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Abstract. Recently, InfiniBand Architecture (IBA) has been proposed
as the next generation interconnect for I/O and inter-process commu-
nication. The main idea behind this industry standard is to use a scal-
able switched fabric to design the next generation clusters and servers
with high performance and scalability. This architecture provides vari-
ous types of new mechanisms and services (such as multiple transport
services, RDMA and atomic operations, multicast support, service lev-
els, and virtual channels). These services are provided by components
(such as queue pairs, completion queue, and virtual-to-physical address
translations) and their attributes. Different implementation choices of
IBA may lead to different design strategies for efficient implementation
of higher level communication layer/libraries (such as Message Passing
Interface (MPI), sockets, and distributed shared memory). It also has an
impact on the performance of applications.

Currently there is no framework for evaluating different design choices
and for obtaining insights about the design choices made in a particular
implementation of IBA. In this paper we address these issues by propos-
ing a new micro-benchmark suite (MIBA) to evaluate the InfiniBand ar-
chitecture implementations. MIBA consists of several micro-benchmarks
which are divided into two major categories: non-data transfer related
micro-benchmarks and data transfer related micro-benchmarks. By us-
ing the new micro-benchmark suite, the performance of IBA implemen-
tations can be evaluated under different communication scenarios, and
also with respect to the implementation of different components and at-
tributes of IBA. We demonstrate the use of MIBA to evaluate the second
generation IBA adapters from Mellanox Technologies.

1 Introduction

Emerging distributed and high performance applications require large computa-
tional power as well as low latency, high bandwidth and scalable communication
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subsystems for data exchange and synchronous operations. In the past few years,
the computational power of desktop and server computers has been doubling ev-
ery eighteen months. The raw bandwidth of network hardware has also increased
to the order of Gigabits per second. During the past few years, the research and
industry communities have been proposing and implementing many user-level
communication systems such as AM [20], VMMC [7], FM [14], EMP [17,18],
U-Net [19,21], and LAPI [16] to address some of the problems associated with
the traditional networking protocols. In these systems, the involvement of op-
erating system kernel is minimized and the number of data copies is reduced.
As a result, they can provide much higher communication performance to the
application layer.

More recently, InfiniBand Architecture [10] has been proposed as the next
generation interconnect for I/O and inter-process communication. In InfiniBand,
computing nodes and I/O nodes are connected to the switched fabric through
Channel Adapters. InfiniBand provides a Verbs interface which is a superset
of VIA [9,8]. This interface is used by the host systems to communicate with
Host Channel Adapters. InfiniBand provides many novel features: three different
kinds of communication operations (send/receive, RDMA, and atomic), multiple
transport services (such as reliable connection (RC), unreliable datagram (UD),
and reliable datagram (RD), different mechanisms for QoS (such as service levels
and virtual lanes). In addition to providing scalability and high performance,
InfiniBand also aims to meet applications’ need for Reliability, Availability and
Serviceability (RAS).

Recently several companies have started shipping out InfiniBand hardware.
It is now a challenging task to report the performance of InfiniBand architec-
tures accurately and comprehensively. The standard tests such as ping-pong
latency and bandwidth give very little insight into the implementation of vari-
ous components of the architecture. It does not evaluate the system for various
communication scenarios. Therefore it does not depict all the characteristics of
a real life application. Hence there is a need to study the aspects of various com-
ponents involved in the communication. For example, the design choices in the
implementation of virtual to physical address translation may lead to different
performance results.

InfiniBand architecture specification offers a wide range of features and ser-
vices. This is a motivating factor for computer architects to develop highly ef-
ficient implementations of higher-level programming model layers such as MPI
[12,11], sockets [4] and distributed shared memory [13]. Also the architecture
provides a promising efficient communication subsystem for various applications
such as web servers and data centers. The various features and services offered
by the InfiniBand architecture increases the number of design choices for imple-
menting such programming models and applications. Hence there is a need for
a framework to evaluate various such design choices.

The hardware products for the InfiniBand Architecture are still in their early
stages but are rapidly developing. More features and still better performance of
the hardware are expected in the near future. A systematic and in depth study of



various components by a framework would provide valuable guidelines to hard-
ware vendors to identify their strengths and weaknesses in their implementations
and bring out better releases of the InfiniBand products.

The requirements of such a framework are:

1. To evaluate various implementations of InfiniBand architecture and compare
their strengths and weakness in a standardized manner.

2. To evaluate the system for various communication scenarios.

3. To provide insights to developers of programming model layers and applica-
tions and to guide them in adopting appropriate and efficient strategies in
their implementations.

4. To give valuable guidelines to InfiniBand hardware vendors about their im-
plementations so that it can be optimized.

Traditional models of computation and communication are not sufficient to
address the requirements listed above. We take on the challenge of designing a
micro-benchmark suite to comprehensively evaluate the InfiniBand Architecture.
This suite is divided into two major categories: Non-Data transfer related and
Data Transfer related. Under the first category, we include micro-benchmarks for
measuring the cost of several basic non-data transfer related operations: creating
and destroying Queue Pairs, creating and destroying Completion Queues, and
memory registration and deregistrations. The cost of such operations are evalu-
ated by varying various parameters associated with them. The second category
consists of several data-transfer related micro-benchmarks. The main objective
here is to the isolate different components (such as virtual-to-physical address
translation, multiple data segments, and event handling) and study them by
varying their attribute values. This would clearly bring out the importance of
that component in the critical path of communication. It would also help us
to evaluate such components for various implementations of InfiniBand. The
micro-benchmark suite would provide valuable insights to the developers of high
performance parallel applications and data center enterprise applications

The micro-benchmarks are evaluated on a Linux based InfiniBand cluster.
The benchmark suite evaluates the Verbs Application Programmers Interface
(VAPI) over InfiniHost(TM) MT23108 Dual Port 4X Host Channel Adapter
(HCA) cards provided by Mellanox Technologies [1].

The rest of the paper is organized in the following manner. Section 2 gives an
overview of the IBA architecture. Sections 3 and 4 describe the Mellanox HCAs
and their Verbs API interface. Section 5 describes the benchmark tests in detail.
In Section 6 we present the results. Related work, conclusions and future work
are presented in Sections 7 and 8.

2 InfiniBand Architecture Overview

The InfiniBand Architecture defines a System Area Network (SAN) for inter-
connecting processing nodes and I/O nodes. Figure 1 provides an overview of



the InfiniBand architecture. It provides the communication and management in-
frastructure for inter-processor communication and I/0. The main idea is to use
a switched, channel-based interconnection fabric. The switched fabric of Infini-
Band Architecture provides much more aggregate bandwidth. Also, a switched
fabric can avoid single point of failure and provide more reliability. InfiniBand
Architecture also has built-in QoS mechanisms which provide virtual lanes on
each link and define service levels for each packets.
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Fig. 1. Illustrating a typical system configuration with the InfiniBand Architecture
(Courtesy InfiniBand Trade Association)

In an InfiniBand network, processing nodes and I/O nodes are connected
to the fabric by Channel Adapters (CA). Channel Adapters usually have pro-
grammable DMA engines with protection features. They generate and consume
IBA packets. There are two kinds of channel Adapters: Host Channel Adapter
(HCA) and Target Channel Adapter (TCA). HCAs sit on processing nodes.
Their semantic interface to consumers is specified in the form of InfiniBand
Verbs. Unlike traditional network interface cards, Host Channel Adapters are
connected directly to the system controller. TCAs connect I/0 nodes to the fab-
ric. Their interface to consumers are usually implementation specific and thus
not defined in the InfiniBand specification.

The InfiniBand communication stack consists of different layers. The inter-
face presented by Channel Adapters to consumers belongs to the transport layer.
A queue-based model is used in this interface. A Queue Pair in InfiniBand Ar-
chitecture consists of two queues: a send queue and a receive queue. The send



queue holds instructions to transmit data and the receive queue holds instruc-
tions that describe where received data is to be placed. Communication oper-
ations are described in Work Queue Requests (WQR) and submitted to the
work queue. Once submitted, a Work Queue Request becomes a Work Queue
Element (WQE). WQEs are executed by Channel Adapters. The completion of
work queue elements is reported through Completion Queues (CQ). Once a work
queue element is finished, a completion queue entry is placed in the associated
completion queue. Applications can check the completion queue to see if any
work queue request has been finished.

3 Mellanox Hardware Architecture

Our InfiniBand platform consists of several InfiniHost HCAs and an InfiniScale
switch from Mellanox [1]. In this section we will give a brief introduction to both
the HCA and the switch.

InfiniScale is a full wire-speed switch with eight 4X ports or 1X Infini-
Band Ports. These ports have an integrated 2.5 Gb/s physical layer serial-
izer /deserializer and feature auto-negotiation between 1X and 4X links. There is
also support for eight Virtual Data Lanes (VLs) in addition to a Dedicated Man-
agement Lane (VL15). Additionally, there is also support for link packet buffer-
ing, inbound and outbound partition checking and auto-negotiation of link speed.
Finally, the switch has an embedded RISC processor for exception handling, out
of band data management support and performance monitoring counter support.

The InfiniHost MT23108 dual 4X ported HCA /TCA allows for a bandwidth
of up to 10 Gbit/s over its ports. It can potentially support up to 2?* QPs, End
to End Contexts and CQs. Memory protection along with address translation
is implemented in hardware itself. PCI-X support along with DDR memory
allows portions of host memory to be configured as a part of system memory
using a transparent PCI bridge allowing the host to directly place HCA related
data without going over the PCI-X bus. The DDR memory allows the mapping
of different queue entries namely work queues entries (WQE’s) and execution
queue entries to different portions of the system space transparently. At its heart,
the HCA picks WQE’s in a round robin fashion (the scheduler is flexible and
supports more complex scheduling including weighted round robin with priority
levels) and posts them to execution queues allowing for the implementation of
QoS at a process level. Different WQE’s specify how the completion notification
should be generated. In the following section, we discuss the software interface
to InfiniBand.

4 InfiniBand Software Interface

Unlike other specifications such as VIA, InfiniBand Architecture doesn’t specify
an API. Instead, it defines the functionality provided by HCAs to operating
systems in terms of Verbs[10]. The Verbs interface specifies such functionality as



transport resource management, multicast, work request processing and event
handling.

Although in theory APIs for InfiniBand can be quite different from the Verbs
interface, in reality many existing APIs have followed the Verbs semantics. One
such example is the VAPT interface [1] from Mellanox Technologies. Many VAPI
functions are directly mapped from corresponding Verbs functionality. This ap-
proach has several advantages: First, since the interface is very similar to the
Verbs, the efforts needed to implement it on top of HCA is reduced. Second,
because the Verbs interface is specified as a standard in the InfiniBand Archi-
tecture, it makes the job much easier to port applications from one InfiniBand
API to another if they are both derived from Verbs.

As we have mentioned earlier, the communication in Verbs is based on
queue-pairs. InfiniBand communication supports both channel (send/receive)
and memory (RDMA) semantics. These operations are specified in work queue
requests and posted to send or receive queues for execution. The completion of
work queue requests is reported through completion queues (CQs). Note that all
communication memory must be registered first. This step is necessary because
the HCA uses DMA operation to send from or receive into host communication
buffers. These buffers must be pinned in memory and the HCA must have the
necessary address information in order to carry out the DMA operation.

5 Micro-benchmark Suite for InfiniBand

In this section we discuss the MIBA micro-benchmark suite. Besides quantifying
the performance seen by the user under different circumstances, MIBA is also
useful to identify the time spent in each of the components during communi-
cation. The micro-benchmark tests can be categorized into two major groups:
non-data transfer related micro-benchmarks and data transfer related micro-
benchmarks. These categories are discussed in detail in the rest of the section.
Note that not all features supported by the IBA specification are available in
the current implementations. We have evaluated most of the components that
are available. We plan to extend the micro-benchmark suite as more features
become available.

5.1 Non-Data Transfer Operations

In this category we measure the costs of the following operations:

Create, Modify and Destroy Work Queues: A Work Queue (or Queue
Pair) is the virtual interface that the hardware provides to an IBA consumer,
and communication takes place between a source QP and a destination QP. IBA
supports various transport services through these QPs. To establish a reliable
connection the QP must transit several states. This is established by appropriate
modify operations on these QPs. To establish a Reliable connection, the modify
operation is performed as per the IBA specification [10]. Here we measure the
cost of setting up and tearing down the connection. The modify operation would



represent the setting up of connections and the destroy operation represents
the tearing down of the connection. QP connection does not correlate directly
with TCP connection because of protection and other requirements. Note that
the cost of such an operation would depend on parameters like the maximum
number of WQEs supported by that QP.

Create and Destroy Completion Queues: Completion Queues (CQ)
serve as the notification mechanism for the Work Request completions. It can
be used to multiplex work completions from multiple work requests across queue
pairs on the same HCA. We measure the cost to create and destroy CQs. Again,
such a cost will depend on the attributes of the CQ.

Memory Registration and Deregistration: The IBA architecture pro-
vides sophisticated high performance operations like RDMA and user mode I0.
To manage this, appropriate memory management mechanisms are specified.
Memory Registration operation allows consumers to describe a set of virtually
contiguous memory locations that can be accessed by the HCA for communica-
tion. We measure the cost for registering and deregistering the memory.

Work Request Processing Operations: Work Requests are used to sub-
mit units of work to the Channel Interface. Some types of work requests are
Send/Receive, RDMA read/write, and Atomic operations. A work request usu-
ally triggers communication between the participating nodes. The results from
a Work Request operation are placed in a completion Queue Entry. This result
can be retrieved by polling the completion queue. We measure the cost of work
request operations, polling on completed work request operations, and polling
on pending work request operations (empty CQs). The cost indicates the host
overhead involved in communication. If the cost is less, then more CPU cycles
can be allocated for other computation.

5.2 Data Transfer Operations

In this category, the basic operations which are used for transfer of data are
evaluated under different scenarios. The rest of the section describes them in
detail.

5.2.1 Basic Tests: These micro-benchmarks are used to find the latency, uni-
directional bandwidth, bi-directional bandwidth, and CPU utilization for our
base configuration. The base configuration has the following properties: 100%
buffer reuse, one data segment, polling on Completion Queue, one connection,
no notify mechanism. These properties are described in more detail in later in
this section.

Latency Test: Latency measures the time taken for a message of a given size
to reach a designated node from the source or the sender node. For measuring
the latency, the standard ping-pong test is used. We calculate the latency for
both synchronous (Send/Receive on RC) and asynchronous operations (RDMA
on RC). The ping side posts two work requests: one for send and another for
receive. It then polls for the completion of the receive request. The pong side
posts a receive request, waits for it to complete and then posts a send work



request. This entire process is repeated for sufficient number of times (so that
the timing error is negligible) from which an average round trip time is produced,
then it is divided by two to estimate the one way latency. This test is repeated
for different message sizes.

Bandwidth Test: The objective of the bandwidth test is to determine the
maximum sustained date rate that can be achieved at the network level. To
measure the bandwidth, messages are sent out repeatedly from the sender node
to the receiver node for a number of times and then the sender waits for the last
message to be acknowledged. The time for sending these back to back messages
is measured and the timer is stopped when the acknowledgment for the last
message is received. The number of messages being send is kept large enough
to make the time for transmission of the acknowledgment of the last message
negligible in comparison with the total time.

In order to avoid overloading of the HCA, we use the concept of a window size
w. Initially w messages are posted. Following which the sender waits for the send
completion of w/2 messages. Upon completion, another w/2 messages are posted.
This pattern for waiting for w/2 messages and posting w/2 messages are repeated
sufficient number of times. Since there is always w/2 outstanding messages we
make sure that the there is sustained data movement on the network. However,
if the HCA is faster in dispatching the incoming work requests than the host
posting a work request, then there might not be any change in the results for
various window sizes.

Bi-directional Bandwidth Test: Networking layer in IBA like any other
modern interconnects supports bidirectional traffic in both the directions. The
aim of this test is to determine the maximum sustained date rate that can be
achieved at the network level both ways. To measure the bidirectional band-
width, messages are sent out from both sender and receiver repeatedly, both
wait on the completion of the last receive. The time for sending these back
to back messages is measured. Similar to the bandwidth test, we incorporate
window size here.

CPU Utilization Test: Higher level applications usually involve a compu-
tation cycle followed by communication cycle. If the time spent on communica-
tion is small, the valuable CPU cycles can be allocated for useful computation.
This raises an important question: how many CPU cycles are available for com-
putation when communication is performed in tandem? CPU utilization test is
similar to the bi-directional bandwidth test where computation is gradually in-
serted. Each iteration of a measurement loop includes four steps: post receive
work request for expected incoming messages, initiate sends, perform compu-
tational work, and finally wait for message transmission to complete. As the
amount of work increases, the host CPU fraction available to message passing
decreases.

5.2.2 Address Translation A very important component of any user-level
communication system is the virtual-to-physical address translation. In Infini-
Band, the HCA provides the address translation[21]. In the basic setup, mes-
sages are sent from only one buffer. Usually hardware implementations cache



the physical address of this buffer and hence the cost of virtual-to-physical ad-
dress translation is not reflected in the latency or bandwidth tests. However by
varying the percentage of buffer reused one can see significant difference in the
basic test results. Studying the impact of virtual-to-physical address translation
can help higher level developer optimize buffer pool and memory management
implementations.

To capture the cost of address translation and effectiveness of physical ad-
dress cache, we have devised two schemes. In Scheme 1, if P is the fraction (or
percentage) of buffer reuse then there are 1/P buffers used by the test. Access
to such buffers are evenly distributed across the basic tests (latency and band-
width). Here we try to evaluate the effectiveness of the caching scheme. If the
cache is effective enough to hold the address of all the 1/P buffers then there
should be no variation in the results. In Scheme 2, if P is the fraction (or percent-
age) of buffer reuse and n is the total number of messages communicated between
the two sides then n/P messages use the same buffer while (1 — n/P) messages
use different buffers. Again, different buffer access are evenly distributed across
the test. Here we try to evaluate the cost of virtual-to-physical address trans-
lation. As the percentage of buffer reuse decreases, more and more new buffers
are accessed.

Illustration: Assume that we have ten buffers numbered 0 to 9 and buffer
reuse percentage is 25%. In Scheme 1, the buffer access sequence would be 0, 1,
2,3,0,1,2,3,..., and so on. If the cache is big enough to fit all the buffers then
there will be no change in the latency and bandwidth numbers. In Scheme 2, the
access sequence would be 0, 1, 2, 3,0,4,5,6,0, 7, 8,9,..., and so on. The buffer
’0 is reused 25% of the time and the rest of the time different buffers which are
not in the cache are used.

5.2.3 Multiple Queue Pairs IBA architecture specification supports 224
QPs. For connection oriented transport services like RC, a QP is bound ex-
clusively for one connection. Hence as the number of connections increases, the
number of active QPs increases. Therefore, it is important to see whether the
number of active QPs has any effect on the basic performance. This information
is important for applications which run on many nodes and there is a need to
establish reliable connection between the nodes. This benchmark thus provides
valuable information regarding the scalability of the InfiniBand architecture for
large scale systems.

5.2.4 Multiple Data Segments IBA supports scatter and gather operations.
Many high level communication libraries such as MPI which support gather and
scatter operations can use this feature directly. Therefore it is necessary to study
the impact of the number of gather and scatter data segments on the basic
performance.

5.2.5 Maximum Transfer Unit Size The maximum payload size supported
by a particular connection may take any of the following values: 256, 512, 1024,
2048, or 4096 bytes. A smaller memory transfer unit (MTU) may improve the
latency for small messages while a larger MTU may increase the bandwidth for



larger messages due to smaller overload per payload. Hence depending on the
MTTU the results of the base tests may vary. Therefore the higher level commu-
nication library and applications developers must be aware of such variations.
We measure the performance through the basic tests by varying the MTU.

5.2.6 Maximum Scatter and Gather Entries The maximum number of
scatter gather entries (SGE) supported by a QP can be specified during creation
of that QP. A larger SGE may potentially increase the size of Work Request
posted to the HCA. On the other hand, a QP with smaller SGE may not be
flexible if the application uses scatter and gather operations of large data seg-
ments frequently. Hence it is important that the application developer be aware
of this trade-off. We measure the performance by varying the SGE values.

5.2.7 Event Handling IBA also supports event notification. On completion
of the work request, a consumer defined event handler is invoked which does the
required functions. In our micro-benchmark suite the main thread waits on a
semaphore while the event handler signals the semaphore, upon completion of
the Work Request operations. Event handling is preferred to polling in scenarios
where the application is better off performing other computation rather than
waiting on polling. We evaluate the performance when event handling instead of
polling is used for the basic tests.

5.2.8 Impact of Load at HCA In all the basic tests only two nodes commu-
nicate between themselves and the HCA is exclusively used by the corresponding
nodes. An interesting challenge would be to evaluate the performance of the sys-
tem when a HCA is involved in more that one communication, hence causing
contention for HCA resources. The objective here is similar to that of the CPU
utilization test. The test is carefully designed so as to avoid contention at the
host processors or at the PCI-bus and to create contention only at the HCA. Two
nodes (Sender and Receiver) are involved in bandwidth test described previously.
Other nodes try to load the HCA of the sender by sending RDMA messages with
negligible size. RDMA messages are used because there is no contention at the
sender host processor. The message size is chosen to be small (4 bytes in this
case) so that the contention at PCI bus at the sender side (also at the switch
and wire) are minimal. We measure the results for the basic test by varying the
number of other nodes involved in sending RDMA messages to the sender.

6 Performance Evaluation and Discussion

In this section we evaluate VAPI over Mellanox HCA, the currently available
implementation of IBA.
6.1 Experimental Testbed

Our experimental testbed consists of a cluster system of 8 SuperMicro SUPER
P4DL6 nodes. Each node has dual Intel Xeon 2.40 GHz processors with a 512KB



L2 cache and a 400 MHz front side bus. The machines are connected by Mellanox
InfiniHost MT23108 DualPort 4X HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The HCA adapters work under the PCI-X
64-bit 133MHz interfaces. The Mellanox InfiniHost HCA SDK build id is thca-
x86-0.2.0-build-001. The adapter firmware build id is fw-23108-rel-1_18_0000.

6.2 Non-Data Transfer Operations

The results obtained for non-data transfer benchmarks are presented in Table 1,
Figure 2, Figure 3(a), and Figure 3(b). Table 1 summarizes the cost of connection
management and work request operations. Connection is established by modify
QP operation and is destroyed by destroy QP operation as described in section
5.1. It is observed that the creation and tearing of connection is costly. When a
reliable connection is created or destroyed, the resources for that connection must
be allocated or freed. Hence the cost. This provides valuable information to the
developers of application which requires dynamic creation of connections. In that
case the developer may choose to implement Reliable Datagram (RD) instead
of Reliable Connection. Note that RD is not currently supported in available
IBA implementation but is expected soon. The cost for posting a work request
is less implying that the CPU overhead for communication is less for Mellanox
HCAs. Figure 2 shows the cost of memory registration and deregistration. The
memory registration cost increases exponentially after 1IMB and is around 100
milliseconds for 64MB. Figures 3(a) and 3(b) show the cost of CQ and QP op-
erations with respect to the maximum number of outstanding requests expected
on that queue. Note that the QP operations here do not involve setting up of
connections hence the cost for QP destroy operation shown in the Figure 3(b)
is not as high the cost of the QP destroy operation indicated in Table 1.

Table 1. Non-Data Transfer Micro-Benchmarks

| Operation | Time in ps |
Creating a Connection (modify QP) 195.5
Tearing Down Connection (destroy QP) 218.2
Posting a Receive Work Request 0.6
Posting a Send Work Request 0.7
Polling on Complete Queue 1.0
Polling on Empty Queue 0.3

6.3 Data Transfer Operations

In this section we present the data-transfer related benchmark results. All the
tests use Send-Receive primitives unless explicitly specified as RDMA.



Cost (us)

170

160
150
140
130

120

110

(a) Completion Queue operations

300

Cost (us)

‘ Membry Régistér ——
Memory Deregister -

50

Fig.

2.

16 64 256 1K 4K 16K 64K
Buffer Size (Bytes)

Cost of Memory Operations

cQ

destroy =

1000 |

‘ 400 —————
QP Create
350 QP destroy -
1 300
8 250
& 200
i o
150
"""" 100 7
‘ ) I
o o o o o o
S O S g8
S O g8 88
> O s g g
) Num

Fig. 3. Cost of CQ and QP operations

8000 r

(b) Queue Pair operations

9000 r
10000



Time (us)

Bandwidth (MB/s)

Bandwidth (MB/s)

Send Receive ——
RDMA —-x—

910

16 64 256 1024 4096
Message Size (Bytes)

(a) Latency

900
890
880
870
860 f
850

840 | /)
830 |,

820
810

Send Receive ——

4K

16K 64K 256K M
Message Size (Bytes)

(c) Bi-directional Bandwidth

Bandwidth (MB/s)

Bidirectional Bandwidth (MB/s)

860
840
820
800
780
760
740
720
700 ¥,
680 ¥

Send Receive ——
RDMA

2

660 L L L
4K 16K 64K 256K

Message Size (Bytes)

(b) Bandwidth

1000 : . . !

M

800 f

600 f

400

200 f

0

0 20 40 60 80

100

% of CPU cycles dedicated to other computation

(d) CPU Utilization

Fig. 4. Basic Tests

850

800

750

700 | £

650 |

600
4K

16K 64K 256K M
Message Size (Bytes)

(a) Bandwidth for Scheme 1

Bandwidth (MB/s)

850

600 L L L
4K 16K 64K 256K

Message Size (Bytes)

(b) Bandwidth for Scheme 2

Fig. 5. Impact of Virtual-to-Physical Address Translation

M



6.3.1 Basic Tests Here we present the results for the base settings described
in section 5.2.1. The latency and bandwidth results are as shown in Figure
4(a) and Figure 4(b). The one-way RDMA latency is 5.7us and peak unidirec-
tional bandwidth is around 840MBps. Currently available PCI-X bus supports
a bandwidth of around 1GBps. This and the chipset limitations are the reason
why the bi-directional bandwidth (Figure 4(c)) is not twice that of the unidi-
rectional bandwidth. There is no variation for different window sizes for both
bandwidth and bi-directional bandwidth. Figure 4(d) shows the CPU utiliza-
tion. The peak bi-directional bandwidth when there is no computation involved
is around 900MBps. We increase the computation gradually to see how the com-
munication is affected. From the graph we can see that there is fall in the band-
width after 96% of CPU cycles are allocated for computation. We can achieve
the peak bandwidth performance even when 96% of the CPU cycles are used for
computation.This shows low CPU Utilization.

6.3.2 Address Translation Figure 5 shows the impact of virtual-to-physical
address translation for the two schemes described in section 5.2.2. Scheme 1
shows no decrease in performance for up to 25% of buffer reuse (Figure 5(a)).
This is because of the effective caching mechanism by the Mellanox HCAs. Figure
5(b) shows the cost of address translation. As the percentage of buffer reuse is
decreased, more and more address translations have to be performed. For large
messages, we can notice that there is a drop in the bandwidth values. This is
because as the message size increases, it occupies more and more pages and hence
requires more entries in the cache increasing the probability of cache misses.

6.3.3 Multiple Queue Pairs This benchmark test shows that there is no
difference in the latency and bandwidth numbers as we vary the number of
connections established by a node. We varied the number of QP connections up
to 64 and the latency and bandwidth numbers remained the same. This shows
excellent scalability of the Mellanox HCAs.

6.3.4 Multiple Data Segments This benchmark evaluates the performance
of data transfer when multiple data segments are used, as described in section
5.2.4. Tt is observed that as the number of segments increases, the latency in-
creases. Figure 6 shows the latency for different number of segments. Here each
segment is of equal size. In the graph, the total message size (sum of size of
all the segments) is plotted on the x-axis and time taken for the latency test is
plotted on the y-axis. Note that each data segment has to be copied to the HCA
through DMA. Hence as the number of segments increases, the number of DMAs
increase. Therefore the performance of PCI and the corresponding chipsets are
also major components in the impact of multiple data segments.

6.3.5 Impact of Maximum Transfer Unit size (MTU) This benchmark
evaluates the performance of data transfer when MTU values are varied as de-
scribed in section 5.2.5. Figure 7 shows that smaller MTU values have lower
latency for small messages, but the bandwidth for smaller MTU values are sig-
nificantly less. This is because larger MTU packets have lesser overhead per
packet. MTU 1kB performs better than MTU 2048 in bandwidth test. This may
be due to effective pipelining for MTU 1kB.
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6.3.6 Maximum Scatter and Gather Entries This benchmark evaluates
the performance of data transfer when the maximum SGE supported by a QP
is varied. Figure 8(a) shows the impact on the latency as the maximum number
of scatter gather entries are varied. There is no significant difference observed
for the bandwidth test.

6.3.7 Event Handling Figure 8(b) shows the impact of event notification
as compared to polling. We can see that the latency is significantly higher for
event notification. This is due to the cost of invoking the event handler upon work
completion and subsequent operation on the semaphore to notify the main thread
about completion. However, event notification may help certain applications and
hence it is important for the developers for such applications to be aware of the
cost. No significant difference is noticed for the bandwidth test.

6.3.8 Impact of Load at HCA Figure 9 shows the impact of contention
for HCA resources from other communication. The graph is plotted by varying
the number of contending nodes. The contending nodes try to load the HCA
of the sender node in the basic test as described in section 5.2.8. We can see
that as the number of contending nodes increases, the bandwidth drops but not
significantly. This shows that the scalability of the HCA with respect to the
number of contending nodes.
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Fig. 9. Impact of contention from other communication on bandwidth

7 Related Work

To the best of our knowledge this is the first attempt to comprehensively eval-
uate InfiniBand Architecture using a micro-benchmark suite. Our benchmark
is based on VIBe [5] Micro-Benchmark developed earlier in our group for VIA
architecture. Bell et al [6] used a variant of LogGP [2] model to evaluate sev-
eral current generation high performance networks like Cray T3E, the IBM SP,
Quadrics, Myrinet 2000, and Gigbit Ethernet. They have also compared perfor-
mance of MPI layer in these networks. NPB [3] benchmarks is an application



level benchmark to evaluate the performance the system using MPI. Saavedra
et al [15] developed a micro-benchmark to evaluate the memory subsystem of
KSR1 architecture. Our micro-benchmark is a more in-depth evaluation at a
lower layer API with the focus on IBA.

8 Conclusions and Future Work

In this paper we have proposed a new micro-benchmark suite for evaluating
InfiniBand Architecture implementations. In addition to the standard latency
and bandwidth test, we have presented several tests that help in obtaining a clear
understanding of the implementation details of the components involved in the
InfiniBand Architecture. It clearly provides valuable insights for the developers
of higher layers and applications over IBA.

IBA products are rapidly maturing. This tool will help hardware vendors
to identify the strengths and weaknesses in their releases. As the products are
released, more and more features of InfiniBand Architecture will be available.
Some of the feature include service levels, virtual level to service level mapping,
reliable datagram, partitioning and atomic operations. These features are im-
portant for large systems such as cluster based data centers and also for higher
level communication libraries such as Message Passing Interface (MPI) stan-
dard and distributed shared memory. This micro-benchmark would then provide
guidelines to make design choices in the implementation of such systems and li-
braries. We are planning to extend the micro-benchmark suite in tandem with
the development of IBA products.

MIBA software distribution

The code for the benchmark suite described in this paper is available. If you are
interested, please contact Prof. D. K. Panda (panda@Qcis.ohio-state.edu).
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