchange. How-
ever, in TCP, the connection time requires intervention by
the kernel and is typically about 200 to 250 � s. To cover
this disadvantage, TCP has the following enhancements:
the HTTP 1.1 specifications allow a node to make up to
8 requests on one connection. Even with this specification,
our substrate was found to perform better than the base TCP

7

0

2000

4000

6000

8000

10000

12000

4 16 64 256 1024 4096

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Response Size (bytes)

Data Streaming
Datagram

TCP

Figure 9. Web Server (HTTP/1.0)

application [2]. In the worst case, if the web server allows
infinite requests on a single connection, the web server ap-
plication boils down to a simple latency test which has been
plotted in Section 6.2.

7 Conclusions
Ethernet forms a major portion of the world’s networks.

Applications written using the sockets library have not been
able to take advantage of the high performance provided by
Gigabit Ethernet due to the traditional implementation of
sockets on kernel based protocols.

In this paper, we have designed and developed a low-
overhead substrate to support socket based applications on
EMP. For short messages, this substrate delivers a latency
of 28.5 � s for Datagram sockets and 37 � s for Data Stream-
ing sockets compared to a latency of 28 � s achieved by
raw EMP. Compared to the basic TCP, latency obtained
by this substrate shows performance improvement up to 4
times. A peak bandwidth of over 840 Mbps is obtained
by this substrate, compared to 550 Mbps achieved by the
basic TCP, a performance improvement by a percentage of
up to 53%. For the ftp and Web server applications, com-
pared to the basic TCP implementation, the new substrate
shows performance improvement by a factor of 2 and 6,
respectively. These results demonstrate that applications
written using TCP can be directly run on Gigabit Ethernet-
connected cluster with this substrate.

We are currently working on utilizing and evaluating the
proposed substrate for a range of commercial applications
in the Data center environment. We also plan to develop a
similar substrate for the emerging InfiniBand interconnect
so that a range of applications should be able to take advan-
tage of the low-latency and high-bandwidth associated with
interconnects for the next generation clusters.

8 Acknowledgments
We would like to thank all the students working at the Net-

work of Workstations Laboratory at The Ohio State Univer-
sity, for all the valuable suggestions they had given through
the course of the project. Without their help, this paper
would not have been possible. We would also like to thank

the reviewers for their comments and suggestions which
helped us make this paper better.

References

[1] Infiniband Trade Association. http://www.infinibandta.org.

[2] P. Balaji, P. Shivam, P. Wyckoff, and D. Panda. High Perfor-
mance User Level Sockets over Gigabit Ethernet. Technical
Report OSUCISRC -.

[3] M. Banikazemi, B. Abali, L. Herger, and D. K. Panda. De-
sign Alternatives for VIA and an Implementation on IBM
Netfinity NT Cluster. In Special Issue of JPDC, Vol. 61, No.
11, pp. 1512-1545, November 2001.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A Gigabit-
per-Second Local Area Network.

[5] Myricom Corporations. The GM Message Passing Systems.

[6] MPI Forum. MPI: A Message Passing Interface. In SC ’93.

[7] H. Frazier and H. Johnson. Gigabit Ethernet: From 100 to
1000Mbps.

[8] Giganet Corporations. http://www.giganet.com.

[9] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. SOVIA: A
User-level Sockets Layer over Virtual Interface Architecture.
In Cluster ’01.

[10] M-VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/ research/FTG/via.

[11] Netgear Incorporations. http://www.netgear.com.

[12] S. Pakin, M. Lauria, and A. Chien. High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM). In SC
’95.

[13] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The Quadrics Network (QsNet): High-Performance
Clustering Technology. In HotI ’01.

[14] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High
Performance Sockets and RPC over Virtual Interface (VI)
Architecture. In CANPC workshop (held in conjunction with
HPCA Conference), pages 91-107, 1999.

[15] P. Shivam, P. Wyckoff, and D. Panda. Can User Level Proto-
cols Take Advantage of Multi-CPU NICs? In IPDPS ’02.

[16] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet Message Passing. In SC
’01.

[17] W. Richard Stevens. UNIX Network Programming.

[18] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net:
A user-level network interface for Parallel and Distributed
Computing. In the Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

8

