Micro-benchmark Level Performance Evaluation and
Comparison of High Speed Cluster Interconnects

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Balasubramanian Chandrasekaran, B.E.

%k 3k ok ok ok
The Ohio State University

2003

Master’s Examination Committee: Approved by

Prof. Dhabaleswar K. Panda, Advisor

Prof. P. Sadayappan
Advisor

Department of Computer
and Information Science

© Copyright by
Balasubramanian Chandrasekaran

2003

ABSTRACT

Two high speed interconnects: Myrinet and Quadrics, are widely used in high
performance cluster computing. InfiniBand was recently introduced and is being in-
creasingly used as an interconnect for cluster. In this thesis, we provide a set of micro-
benchmarks to comprehensively study and characterize different performance aspects
of these three interconnects. The micro-benchmark suite includes not only traditional
tests and performance parameters, but also those specifically tailored to the intercon-
nects’ advanced features such as user-level access for performing communication and
remote direct memory access. Our performance evaluation and comparison consists
of two parts. First, we evaluate the two APIs for InfiniBand: VAPI and IBAL. We
have designed the tests to evaluate and compare the advanced features offered by the
InfiniBand Architecture for the two interfaces. Next, we perform a detailed perfor-
mance comparison of the three interconnects using our micro-benchmarks. In order to
explore the full communication capability of the interconnects, we have implemented
the micro-benchmark suite at the low level messaging layer provided by each intercon-
nect. Our performance results show that all three interconnects achieve low latency,
high bandwidth and low host overhead. However, they show quite different perfor-
mance behaviors when handling completion notification, unbalanced communication

patterns and different communication buffer reuse patterns.

i

To Amma, Appa, Ammu and Devi

iii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and gratitude to my advisor Dr.
Dhabaleswar K. Panda for his constant guidance and motivation. His valuable sup-
port has gone a long way in the completion of this work.

I am grateful to Dr. P Sadayappan for consenting to serve on my Master’s exam-
ination committee.

For generously sharing their thoughts, ideas and comments, I would like to ac-
knowledge Darius, Gopal, Jiesheng, Jiuxing, Pavan, Savitha, Sushmitha, and Weikuan.

I would like to thank Kevin Deierling, Jeftf Kirk and Ezra Silvera from Mellanox
Technologies for their support with the InfiniBand hardware and software.

My heartfelt thanks to my family, roommates and friends for their support, love

and affection.

v

VITA

February 13,1980, Born - Chennai, India
1997 - 2001 ..o B.E. Computer Science and Engineer-
ing

September 2001 - December 2001
March 2003 - June 2003 Graduate Teaching Assistant,
The Ohio State University.

January 2002 - March 2003,
June 2003 - presentl Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

Balasubramanian Chandrasekaran, Pete Wyckoff, and Dhabaleswar K. Panda, “MIBA:
A Micro-benchmark Suite for Evaluating InfiniBand Architecture Implementations®,
Performance TOOLS 2003 , September 2003.

Jiuxing Liu, Balasubramanian Chandrasekaran, Weikuan Yu, Jiesheng Wu, Darius
Buntinas, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K. Panda, “Micro-
Benchmark Level Performance Comparison of High-Speed Cluster Interconnects,
Hot Interconnects 11 , August 2003.

Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang, Sushmitha
Kini, Weikuan Yu, Darius Buntinas, Pete Wyckoff, and Dhabaleswar K. Panda,
“Performance Comparison of MPI Implementations over InfiniBand, Myrinet and
Quadrics“, In SuperComputing 2003 Conference , November 2003.

Sandhya Senapathi, Balasubramanian Chandrasekaran, Don Stredney, Han-Wei Shen,
and Dhabaleswar K. Panda, “QoS-aware Middleware for Cluster-based Servers to
Support Interactive and Resource-Adaptive Applications®, In High Performance Dis-
tributed Computing 12 , June 2003.

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in High Performance Computing: Prof. D.K. Panda

vi

TABLE OF CONTENTS

Page
Abstract oL ii
Dedication L iii
Acknowledgmentso iv
Vita . . o e v
List of Tables X
List of Figures xi
Chapters:
1. Introduction 1

1.1 Comparison of InfiniBand Architecture over VAPI and IBAL 4

1.2 Comparison of InfiniBand, Myrinet, and Quadrics 4
2. Micro-benchmarks L 6
2.1 Non-Data Transfer Operations 7
2.1.1 Memory Registration and De-registration 7
2.1.2 Descriptor Operations 7
2.1.3 Connection Operations 8

2.2 Data Transfer Operations 8
2.21 Latency 8
2.2.2 Bandwidth L. 9
2.2.3 Bi-directional Latency and Bandwidth Test 10
2.2.4 Host Overhead in Communication 10
2.2.5 Overhead in Completion Notification 11

vii

2.2.6 Overhead in Blocking 12

2.2.7 Impact of Buffer Reuse 12
2.2.8 Hot-Spot Test 13
2.2.9 Impact of Multiple Connections 14
2.2.10 Impact of Multiple Data Segments 14
2.2.11 Impact of Maximum Transfer Unit Size 15

3. Evaluation of InfiniBand Architecture Implementations (VAPI and IBAL) 17

3.1 Experimental Testbed 17
3.2 Non-Data Transfer Operations 18
3.3 Data Transfer Operations 19
3.3.1 Latency 19
3.3.2 Bandwidth, 20
3.3.3 Bi-directional Latency and Bandwidth 20
3.3.4 Host Overhead in Communication 21
3.3.5 Overhead in Completion Notification 22
3.3.6 Overhead in Blocking 24
3.3.7 Impact of Bufferreuse 24
3.3.8 Impact of Multiple Connections 25
3.3.9 Impact of Multiple Data Segments 28
3.3.10 Impact of Maximum Transfer Unit size 29

4. Performance Comparison of InfiniBand, Myrinet, and Quadrics 32
4.1 Experimental Testbedo 32
4.2 Non-Data Transfer Operations 33
4.3 Data Transfer Operations 33
4.3.1 Latency 34
4.3.2 Bandwidth 35
4.3.3 Bi-directional Latency and Bandwidth 36
4.3.4 Host Overhead in Communication 38
4.3.5 Overhead of Completion Notification 38
4.3.6 Overhead in Blocking 40
4.3.7 Impact of Buffer Reuse 41
4.3.8 Hot-Spot Tests, 44

5. Conclusions L 46
5.1 Ongoing Work o 47
5.2 Future Work 47

viii

Bibliography

ix

LIST OF TABLES

Table

3.1 Non-Data Transfer Micro-Benchmarks (Time in ps)

4.1 Non-Data Transfer Micro-Benchmarks (Time in pus)

LIST OF FIGURES

Figure Page
3.1 Latency 20
3.2 Bandwidth. 21
3.3 Bi-directional Tests Lo 22
3.4 Host Overhead in Communication 23
3.5 Overhead in Completion Notification 23
3.6 Overhead in Blocking 0000 24
3.7 Impact of Buffer Reuse, 26
3.8 Impact of Multiple Connections on Latency 27
3.9 Impact of Multiple Connections on Bandwidth 27

3.10 Impact of Maximum SG Entries in a QP on the Latency for a 64 Byte

IMESSAZE . .« v v v o e e e e e e e e e e e e e e 28
3.11 Impact of Multiple Data Segments 29
3.12 Impact of MTU 31
4.1 Latency 34
4.2 Bandwidtho 35
4.3 Bandwidth with Window Size 36

xi

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Bi-directional Latency 000 37

Bi-directional Bandwidth o 000000 37
Host Overhead in Latency Test 39
CPU Utilization in Bandwidth Test 39
Overhead due to Completion 40
Overhead due to Blocking 41
Bandwidth (size=512K) Buffer Scheme 1 42
Latency (size=4K) Buffer Scheme 2 L. 43
Bandwidth (size=512K) Buffer Scheme 2 43
Hot Spot Send Test 44
Hot Spot Send-Receive Test 45

xii

CHAPTER 1

INTRODUCTION

Cluster computing systems are becoming increasingly popular for day-to-day com-
putational needs. This is due to the availablity of cost-effective and affordable com-
modity components[17, 15]. The idea is to use Commodity of the self (COTS) com-
ponents and build a cluster, which not only satisfies the computational requirements
of various applications but also provides a cost effective solution. With the rapid
advances in networking and processor technologies, High Performance Computing
Clusters (HPCC) has become an attractive and alternate choice for High Peformance
Computing (HPC).

A high performance computing cluster consists of several computing nodes con-
nected by a high-speed interconnect. The computing node consists of one or more
central processing unit (CPU), memory, and 1/O devices including a Network Inter-
face Card (NIC) for communication. Two high speed interconnects, Myrinet[3] and
Quadrics[14], are widely used in designing such high performance clusters. Recently,
InfiniBand[5] has been introduced and is being increasingly used as an interconnect
for clusters. These interconnects provide a rich set of advanced features such as mem-
ory protected user-level access to the network interface[16] and remote direct memory
access (RDMA). These high speed interconnects are designed to achieve low latency

1

(less than 10us) and high bandwidth (of the order of Gbps). Most of the communi-
cation overhead can be offloaded to the sophisticated NICs present in the computing
nodes.

Such high performance is made available directly to the applications by the ef-
ficient implementation of higher-level programming models such as Message Pass-
ing Interface (MPI)[11], high performance user-level sockets, and distributed shared
memory. Also, upper layers such as file systems and data center servers can use the
features offered by these high speed interconnects. Due to the advanced and rich set
of features offered by these interconnects, the designer of such an upper layer now
has various design choices to make. Therefore, an interesting question ariese: How
to choose an interconnect and how to come up with a good design choice based on the
communication characteristics of the upper layer and the interconnect? In order to
answer these questions one has to have a detailed understanding of the communica-
tions characteristics of all the interconnects.

Some interconnects provide more than one interface for user-level access. For ex-
ample, InfiniBand as two interfaces VAPI and IBAL. The two APIs follow Verbs as
described InfiniBand Architecture specification[6]. Verbs API (VAPI) was developed
by Mellanox[10]. It closely follows InfiniBand Architecture specification and offers
high performance. InfiniBand Access Layer (IBAL) was developed by Sourceforge[7].
It is a software component that provides an interface to the InfiniBand fabric to
multiple concurrent users. This interface exposes the capabilities of the InfiniBand
Architecture and augments the verbs software transport interface with support for
higher-level operations required by most users of InfiniBand. Other advanced compo-

nents such as SDP, IPoIB, OpenSM (a subnet manager for IBA) are developed on top

of this Access Layer. The interesting question here is: How can we conduct a mean-
ingful performance comparison among the two interfaces of InfiniBand Architecture?

Standard tests such as ping-pong latency and bandwidth, which are used to eval-
uate the interfaces and interconnects, give very little insight into the implementation
of various components of the architecture. It does not evaluate the system for various
communication scenarios. Therefore it does not depict all the characteristics of a real
life application. Hence, there is a need to study the aspects of various components in-
volved in the communication. For example, the design choices in the implementation
of virtual to physical address translation may lead to different performance results.
Similarly, the latency test results for a scenario where the buffers are reused might
be significantly different from latency test results for a scenario where buffers are not
reused at all.

Another way to evaluate different user-level interface and network interconnects
is to use real world applications. However, real applications usually run on top of a
middleware layer such as the Message Passing Interface (MPI). Therefore, the per-
formance we see reflects not only the capability of the network interconnects, but
also the quality of the MPI implementation and the design choices made by different
MPI implementers. Thus, to provide more insights into the communication capability
offered by each interconnect, it is desirable to conduct tests at a lower level.

In this thesis, we propose a set of micro-benchmarks to evaluate and compare
the the user-level interfaces and high speed interconnects. The thesis can be broadly

divided into two categories.

1.1 Comparison of InfiniBand Architecture over VAPI and
IBAL

Using a set of micro-benchmarks we evalaute and compare the InfiniBand Archi-
tecture implementations for VAPI and IBAL. In addition to the standard tests, we
have also included micro-benchmarks which evaluate the advanced features provided
by the InfiniBand.

InfiniBand Architecture was initially designed for Data Centers. The specification
offers a wide range of features and services. This coupled with high performance
makes it a good high speed interconnect for cluster. Our micro-benchmark tests are
tailored to evalaute the advanced features offered by InfiniBand Architecture such as
connection management and scatter-gatter capabilites. The micro-benchmark suite

is developed based on VIBe[1], which was developed earlier in our group.

1.2 Comparison of InfiniBand, Myrinet, and Quadrics

We extend the benchmarks to do a comprehesive performance evaluation of the
three high speed interconnects: InfiniBand, Myrinet, and Quadrics. Our micro-
benchmarks are relatively simple and well-defined. Therefore it is possible to imple-
ment them directly on the low level messaging layer provided by all the interconnects.
The benchmarks also concentrate on the remote memory access capabilities provided
by each interconnect. Our micro-benchmark suite also includes hot-spot tests that
reveal performance characteristics of different interconnects that are difficult to get

by a simple two-node test.

The rest of the thesis is organized as follows. In Chapter 2, we provide a detailed
description of all the Micro-benchmarks. In Chapter 3,We provide a detailed pefor-
mance evaluation of the InfiniBand Architecture with respect to the two interfaces:
VAPI and IBAL. In Chapter 4, we provide the performance comparison of the three
high speed interconnets: InfiniBand, Myrinet and Quadrics. Conclusions and ongoing

work are discussed in Chapter 5.

CHAPTER 2

MICRO-BENCHMARKS

In this chapter, we provide a comprehensive description of the micro-benchmarks
that are used to compare and evaluate the three interconnects: InfiniBand, Myrinet,
and Quadrics. The algorithms and the scenarios for each micro-benchmark is dis-
cussed in detail. We not only include the traditional tests such as latency and band-
width tests but also include tests which evaluate the advanced features of these mod-
ern interconnects. The tests can be broadly classified as Non-data transfer related
and Data Transfer related. Under the first category, we include micro-benchmarks
for measuring the cost of several basic non-data transfer related operations: creat-
ing and destroying connections, memory registration and deregistrations, and posting
send and receive descriptors. The cost of such operations are evaluated by varying
various parameters associated with them. The second category consists of several
data-transfer related micro-benchmarks. The main objective here is to the isolate
different components (such as virtual-to-physical address translation, multiple data
segments, and event handling) and study them by varying their attribute values.
This would clearly bring out the importance of that component in the critical path
of communication. It would also help us to evaluate such components for the three

interconnects.

2.1 Non-Data Transfer Operations

In this category we measure the costs of the following operations:
2.1.1 Memory Registration and De-registration

All the three interconnects support user-level access to the network and advanced
communication semantics such as RDMA. However, in order to take advantage of
these features the memory used for communication must be registered or pinned. To
do this, appropriate memory management mechanisms are specified by the corre-
sponding APIs. Memory Registration operation allows the user to describe a set of
virtually contiguous memory locations that can be accessed by the NIC for commu-

nication. We measure the cost for registering and deregistering the memory.
2.1.2 Descriptor Operations

Send and receive descriptors are submitted to the NIC to request send and receive
of messages. Some types of send and receive descriptors are Send/Receive, RDMA
read /write, and Atomic operations. Posting of send and receive requests usually trig-
gers communication between the participating nodes. Completion of the communica-
tion request can be detected by various mechanisms. For InfiniBand, the notification
is through Completion Queues. The user can poll on the completion queue to de-
tect completion of communication. For Quadrics and Myrinet, notification is through
events. The user can poll on the event to detect completion.

We measure the cost of posting of send and receive descriptors. We also measure

the cost of polling on queues and events to detect completion. The cost indicates the

host overhead involved in communication. If the cost is less, then more CPU cycles

can be allocated for other computation.
2.1.3 Connection Operations

InfiniBand supports Reliable connection for communication. Connections are
managed by Queue Pairs (QP) and Completion Queues (CQ) in IBA. In this micro-
benchmark we measure the cost of creating and destroying a connections. This cost
is critical for applications which makes dynamic connections. Based on the result for

this test the application can choose either static or dynamic connections.

2.2 Data Transfer Operations

In this category we measure the cost of data transfer related operations. The
micro-benchmarks include the traditional tests such as latency, bandwidth, bi-di-
rectional latency, and bi-directional bandwidth. It also includes tests which evaluate
the interconnects in relatively complex communication scenarios thereby evaluating
different components in the communication subsystem. The base configuration has
the following properties: 100% buffer reuse, one data segment, polling for completion
detection, one connection, and no notify mechanism. These properties are described

in more detail later in this section.

2.2.1 Latency

Latency measures the time taken for a message of a given size to reach a designated
node from the source or the sender node. For measuring the latency, the standard
ping-pong test is used. We calculate the latency for both synchronous (Send/Receive)

and asynchronous operations (RDMA). Note that Quadrics supports only RDMA

operation. The ping side posts two descriptors: one for send and another for receive.
It then polls for the completion of the receive request. The pong side posts a receive
descriptor, waits for it to complete and then posts a send descriptor. This entire
process is repeated for sufficient number of times (so that the timing error is negligible)
from which an average round trip time is produced, then it is divided by two to

estimate the one way latency. This test is repeated for different message sizes.
2.2.2 Bandwidth

The objective of the bandwidth test is to determine the maximum sustained date
rate that can be achieved at the network level. To measure the bandwidth, messages
are sent out repeatedly from the sender node to the receiver node for a number of
times and then the sender waits for the last message to be acknowledged. The time
for sending these back to back messages is measured and the timer is stopped when
the acknowledgment for the last message is received. The number of messages being
send is kept large enough to make the time for transmission of the acknowledgment
of the last message negligible in comparison with the total time.

In order to avoid overloading of the NIC, we use the concept of a Window size W. A
similar method has been used in [2]. Initially W messages are posted. Following which
the sender waits for the send completion of W/2 messages. Upon completion, another
W/2 messages are posted. This pattern for waiting for W/2 messages and posting
W/2 messages are repeated sufficient number of times. Since there is always at least
W/2 outstanding messages we make sure that the there is sustained data movement
on the network. Also, at any point in time there can be at most W outstanding

messages and hence this makes sure that the NIC is not overloaded. However, if the

NIC is faster in dispatching the incoming requests than the host posting the messages,

then there might not be any change in the results for various window sizes.

2.2.3 Bi-directional Latency and Bandwidth Test

All the modern interconnects supports traffic in both the directions. Bi-directional
latency and bandwidth put more stress on the communication subsystem as compared
to the uni-directional tests. Therefore they may be more helpful in understanding
the bottleneck in communication. In bi-directional latency, test both sides send si-
multaneously and wait on the receive. The time between sending the message and
receiving the message is measured. The aim of the bi-directional bandwidth test is
to determine the maximum sustained date rate that can be achieved at the network
level both ways. To measure the bidirectional bandwidth, messages are sent out from

both sender and receiver repeatedly, both wait on the completion of the last receive.
2.2.4 Host Overhead in Communication

Latency and Bandwidth tests measure the efficiency of the interconnects. Another
important factor in communication is the host involvement in the communication.
The less the host CPU is involved in communication, more the time it can spend
on other useful computation. All the interconnects have advanced network interface
cards and most of the communication overhead is transfered to the NIC. This raises
an important question: how many CPU cycles are available for computation when
communication is performed in tandem?

In this test, we measure the host overhead in communication in both latency and
bi-directional bandwidth test. For latency test, we just directly measure the time for

posting a descriptor and polling for completion. For bandwidth test, we gradually

10

insert computation between the communication. Each iteration of a measurement
loop includes four steps: posting receive descriptors for expected incoming messages,
initiate sends, perform computational work, and finally wait for message transmission
to complete. As the amount of work increases, the fraction of the host CPU available
for communication decreases. This is similar to a general loop in a higher level
application, which usually involves a computation cycle followed by a communication
cycle. If the time spent on communication is small, then valuable CPU cycles can be

allocated for useful computation.
2.2.5 Overhead in Completion Notification

All the three interconnects support remote direct memory access (RDMA) oper-
ations. The arrival of RDMA messages can be detected by various ways. One way to
detect the arrival of messages at the receiver side is to poll on the memory content in
the destination buffer. This approach can be used to minimize the receiver overhead.
However, this method is hardware dependent because it relies on the order in which
the DMA controller writes to host memory.

In this test, we measure the cost of notification mechanism for RDMA messages
in each of the interconnects. The network interconnects we have studied support
different mechanisms to report the completion of remote memory operations. For ex-
ample, InfiniBand uses Completion Queues, while Quadrics rely on event abstractions.
Myrinet does not have a notification mechanism for RDMA messages. Therefore, we
simulated the notification by using a separate send operation. The receiver side polls

on this message to detect for the completion of the RDMA message.

11

2.2.6 Overhead in Blocking

As seen in the previous section, polling is a mechanism that is used for completion
notification. However, polling burns CPU cycles and is not good for multitasking.
Polling is good in scenarios where a set of nodes is allocated exclusively for a par-
ticular application. However, in scenarios like Data Center where there are multiple
applications sharing the same CPU, polling is not a good idea. The application can
then use interrupts instead of polling. However, there is additional overhead involved

in interrupts. In this test we measure the cost of using interrupts.

2.2.7 Impact of Buffer Reuse

A very important component of any user-level communication system is the virtual-
to-physical address translation[18]. In the latency and bandwidth tests, messages are
sent from only one buffer. Usually hardware implementations cache the physical ad-
dress of this buffer and hence the cost of virtual-to-physical address translation is
not reflected in the latency or bandwidth tests. However, by varying the percentage
of buffer reused one can see significant difference in the basic test results. Studying
the impact of virtual-to-physical address translation can help higher level developer
optimize buffer pool and memory management implementations.

To capture the cost of address translation and effectiveness of the physical address
cache, we have devised two schemes. In Scheme 1, we vary the working set for the
buffers. The number of buffers, W, used for the test is varied. If there are N iterations
in the test, then these W buffers (W < N) are used in a round robin fashion. Here

we try to evaluate the effectiveness of the caching scheme. If the cache is effective

12

enough to hold the address of all the W buffers then there should be no variation in
the results.

In Scheme 2, we vary the buffer reuse rate. If R is the fraction (or rate) of buffer
reuse and N is the total number of messages communicated between the two sides
(number of iterations) then N/R messages use the same buffer while (1 — N/R) mes-
sages use different buffers. Again, different buffer accesses are evenly distributed
across the test. Here we try to evaluate the cost of virtual-to-physical address trans-
lation. As the percentage of buffer reuse decreases, more and more new buffers are
accessed.

Illustration: Assume that we have ten buffers numbered 0 to 9. In Scheme 1, if
the number of buffers W = 4, then the buffer access sequence would be 0, 1, 2, 3, 0,
1, 2, 3,..., and so on. If the cache is big enough to fit all the buffers then there will
be no change in the latency and bandwidth numbers. In Scheme 2, if the buffer reuse
rate R = 25%, then the access sequence would be 0, 1, 2, 3, 0, 4, 5,6, 0, 7, 8, 9,...,
and so on. The buffer ’0’ is reused 25% of the time and the rest of the time different

buffers which are not in the cache are used.
2.2.8 Hot-Spot Test

In all the basic tests only two nodes communicate between themselves and the
NIC is exclusively used by the corresponding nodes. An interesting challenge would
be to evaluate the performance of the system when a NIC is involved in more that one
communication, hence causing contention for NIC resources. We have designed hot
spot tests to evaluate the interconnect under unbalanced communication scenarios.

We have implemented two hot spot tests. Similar tests have been conducted in [13].

13

Hot Spot Send Test

In hot-spot send test, a master node sends a message to all the slave nodes and
receives an acknowledgment from one of the slave nodes. The test is repeated by

varying the number of slave nodes. Here the 'hot-spot’ is at the sending side.

Hot Spot Send and Receive

In hot-spot send-receive test, a master node sends a note (small message) to all
the slave nodes and receives one message each from all the slave nodes. The test is
repeated by varying the number of slave nodes. Here the "hot-spot’ is at the receiving

side.
2.2.9 Impact of Multiple Connections

For connection oriented communications like in InfiniBand, the latency and band-
width may depend on the number of open connections. Connections are represented
by Queue Pairs (QP) in InfiniBand. As the number of connections increases, the
number of active QPs increases. Therefore, it is important to see whether the num-
ber of active QPs has any effect on the basic performance. Applications usually
run on many nodes and there is a need to establish connections between the nodes.
This benchmark thus provides valuable information regarding the scalability of the

InfiniBand architecture for large scale systems.
2.2.10 Impact of Multiple Data Segments

InfiniBand supports scatter and gather operations. Gather scatter operations can

be used to send non-contiguous memory segments as a single message. This avoids

14

posting of multiple descriptors or copying of data segments. Many high level com-
munication libraries such as ARMCI[12] which support gather and scatter operations
can use this feature directly. Therefore, it is necessary to study the impact of the
number of gather and scatter data segments on the basic performance.

The maximum number of scatter gather entries (SGE) supported by a connec-
tion must be specified during the creation of that connection. A larger SGE may
potentially increase the size of descriptor posted to the NIC for all messages in that
connection. This may increase the latency for all messages in that connection. On
the other hand, a connection with smaller SGE may not be flexible if the applica-
tion uses scatter and gather operations of large data segments frequently. Hence it
is important that the application developer be aware of this trade-off. We measure
the basic performance of latency and bandwidth on one data segment by varying the
maximum number of scatter gather entries supported by that connection.

We also measure the latency when multiple data segments are used. Note that
even though gather and scatter operations avoid posting of multiple descriptors, an
additional DMA is always required for every new data segment. This cost is measured

in the test by varying the number of data segments.
2.2.11 Impact of Maximum Transfer Unit Size

InfiniBand allows an user to specify the memory transfer unit (MTU) value when
a connection is created. The maximum payload size supported by a particular con-
nection may take any of the following values: 256, 512, 1024, 2048, or 4096 bytes. A
smaller memory transfer unit may improve the pipelining of messages while a larger

MTU may increase the bandwidth for larger messages due to smaller overload per

15

payload. Hence depending on the MTU the results of the latency and bandwidth
tests may vary. Therefore the higher level communication library and applications
developers must be aware of such variations. We measure the performance of basic

latency and bandwidth test by varying the MTU.

16

CHAPTER 3

EVALUATION OF INFINIBAND ARCHITECTURE
IMPLEMENTATIONS (VAPI AND IBAL)

In this chapter we evaluate the InfiniBand Architecture implementation for VAPI
and IBAL[4]. In addition to the standard tests, our micro-benchmarks evaluate the
advanced features offered by InfiniBand. The micro-benchmark tests can be catego-
rized into two major groups: non-data transfer related micro-benchmarks and data

transfer related micro-benchmarks, as described in chapter 2.

3.1 Experimental Testbed

Our experimental testbed consists of a cluster system of 8 SuperMicro SUPER
P4DL6 nodes. Each node has dual Intel Xeon 2.40 GHz processors with a 512KB
L2 cache and a 400 MHz front side bus. The machines are connected by Mellanox
InfiniHost MT23108 DualPort 4X HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The HCA adapters work under the PCI-X 64-bit
133MHz interfaces. The Mellanox InfiniHost HCA SDK build id is thca-x86-1.0.0-

build-001. The adapter firmware build id is fw-23108-rel-2_00_0000.

17

3.2 Non-Data Transfer Operations

The results obtained for non-data transfer benchmarks described in section 2.1
are presented in Table 3.1. It summarizes the cost of memory operations, posting
of descriptors and connection management operations. Connection is established by
modify QP operation and is destroyed by destroy QP operation provided by VAPI
and IBAL.

InfiniBand, like most modern interconnects, require that the communication mem-
ory must be registered. We measure the cost of memory registration and de-registration
in both VAPI and IBAL. The cost of memory operations is around 70-80 us for both
VAPI and IBAL. If this cost is too high for the application then the application can
use pinned-down cache scheme and lazy de-registration scheme.

The cost for posting a descriptor and polling is less for both VAPI and IBAL im-
plying that the CPU overhead for communication is less for InfiniBand Architecture.
Because of this low overhead in communication, the host CPU cycles can be spent on
useful computation. Note that the cost for posting a descriptor and polling is slightly
higher for IBAL as compared to VAPI.

It is observed that the creation and tearing of connection is costly. When a
reliable connection is created or destroyed, the resources for that connection must
be allocated or freed. Hence the high cost. This provides valuable information to
the developers of application which requires dynamic creation of connections. In
that case the developer may choose to implement Reliable Datagram (RD) instead
of Reliable Connection. Note that RD is not currently supported in available IBA

implementation but is expected soon.

18

Table 3.1: Non-Data Transfer Micro-Benchmarks (Time in pus)

| Operation | VAPI | IBAL |
Memory registration (4KB) 73.06 | 80.56
Memory de-registration (4KB) 82.05 | 70.84
Posting a Receive Descriptor 0.56 0.84
Posting a Send Descriptor 0.72 1.33
Polling on Complete Queue 1.08 1.11
Polling on Empty Queue 0.28 0.43
Creating a Connection (modify QP) 183.15 | 282.61
Tearing Down Connection (destroy QP) | 198.63 | 256.89

3.3 Data Transfer Operations

In this section we present the data-transfer related benchmark results.

3.3.1 Latency

Standard ping-pong test described in section 2.2.1 is used to measure the latency.
Both VAPI and IBAL support Send-Receive (S/R) and RDMA. The latency results
are as shown in Figure 3.1. The one-way VAPI latency for RDMA and Send-Receive
is 5.5us and 7.5us respectively. For IBAL, the RDMA latency is 6us and Send-
Receive latency is 8.3us. We can see that for both the interface RDMA performs
better than Send-Receive. RDMA is asynchronous and is transparent to the receiver.
Hence it avoids receive side overhead and consequently performs better as compared

to Send-Receive.

19

15

VAPISR ——— = 7

14 F VAPI RDMA —— E

13} IBALS/R

12 | IBAL RDMA =
DR
qE) 10 +
=

8 L

7t -

6 oo o0 0

5 ; ! L L L

1 4 16 64 256 1024 4096

Message Size (Bytes)

Figure 3.1: Latency

3.3.2 Bandwidth

We measure bandwidth for both Send-Receive and RDMA over VAPI and IBAL.
Figure 3.2 gives the bandwidth results. Both Send-Receive and RDMA shows com-
parable performance. The peak bandwidth for VAPI is 838 MBps and for IBAL it is
833 MBps. In sections 3.2 and 3.3.1, we have seen that IBAL has additional overhead
as compared to VAPIL. Due to this additional overhead IBAL has lesser bandwidth as

compared to VAPI for message sizes between 1 KB and 64 KB.
3.3.3 Bi-directional Latency and Bandwidth

Bi-directional tests put more stress on the interconnect as compared to uni-
directional tests. From Figure 3.3(a), we can see that the bi-directional latency
performance is worse as compared to the uni-directional tests. The bi-directional

bandwidth performance is comparable for VAPI and IBAL for both Send-Receive

20

900 ———
VAPIS/IR ——
800 [VAPI RDMA =
. IBALS/R
700 1 5 AL RDMA
600 |

500 +
400 1
300 +
200
100 | y
Q= ss T

4 16 64 256 1K 4K 16K 64K256K 1M

Message Size (Bytes)

[

Bandwidth (MB/s)

Figure 3.2: Bandwidth

and RDMA (Figure 3.3(b)). The peak bi-directional bandwidth is around 902 MBps.
Currently available PCI-X bus supports a bandwidth of around 1GBps. This and the
chipset limitations are the reason why the bi-directional bandwidth is not twice that

of the unidirectional bandwidth.
3.3.4 Host Overhead in Communication

Figure 3.4(a) shows the host CPU overhead in the latency test. Clearly IBAL has
a higher overhead as compared to VAPI. This difference in overhead is the cause of
the difference in the basic latency of VAPI and IBAL.

Figure 3.4(b) shows the CPU utilization. The peak bi-directional bandwidth when
there is no computation involved is around 902 MBps. We increase the computation
gradually to see how the communication is affected. From the graph we can see

that there is a drop in the bandwidth after 99.5% of CPU cycles are allocated for

21

22 w w w 1000 w \ ‘ :
VAPI SIR —— VAPISIR ——
20 | VAPI RDMA - 900 FVAPI RDMA -
IBAL S/R ~x _. 800 IBALS/R -~
18 | IBALRDMA = 2 700 | IBALRDMA =
B 2 600 |
0 S 500
= _% 400
g 300t
“ 200t
100 |
8 : : : : : 0 — : : : : ‘ :
4 16 64 256 1K 4K 4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes) Message Size (Bytes)
(a) Bi-directional Latency (b) Bi-directional Bandwidth

Figure 3.3: Bi-directional Tests

computation. We can achieve the peak bandwidth performance even when 99.5% of
the CPU cycles are used for computation.This shows low CPU Utilization for both

VAPI and IBAL.

3.3.5 Overhead in Completion Notification

InfiniBand supports special communication primitive called RDMA Immediate in
addition to RDMA and Send-Receive. RDMA Immediate can be used to notify the
receiver about the completion of a RDMA operation. This notification is useful in
scenarios where the RDMA operation should not be transparent to the receiver as
described in section 2.2.5. We measure the overhead due to notification for both VAPI

and IBAL. Figure 3.5 shows that overhead is comparable for the two interfaces.

22

Time (us)

25 ¢

15

VAP ——
IBAL —smm
X ‘X\ /,K\
77777777777777 - X et R s, ’ &x -
4 16 64 256 1K 4K 16K 64K 256K

Message Size (Bytes)

(a) Latency Overhead

Time (us)

Bidirectional Bandwidth (MB/s)

1000
800 | VAPI —— T\
IBAL e

600 |

400 |

200 | ;
0 ‘ ! L L

° 20 40 60 80 100

% of CPU cycles dedicated to other computation

(b) CPU Utilization

Figure 3.4: Host Overhead in Communication

256 1K 4K
Message Size (Bytes)

Figure 3.5: Overhead in Completion Notification

23

Time (us)

15 * * * *
4 16 64 256 1024 4096

Message Size (Bytes)

Figure 3.6: Overhead in Blocking

3.3.6 Overhead in Blocking

Figure 3.6 shows the impact of blocking as compared to polling for VAPI and
IBAL. We can see that the latency is significantly higher for event notification. This
is due to the cost of invoking the event handler upon work completion and subsequent
operation on the semaphore to notify the main thread about completion. However,
event notification may help certain applications and hence it is important for the
developers for such applications to be aware of the cost. IBAL has less overhead as

compared to VAPI for interrupt handling.
3.3.7 Impact of Buffer reuse

Figure 3.7 shows the impact of virtual-to-physical address translation for the two

schemes described in section 2.2.7. Both VAPI and IBAL shows the same trend. This

24

is because, virtual-to-physical address translation is done by the NIC independent of
the API.

In both Schemes there is no decrease in latency for small messages. For small
messages, the number of virtual to physical address translation is less and hence
the number cache entries is less. We can see a drop in the bandwidth in both the
schemes in Figure 3.7. This shows the efficiency of the address translation cache in
the NIC. The bandwidth falls sharply after five buffers (each of size 512 KBytes).
This gives the optimal working set for the buffers. Figure 3.7(b) shows the cost of
address translation. As the percentage of buffer reuse is decreased, more and more

address translations have to be performed.
3.3.8 Impact of Multiple Connections

InfiniBand supports connection oriented communication. As the number of con-
nections increases, the number of active Queue Pairs increases. All the active Queue
Pairs are usually associated with only one Completion Queue. The polling time on
the Completion Queue may increase with increase in the number of Queue Pairs as-
sociated with it. Hence, as the number of connections increases, there may be a drop
in the performance with respect to latency and bandwidth.

However, Figures 3.8 and 3.9 show that there is no difference in the latency and
bandwidth numbers as we vary the number of connections established by a node. We
varied the number of QP connections up to 64 and the latency and bandwidth numbers

remained the same. This shows excellent scalability of the InfiniBand Architecture.

25

9 : ‘ ‘ \ 850

VAPl ——
IBAL =
T @ 800 |
% s
\‘:”l = 750 r
2 £
= 2 700 |
W 3
75 F 1 m 650 |
7 600 L
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of Buffers Number of Buffers
(a) Latency (Size=64 Bytes) for Scheme 1 (b) Bandwidth (Size=512 KB) for Scheme 1
9 w 850
VAPl ——
8.8 | IBAL —=— 1
,,,,,,, I — 800
8.6 [] @
_)
w84t 2 750 |
e s
GE" 8.2 k=l
E ol | 2 700
c
@
7.8 w 650 |
7.6
‘ ‘ ‘ ‘ 600 ‘ ‘ ‘ ‘
100 80 60 40 20 0 100 80 60 40 20 0
Percentage of Buffer reuse Percentage of Buffer reuse
(c) Latency (Size=64 Bytes) for Scheme 2 (d) Bandwidth (Size=512 KB) for Scheme 2

Figure 3.7: Impact of Buffer Reuse

26

Time (us)

Bandwidth (MB/s)

15 15 ;
14 14
13 13 |
12 g ol
11 [0}
E 11 ¢
10 =
10
9 L
L L L L L 8 L L L L
1 4 16 64 256 1024 4096 1 4 16 64 256 1024 4096
Message Size (Bytes) Message Size (Bytes)
(a) VAPI (b) IBAL
Figure 3.8: Impact of Multiple Connections on Latency
900 w w 900 w w
800 800
700 Q 700
m
600 s 600
500 + < 500
400 S 400
300 g 300
200 0 200
100 100
16 64 256 1K 4K 16K 64K256K 1M 4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes) Message Size (Bytes)
(a) VAPI (b) IBAL

Figure 3.9: Impact of Multiple Connections on Bandwidth

27

9.4 r r r w w w w w *
9.2 - IBAL / 1
9 | >< A
8.8
8.6
8.4
8.2
8
7.8

76—
0 5 10 15 20 25 30 35 40 45 50

Maximum number of SGE in a connection

Latency (us)

Figure 3.10: Impact of Maximum SG Entries in a QP on the Latency for a 64 Byte
message

3.3.9 Impact of Multiple Data Segments

This benchmark evaluates the performance of data transfer when the number of
Scatter Gather Entries (SGE) supported by a connection is varied and when multiple
data segments are used, as described in section 2.2.10. Figure 3.10 shows the impact
on the latency as the maximum number of scatter gather entries are varied for both
VAPI and IBAL!. As the number of SGE supported by a connection increases, there
is an increase in the descriptor size for every message posted in that connection. This
increase in the descriptor size increases the latency for all messages posted in that
connection. There is no significant difference observed for the bandwidth test because
of pipelining.

!Due to a bug in the driver, IBAL only supports connections with SGE greater that or equal to
eight.

28

24 ‘ ‘ —— : 26 ‘ ‘ :
... 1 Segment. = . 1Segment —— o
22 | 2 Segments -~ RN 24+ 2 Segments -=ee
4 Segments - 2o | 4Segments »

20 - 8Segments - 1 8 Segments = ’
- 18 | 16Segments ---=-- | —~ 20 1 16 Segments =
£l 32 Segments - - 3 18| 32Segments o
5} © ; e .
E E
= [

64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096

Message Size (Bytes) Message Size (Bytes)
(a) VAPI (b) IBAL

Figure 3.11: Impact of Multiple Data Segments

It is observed that as the number of segments increases, the latency increases for
both VAPI and IBAL. Figure 3.11 shows the latency for different number of segments.
Here each segment is of equal size. In the graph, the total message size (sum of size
of all the segments) is plotted on the x-axis and time taken for the latency test is
plotted on the y-axis. Note that each data segment has to be copied to the NIC
through DMA. Hence as the number of segments increases, the number of DMAs
increase. Therefore the performance of PCI and the corresponding chipsets are also

major components in the impact of multiple data segments.
3.3.10 Impact of Maximum Transfer Unit size

This benchmark evaluates the performance of data transfer when MTU values
are varied as described in section 2.2.11. Figure 3.12 shows that there is not much
difference in latency for small messages, but the bandwidth for smaller MTU values

are significantly less. This is because larger MTU packets have lesser overhead per

29

packet. MTU 1KB performs better than MTU 2048 in bandwidth test. This is due

to effective pipelining for MTU 1KB.

30

Time (us)

Time (us)

T
-+

256
[512 e]
1 4 16 64 256 1024 4096
Message Size (Bytes)
(a) Latency for VAPI
256 ——
[512 —e
| 1024 e
2048 &
1 4 16 64 256 1024 4096

Message Size (Bytes)

(c) Latency for IBAL

Bandwidth (MB/s)

Bandwidth (MB/s)

900
800
700
600
500
400
300
200
100

900
800
700
600
500
400
300
200
100

256 —— T
[512 e T 1
| 1024 —xe |
2048 o [—
4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)
(b) Bandwidth for VAPI
2$6 ‘ | JUUPEPIRERE SEERE SRREE SRR
[512 e P
| 1024 = o]
2048 = S —
4 16 64 256 1K 4K 16K 64K256K 1M

Message Size (Bytes)

(d) Bandwidth for IBAL

Figure 3.12: Impact of MTU

31

CHAPTER 4

PERFORMANCE COMPARISON OF INFINIBAND,
MYRINET, AND QUADRICS

To provide more insights into the communication behavior of the three intercon-
nects, we use our micro-benchmarks described in chapter 2 and study their perfor-
mance characteristics. In this chapter, we evaluate InfiniBand, Myrinet, and Quadrics
using the micro-benchmarks [9]. For InfiniBand, we have used VAPI interface for the

micro-benchmarks.

4.1 Experimental Testbed

Our experimental testbed consists of a cluster system of 8 SuperMicro SUPER
P4DL6 nodes. Each node has dual Intel Xeon 2.40 GHz processors with a 512KB L2
cache and a 400 MHz front side bus. The machines were connected by InfiniBand,
Myrinet, and Quadrics interconnects. For InfiniBand, we used Mellanox InfiniHost
MT23108 DualPort 4X HCA adapter through an InfiniScale MT43132 Eight 4x Port
InfiniBand Switch. The InfiniHost HCA adapters and Myrinet NICs work under the
PCI-X 64-bit 133MHz interfaces. The Mellanox InfiniHost HCA SDK build id is
thca-x86-1.0.0-build-001. The adapter firmware build id is fw-23108-rel-2.00_0000-

rc12-build-002. For Myrinet, we used 225MHz Lanai-XP processors through a 8-port

32

Table 4.1: Non-Data Transfer Micro-Benchmarks (Time in us)

‘ Operation ‘ InfiniBand ‘ Myrinet ‘ Quadrics ‘
Memory registration (4KB) 73.06 2.42 -
Memory de-registration (4KB) 82.05 101.80 -
Posting a Receive Descriptor 0.56 0.17 0.12
Posting a Send Descriptor 0.72 0.18 0.25
Polling on Queue 1.08 0.88 0.30

Myrinet-2000 switch. The Quadrics Elan3 QM-400 cards were attached to the 8 nodes
and connected through an Elitel16 switch. The Quadrics cards use 64-bit 66 MHz PCI

slots. We used the Linux Red Hat 7.2 operating system.

4.2 Non-Data Transfer Operations

In this section, we measure the cost of non data transfer operations for the three
interconnects. Non-data transfer operations include the cost of memory registration
and de-registration, posting of send and receive descriptor and polling. Table 4.1
summarizes the results. We can see that InfiniBand memory registration and de-
registration cost is higher as compared to that of Myrinet. In Quadrics, the user
need not register the communication buffer because the NIC is capable of triggering
a page-fault if that buffer is not in physical memory. For the descriptor and polling
operations, we again see that InfiniBand as higher overhead as compared to Myrinet

and Quadrics.

4.3 Data Transfer Operations

In this section, we measure the cost of the following data transfer operations:

33

IBAS/R —— :

30 | IBARDMA - A

Myri S/R -

25 - Myri RDMA o 1
QSN RDMA ---=-

20 ;]

Time (us)

Message Size (Bytes)

Figure 4.1: Latency

4.3.1 Latency

End-to-end latency, as described in section 2.2.1, has been frequently used to
characterize the performance of interconnects. All the interconnects under study
support access to remote nodes’ memory space. Thus, we also measured the latency
to finish a remote put operation. InfiniBand/VAPI and Myrinet/GM also support
send /receive operations. Figure 4.1 shows the latency results. For small message,
Quadrics/Elanlib achieves the best latency, which is 2.0us. InfiniBand RDMA latency
is around 5.5us and send /receive latency is around 7.5us. Myrinet has a small message
latency of about 6.5us for send/receive. Its RDMA (directed send) has a slightly
higher latency of 7.3us. For messages less than 64 bytes, Myrinet send/receive can
combine data and descriptor at the sender side. Therefore it offers better performance

than directed send.

34

900

'IBASIR ———

800 |BA RDMA
—_ L MyriS/IR |
2 700 Myri RDMA =
g 600 QSN =]
E 500 [4
5 I]
S 400
2 300 | I
o R .
@ 200 t]

100 A

0 Noop o E 1 1 1 1 1

4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)

Figure 4.2: Bandwidth

4.3.2 Bandwidth

The bandwidth test is used to determine the maximum sustained data rate that
can be achieved at the network level. In this test, a sender keeps sending back-to-
back messages to the receiver until it has reached a pre-defined window size W, as
described in section 2.2.2. Then it waits for W/2 messages to finish and sends out
another W/2 messages. In this way, the sender ensures that there are at least W/2
and at most W outstanding messages. Figure 4.2 shows the bandwidth results with
very large window size. Figure 4.3 shows the bandwidth with different window size.

The peak bandwidth for InfiniBand, Myrinet, and Quadrics is around 838MB/s,
236MB/s and 314MB/s, respectively. We can see that InfiniBand is more sensitive

to the value of window size W and it performs much better for large messages.

35

900

IBAYW: T T T T
800 [IBAWS=
—~ L Myri W =8 -
£ 700 Myl’iW:
D 600 QSNW-=
= 500 QSN W =
S i
S 400
2 300 -
©
0 200 +
100 |
0 P
4 16 64 256 1K 4K 16K 64K256K 1M

Message Size (Bytes)

Figure 4.3: Bandwidth with Window Size

4.3.3 Bi-directional Latency and Bandwidth

Compared with uni-directional latency and bandwidth tests, bi-directional latency
and bandwidth tests put more stress on the PCI bus, the network interface cards, and
the switches. Therefore they may be more helpful to us to understand the bottleneck
in communication. The tests are carried out in a way described in section 2.2.3, similar
to the uni-directional tests. The difference is that both sides send data simultaneously.
From Figure 4.4, we can see bi-directional latency performance for all interconnects is
worse than their uni-directional latency except for Quadrics. Figure 4.5 shows results

for bandwidth. We see that for InfiniBand, the PCI-X bus becomes the bottleneck

and limits the bandwidth to around

directional bandwidth than Myrinet, its peak bi-directional bandwidth is only around

902MB/s. Although Quadrics has better uni-

319MB/s, which is less than Myrinet’s 471MB/s.

36

Time (us)

Bandwidth (MB/s)

70
60 r
50 r

T

30
20 r

"IBASIR ——
IBA RDMA

Myr

Myri RDMA
QSN -

X

iSIR

*

[|

10

1000

900 r

800

700 r

600
500
400
300
200
100

0

16 64 256 1K 4K
Message Size (Bytes)

Figure 4.4: Bi-directional Latency

T

BASIR —

=] 1 1 1 1 1 1

4 16

64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)

Figure 4.5: Bi-directional Bandwidth

37

4.3.4 Host Overhead in Communication

We define host communication overhead as the time CPU spends on communica-
tion tasks. The more time CPU spends in communication, the less time it can do
computation. Therefore this can serve as a measurement of the ability of a messaging
layer to overlap communication and computation. We characterize the host overhead
for both latency and bandwidth tests, as described in section 2.2.4. In the latency
test, we directly measure the CPU overhead for different message sizes. In the band-
width test, we insert a computation loop in the program. By increasing the time of
this computation loop, eventually we see a drop in the bandwidth.

Figure 4.6 presents the host overhead in the latency test. InfiniBand has the
highest overhead, which is 1.5us. Quadrics overhead is around 0.7us. Myrinet has
the least overhead, which is around 0.5us. Myrinet reduces the overhead further for
messages less than 64 bytes by combining data and send descriptors. Figure 4.7 shows
the impact of computation time on bandwidth. All three interconnects can overlap
communication and computation quite well. Their bandwidth drops only after over

99% of running time is used for computation.
4.3.5 Overhead of Completion Notification

The network interconnects we have studied support different mechanisms to report
the completion of remote memory operations. For example, InfiniBand uses CQ, while
Myrinet and Quadrics rely on event abstractions. We measure the cost of completion
notification as described in section 2.2.5. Figure 4.8 shows the increase in latency
when using these mechanisms for remote memory access at the receiver side. Quadrics

has very efficient notification mechanism, which adds only 0.4us overhead for large

38

Time (us)

Bi-directional bandwidth MBps

25 T T T T T T T T T

IBA ——
Myri e
2| QSN =
WM
15+ 8
05
O ! ! ! ! ! ! ! ! !

4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)

Figure 4.6: Host Overhead in Latency Test

1000 x r w T

800

600

400

200

T
1

0 1 1 1 1
90 92 94 96 98 100

Percentage of CPU allocated for other computation

Figure 4.7: CPU Utilization in Bandwidth Test

39

10 T T T T

IBA ———
Myri —— o
° QSN S i

Time (us)

Message Size (Bytes)

Figure 4.8: Overhead due to Completion

messages. For messages less than 64 bytes, there is no extra overhead. InfiniBand has
an overhead of around 2.1us. Myrinet GM’s directed send does not have a mechanism
to notify the receiver of message arrival. Therefore, we simulated the notification by

using a separate send operation. This adds around 3-5us overhead.
4.3.6 Overhead in Blocking

Instead of busy polling, the upper layer can also use blocking to wait for com-
pletions. We measure the cost of interrupt in this micro-benchmark as described in
section 2.2.6. From Figure 4.9 we can observe that InfiniBand has the highest over-
head, which is over 20us. The overheads for Myrinet and Quadrics are about 11us

and 13us, respectively.

40

24 T T T T

20 IBA ——— a
~ 18 | Myri — — |
3 QSN
o 16 A
£
= 14 A

12 i """"" SR, P %* 777777 o o ¥¥ 777777777 o |

10 —)(**«*»——»)6»—/>*—"X"””‘<* 777777 SV S N3 ,,_/—/’/x"*——.;%’ 7777777 x \\\\\\:

8 1 1 L 1
‘ 16 64 256 1K 4K

Message Size (Bytes)

Figure 4.9: Overhead due to Blocking

4.3.7 Impact of Buffer Reuse

In most micro-benchmarks that are designed to test communication performance,
only one buffer is used at the sender side and the receiver side, respectively. However,
in real applications a large number of different buffers are usually used for commu-
nication. The buffer reuse pattern can have a significant impact on the performance
of interconnects that support user-level access to network interfaces such as those
studied in this paper.

To capture the cost of address translation at the network interface, we have de-
signed two schemes of buffer reuse pattern as described in section 2.2.7. In scheme
1, N different buffers of the same size are used in FIFO order for multiple itera-
tions. By increasing the number N, it may happen that eventually the performance
drops. Basically, this test shows how many different communication buffers can be

handled at the same time in the network interface without degrading performance.

41

900
800
700

600 r 1
500 r 1

Bandwidth MBps

400 r 1

300 r 1

200
2 4 6 8 10 12 14 16 18 20

Number of buffers

Figure 4.10: Bandwidth (size=512K) Buffer Scheme 1

Figure 4.10 shows the bandwidth results with 512KBytes messages. We can see that
up to 25 buffers, Myrinet and Quadrics show no performance degradation. However,
InfiniBand performance drops when more than 10 buffers are used.

Scheme 2 is slightly more complicated. In this scheme, the test consists of N
iterations and we define a buffer reuse percentage R. For the N iterations of the test,
N*R iterations will use the same buffer, while all other iterations will use completely
different buffers. By changing buffer reuse percentage R, we can see how communi-
cation performance is affected by buffer reuse patterns. From Figures 4.11 and 4.12,
we can see that Quadrics is very sensitive to buffer reuse patterns. Its performance
drops significantly when the buffer reuse rate decreases. InfiniBand also shows similar
behavior. Myrinet latency increases slightly when the buffer reuse rate decreases, but

its bandwidth performance is not sensitive to the buffer reuse rate.

42

60 x x x ;

IBA ——
S5 [My e P
50 F QSN = T
45 r X;e i

GE) 35 [I S * %:xx -------- VR D

E 30! A
25 | x*]
20 F 1
10 * * * *

100 80 60 40 20 0

Percentage of buffer reuse

Figure 4.11: Latency (size=4K) Buffer Scheme 2

900
800
» 700
o
M 600
=
= 500 f A
S 400 | A
£ 300]
@ 200 b A
0 ‘ 1 | l
100 80 60 40 20 °

Percentage of buffer reuse

Figure 4.12: Bandwidth (size=512K) Buffer Scheme 2

43

w
o

Time (us)
= N N
a1 o ol

=
o

5 L * Ei

1 1 1

1 2 3 4 5 6 7
Number of Clients

o

Figure 4.13: Hot Spot Send Test

4.3.8 Hot-Spot Tests

Hot-spot tests are designed to measure the ability of network interconnects to
handle unbalanced communication patterns. We have used two sets of hot-spot tests
as described in section 2.2.8. In hot-spot send tests, a master node keeps sending
messages to a number of different slave nodes. In hot-spot receive tests, the mas-
ter node receives messages from all the slave nodes. We vary the number of slave
nodes. Figures 4.13 and 4.14 show the hot spot performance results. We can see that
Quadrics scales very good when the number of slaves increases. On the other handle,

InfiniBand and Myrinet do not scale very well.

44

Time (US)

0 : 1 L 1
1 2 3 4 c : d

Number of Clients

Figure 4.14: Hot Spot Send-Receive Test

45

CHAPTER 5

CONCLUSIONS

In this thesis, we have used a set of micro-benchmarks to evaluate three high
performance cluster interconnects: InfiniBand, Myrinet and Quadrics. We provide a
detailed performance evaluation for their communication performance by using a set
of micro-benchmarks. We show that in order to get more insights into the performance
characteristics of these interconnects, it is important to go beyond simple tests such
as latency and bandwidth. Specifically, we need to consider the performance impact
of certain features such as remote memory access, completion notification and address
translation mechanisms in the network interface.

We further used the micro-benchmark suite to evaluate the two user-level inter-
faces of InfiniBand: VAPI and IBAL. We designed micro-benchmarks which evaluated
the advanced features of InfiniBand Architecture. Several tests were presented that
help in obtaining a clear understanding of the implementation details of the com-
ponents involved in the InfiniBand Architecture. It clearly provides insights for the

developers of higher layers and applications over IBA.

46

5.1 Ongoing Work

We have extended the micro-benchmarks to the MPI layer. We have presented
a comprehensive performance evaluation of MPI Implementations over InfiniBand,
Myrinet and Quadrics [8]. Our performance evaluation consists of two major parts.
The first part consists of a set of MPI level micro-benchmarks that characterize differ-
ent aspects of MPI implementations. The second part of the performance evaluation
consists of application level benchmarks. We have used the NAS Parallel Benchmarks
and the sweep3D benchmark. We not only present the overall performance results, but
also relate application communication characteristics to the information we acquired
from the micro-benchmarks. Our results show that the three MPI implementations

all have their advantages and disadvantages.

5.2 Future Work

The micro-benchmark presented in this thesis gives valuable guidelines to the
upper layer developers. The suite can further be extended by adding tests which are
specifically tailored to a particular domain such as distributed shared memory, data
centers, and socket direct protocol. Such a micro-benchmark suite will evaluate an
interconnect relative to the communication characteristics of the domain and give
more specific information about the interconnect for that particular domain.

InfiniBand products are rapidly maturing and new IBA adapters and interfaces are
expected in the near future. The micro-benchmarks presented in this thesis can easily

be extended to evaluate upcoming new implementations of InfiniBand Architecture.

47

BIBLIOGRAPHY

[1] M. Banikazemi, J. Liu, S. Kutlug, A. Ramakrishna, P. Sadayappan, H. Shah, and
D. K. Panda. VIBe: A Micro-benchmark Suite for Evaluating Virtual Interface
Architecture (VIA) Implementations. In IPDPS, April 2001.

[2] Christian Bell, Dan Bonachea, Yannick Cote, Jason Duell, Paul Hargrove, Parry
Husbands, Costin Iancu, Michael Welcome, and Katherine Yelick. An evaluation
of current high-performance networks. In International Parallel and Distributed
Processing Symposium (IPDPS’03), April 2003.

[3] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro, pages 29-35, Feb 1995.

[4] Balasubramanian Chandrasekaran, Pete Wyckoff, and Dhabaleswar K. Panda.
MIBA: A Micro-benchmark Suite for Evaluating InfiniBand Architecture Imple-
mentations. In Performance TOOLS 2003, September 2003.

[5] InfiniBand Trade Association. http://www.infinibandta.com.

[6] InfiniBand Trade Association, InfiniBand Architecture Specification, Volume 1,
Release 1.0. http://www.infinibandta.com.

[7] Linux InfiniBand Project. http://infiniband.sourceforge.net.

[8] Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang,
Sushmitha Kini, Weikuan Yu, Darius Buntinas, Pete Wyckoff, , and Dha-
baleswar K. Panda. Performance Comparison of MPI Implementations over In-
finiBand, Myrinet and Quadrics. In SuperComputing 2003 Conference, November
2003.

[9] Jiuxing Liu, Balasubramanian Chandrasekaran, Weikuan Yu, Jiesheng Wu, Dar-
ius Buntinas, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K. Panda.
Micro-benchmark level performance comparison of high-speed cluster intercon-
nects. In Hot Interconnects 11, August 2003.

[10] Mellanox Technologies. http://www.mellanox.com.

48

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Mar 1994.

J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. Lecture Notes in
Computer Science, 1586, 1999.

Fabrizio Petrini, Adolfy Hoisie, Wu chun Feng, and Richard Graham. Perfor-
mance Evaluation of the Quadrics Interconnection Network. In Workshop on
Communication Architecture for Clusters 2001 (CAC ’01), April 2001.

Quadrics, Ltd. http://www.quadrics.com.

T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and
C. V. Packer. BEOWULF': A parallel workstation for scientific computation. In

Proceedings of the 24th International Conference on Parallel Processing, pages
[:11-14, Oconomowoc, WI, 1995.

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-level Net-
work Interface for Parallel and Distributed Computing. In ACM Symposium on
Operating Systems Principles, 1995.

M. Warren, D. Becker, M. Goda, J. Salmon, and T. Sterling. Parallel supercom-
puting with commodity components, 1997.

M. Welsh, A. Basu, and T. von Eicken. Incorporating Memory Management
into User-Level Network Interfaces. In Proceedings of Hot Interconnects V, Aug.
1997.

49

