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Abstract
The emergence of multi-core processors has made MPI

intra-node communication a critical component in high per-
formance computing. In this paper, we use a three-step
methodology to design an efficient MPI intra-node com-
munication scheme from two popular approaches: shared
memory and OS kernel-assisted direct copy. We use an
Intel quad-core cluster for our study. We first run micro-
benchmarks to analyze the advantages and limitations of
these two approaches, including the impacts of proces-
sor topology, communication buffer reuse, process skew ef-
fects, and L2 cache utilization. Based on the results and
the analysis, we propose topology-aware and skew-aware
thresholds to build an optimized hybrid approach. Finally,
we evaluate the impact of the hybrid approach on MPI
collective operations and applications using IMB, NAS,
PSTSWM, and HPL benchmarks. We observe that the op-
timized hybrid approach can improve the performance of
MPI collective operations by up to 60%, and applications
by up to 17%.

1 Introduction

Cluster of workstations is one of the most popular archi-
tectures in high performance computing, thanks to its cost-
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to-performance effectiveness. As multi-core technologies
are becoming mainstream, more and more clusters are de-
ploying multi-core processors as the build unit. In the lat-
est Top500 [6] supercomputer list published in November
2007, 77% of the sites use multi-core processors from In-
tel and AMD. Message Passing Interface (MPI) [18] is one
of the most popular programming models for cluster com-
puting. With increased deployment of multi-core systems
in clusters, it is expected that considerable communication
will take place within a node. This suggests that MPI intra-
node communication is going to play a key role in the over-
all application performance.

Traditionally there have been three approaches for MPI
intra-node communication: network loopback, user-level
shared memory, and kernel assisted direct copy [15]. Net-
work loopback is not commonly used in modern MPI im-
plementations due to its higher latency. Therefore, we do
not consider this approach in this paper. User-level shared
memory is the most popular approach currently used in
many MPI libraries because of its good performance and
portability. In this approach, the communication is a two-
copy process in which the sending process copies the mes-
sages into a shared buffer and the receiving process copies
the messages out. Kernel assisted direct copy is a one-
copy approach that takes help from the OS kernel and di-
rectly copies the messages from sender’s buffer to receiver’s
buffer. It provides good performance by eliminating the in-
termediate copy. In order to obtain optimized MPI intra-
node communication performance, it is important to have
a comprehensive understanding of the shared memory and



kernel-assisted approaches and improve upon them. To
achieve this goal, in this paper we design and develop a
set of experiments and optimization schemes, and aim to
answer the following questions:

• What are the performance characteristics of these two
approaches?

• What are the advantages and limitations of these two
approaches?

• Can we design a hybrid scheme that takes advantages
of both approaches?

• Can applications benefit from the hybrid scheme?

We have carried out this study on an Intel quad-core
(Clovertown) cluster. We use a three-step methodology.
We use MVAPICH [2] (shared memory) and MVAPICH-
LiMIC2 [16] (kernel-assisted direct copy) as the MPI li-
braries. We start from micro-benchmarks and study the im-
pacts of processor topology, communication buffer reuse,
and process skew effects on these two approaches. We
also profile the L2 cache utilization. Based on the experi-
mental results and analysis we then propose topology-aware
and skew-aware thresholds to build an efficient hybrid ap-
proach. Finally, we evaluate the impact of the hybrid ap-
proach on MPI collective operations and applications using
IMB, NAS, PSTSWM, and HPL benchmarks. We observe
that the hybrid approach can improve the performance of
MPI collective operations by up to 60%, and applications
by up to 17%.

The rest of the paper is organized as follows: We provide
an overview of the background knowledge in Section 2, in-
cluding multi-core systems, shared memory approach used
in MVAPICH, and LiMIC/LiMIC2 approach. The results
and analysis of micro-benchmarks are presented in Sec-
tion 3. Section 4 illustrates the design of an efficient hybrid
approach and Section 5 presents the impact of the hybrid
design on MPI collective operations and applications. We
discuss related work in Section 6. Finally, we conclude this
paper and point out future work in Section 7.

2 Overview of Multi-core Processors and
MPI Intra-node Communication

In this section, we introduce multi-core processors and
MPI intra-node communication approaches. Since network
loopback is not commonly used, we focus on the shared
memory and kernel-assisted direct copy approaches.

2.1 Multi-core Processors

“Multi-core” means to integrate two or more complete
computational cores within a single processor chip. It
speeds up application performance by dividing the work-
load among multiple processing cores instead of using one
“super fast” single processor. Multi-core processor is also
referred to as Chip Multiprocessor (CMP). Since a process-
ing core can be viewed as an independent processor, in this
paper we use processor, CPU, and core interchangeably.

Inter−socketShared cache Intra−socket

core core core core core core core core

L2 Cache L2 CacheL2 CacheL2 Cache

Memory

Figure 1. Illustration of Intel Clovertown Pro-
cessor

There are various alternatives in designing cache hierar-
chy organization and memory access model for multi-core
processors. In this paper, we use an Intel quad-core clus-
ter as the experimental platform. This processor also has
the code name Clovertown. Figure 1 illustrates the high-
level architecture of the processor. In our system, each node
is equipped with two Intel Clovertown sockets. On each
socket there are four cores, and two of them share a 4MB L2
cache. Therefore, there are three cases of intra-node com-
munication, and in this paper we refer to them as shared
cache, intra-socket, and inter-socket, respectively (See Fig-
ure 1).

2.2 Shared Memory Based Approach in MVA-
PICH

MVAPICH [2] is a high-performance MPI implementa-
tion over InfiniBand clusters, used by more than 700 organi-
zations world-wide. MVAPICH currently uses a user-space
shared memory approach for intra-node communication.

For small and control messages, each pair of processes
has two shared memory buffers, holding messages in each
direction. Each send/receive involves two copies. The send-
ing process writes data from its source buffer into the shared
buffer. The receiving process copies the data from this
shared buffer into its destination buffer. The protocol used
for small and control messages is eager protocol.

For large messages, each process maintains a pool of
fixed sized buffers, which is used by the process to send
messages to any other process. There are three benefits of
using the shared buffer pool for large messages. First, the
pool size does not increase in proportion to the number of
processes. Second, the messages can be sent in a pipelined
manner. Third, as soon as the data is copied by the receiv-
ing process, the buffer can be reused by the sending process,
which may improve L2 cache utilization. The protocol used
for large messages is rendezvous protocol.

The detailed design is described in [13].

2.3 LiMIC/LiMIC2

LiMIC is a Linux kernel module that directly copies
messages from the user buffer of one process to another.
It improves performance by eliminating the intermediate
copy to shared memory buffer. The first generation of



LiMIC [15] is a stand-alone library that provides MPI-like
interfaces, such as LiMIC send and LiMIC recv. The sec-
ond generation, LiMIC2 [16], provides a set of lightweight
primitives that enables MPI libraries to do memory mapping
and direct copy, and relies on the MPI library for message
matching and queueing. In this paper, we use MVAPICH-
LiMIC2, which integrates MVAPICH with LiMIC2 for
intra-node communication.

3 Performance Evaluation and Analysis:
Micro-Benchmarks

In this section we study the performance of shared-
memory and LiMIC2 approaches using micro-benchmarks.
To clearly see the trend, we set the eager threshold to 0 for
MVAPICH-LiMIC2 to force all the messages to go through
LiMIC2, regardless of their size.

Testbed: We use an Intel Clovertown cluster. Each node
is equipped with dual quad-core Xeon processor, i.e. 8
cores per node, running at 2.0GHz. Each node has 4GB
main memory. The nodes are connected by InfiniBand DDR
cards. The nodes run Linux 2.6.18. We conduct the micro-
benchmark experiments on a single node.

3.1 Impact of Processor Topology

As described in Section 2.1, there are three cases of intra-
node communication on our system: shared cache, intra-
socket, and inter-socket. In this section we examine the
bandwidth of MVAPICH and MVAPICH-LiMIC2 in these
three cases. We use multi-pair benchmarks [2] instead of
single-pair because usually all the cores are activated when
applications are running. On our system there are 8 cores
per node, so we create 4 pairs of communication. The
benchmark reports the total bandwidth for the 4 pairs.

The multi-pair bandwidth results are shown in Figure 2.
In this benchmark, each sender sends 64 messages to the
receiver. Each message is sent from and received to a dif-
ferent buffer. The send buffers are written at the beginning
of the benchmark. When the receiver gets all the messages,
it sends an acknowledgement. We measure the bandwidth
achieved in this process.

From Figure 2(a), we see that MVAPICH performs bet-
ter than MVAPICH-LiMIC2 up to 32KB for the shared
cache case. In this case, because the two cores share the
L2 cache, memory copies only involve intra-cache transac-
tions as long as the data can fit in the cache. Therefore,
although there is one more copy involved in MVAPICH,
the cost of the extra copy is so small that it hardly impacts
performance. On the other hand, MVAPICH-LiMIC2 uses
operations such as trapping to the kernel and mapping mem-
ory. This overhead is sufficiently large to negate the benefit
of having only one copy. Therefore, only for large messages
that cannot totally fit in the cache we can see the benefit with
MVAPICH-LiMIC2. We note that the L2 cache on our sys-
tem is 4MB and shared between two cores; essentially each

core has about 2MB cache space. Since in this experiment
the window size is 64, for 32KB messages the total buffer
is already larger than the available cache space (32KB x 64
= 2MB).

In comparison, if the cores do not share cache, then
MVAPICH-LiMIC2 shows benefits for a much larger range
of message sizes, starting from 2KB for intra-socket and
1KB for inter-socket (see Figures 2(b) and 2(c)). This
is because in these two cases memory copies involve ei-
ther cache-to-cache transaction or main memory access,
which is relatively expensive. Therefore, saving a copy can
improve performance significantly. We observe that with
MVAPICH-LiMIC2, bandwidth is improved by up to 70%
and 98% for intra-socket and inter-socket, respectively.

3.2 Impact of Buffer Reuse

Figure 2 clearly shows that communication is more ef-
ficient if the buffers are in the cache. Buffer reuse is one
of the most commonly used strategies to improve cache uti-
lization. In this section we examine the impact of buffer
reuse on MVAPICH and MVAPICH-LiMIC2. There is no
buffer reuse in the benchmark used in Section 3.1 since each
message is sent from and received to a different buffer. To
simulate the buffer reuse effect in applications, we modify
the benchmark to run for multiple iterations so that starting
from the second iteration the buffers are reused. In the be-
ginning of each iteration we rewrite the send buffers with
new content.

The intra-socket results are shown in Figure 3. The
shared cache and inter-socket results follow the same trend.
From Figure 3 we can see that the performance of both
MVAPICH and MVAPICH-LiMIC2 improves with buffer
reuse. This is mainly due to cache effect: starting from the
second iteration, the buffers may already reside in the cache.
For messages larger than 32KB, buffer reuse does not af-
fect the performance of either MVAPICH or MVAPICH-
LiMIC2 because the total buffer size is already larger than
the cache size (32KB x 64 = 2MB).

Comparing the performance of MVAPICH and
MVAPICH-LiMIC2 in the buffer reuse situation, we see
that the benefit of using MVAPICH-LiMIC2 is larger than
that in the no buffer-reuse case for medium messages.
The reason is that MVAPICH-LiMIC2 does not use the
intermediate buffer for data transfer, and thus has better
cache utilization. We analyze cache utilization in detail
in Section 3.3. From the results shown in this section we
conclude that applications that have more buffer reuse
potentially benefit more from MVAPICH-LiMIC2.

A similar trend can be observed with multi-pair latency
test too. The results are not shown here to avoid redundancy.

3.3 L2 Cache Utilization

In this section, we analyze the cache effect in the buffer
reuse experiment.
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Figure 2. Multi-pair Bandwidth
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Figure 4. L2 Cache Misses

We use the same benchmark as in Section 3.2, and use
OProfile [4] to profile the L2 cache misses during the ex-
periment. We show the number of L2 cache misses as
well as the improvement in cache utilization achieved by
MVAPICH-LiMIC2 over MVAPICH in Figure 4. We start
from 1KB since MVAPICH-LiMIC2 shows better perfor-
mance starting from 1KB in Figure 3. As expected, we
see that cache misses increase with increase in message
size. For the whole range of message sizes, MVAPICH-
LiMIC2 has fewer cache misses than MVAPICH, showing
a constant improvement of about 7% when the message is
larger than 16KB. This is because MVAPICH-LiMIC2 does
not involve an intermediate buffer like MVAPICH. Another
interesting observation is that the improvement percentage
presents almost the same trend as the performance compar-
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Figure 5. Process Skew Benchmark

ison in Figure 3. This further explains the benefits obtained
by MVAPICH-LiMIC2 and demonstrates our conclusion in
Section 3.2.

3.4 Impact of Process Skew

Process skew can potentially degrade application perfor-
mance. In this section, we want to examine the ability of
MVAPICH and MVAPICH-LiMIC2 to overcome process
skew effect.

As we described in Section 2.3, MVAPICH-LiMIC2
copies messages directly from the sender’s user buffer to the
receiver’s user buffer with the help of the OS kernel. There-
fore, a send operation cannot complete until the match-
ing receive completes. This means that the MVAPICH-
LiMIC2 performance might potentially be influenced by
process skew. On the other hand, MVAPICH uses an in-
termediate buffer and eager protocol for small and medium
messages, as we described in Section 2.2. This means that
for small and medium messages, a send operation simply in-
volves copying message to the intermediate buffer without
interaction with the receive process. Therefore, MVAPICH
is potentially more skew-tolerant.

We have designed a benchmark that simulates the pro-
cess skew effect. Figure 5 illustrates the algorithm. There
are two processes involved, a producer and a consumer.
The producer computes for c1 amount of time, and then
sends the intermediate result to the consumer using the non-
blocking MPI Isend. The consumer receives this message
using the blocking MPI Recv, and does further processing
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Figure 6. Impact of Process Skew

on it for c2 amount of time. This process repeats for win-
dow size iterations, and then the producer calls MPI Waitall
to make sure all the MPI Isend’s have been completed. This
kind of scenario is commonly used in many applications.
We set c2 to be much larger than c1 so that the two MPI
processes are skewed. We measure the total amount of time
that the producer needs to complete this process, shown as
c3 in Figure 5. This is essentially the latency on the pro-
ducer side before it can continue with other computation
work.

Based on the characteristics of MVAPICH and
MVAPICH-LiMIC2, theoretically we expect them to per-
form as follows:

c3(MVAPICH) = (c1 + t(MPI Isend)) * window size +
t(MPI Waitall)

c3(MVAPICH-LiMIC2) = (t(MPI Recv) + c2) * win-
dow size + t(MPI Waitall)

Since c2 is much larger than c1, we can ex-
pect c3(MVAPICH-LiMIC2) to be much larger than
c3(MVAPICH).

We show the experimental results in Figure 6. In this
experiment, we set the message size as 16KB, c1=1us and
window size=64, and record the producer latency (c3) with
different consumer computation time (c2). From Figure 6,
we can see that the experimental result conforms to the the-
oretical expectation that c3(MVAPICH) is much lower than
c3(MVAPICH-LiMIC2). Further, c3(MVAPICH) does not
increase as c2 increases, indicating that MVAPICH is more
resilient to process skew. On the other hand, c3(MVAPICH-
LiMIC2) grows linearly as c2 increases, which could be a
potential limitation of MVAPICH-LiMIC2. We will de-
scribe optimizations to best combine shared memory and
LiMIC2 in Section 4.2 to alleviate process skew effect.

4 Designing the Hybrid Approach

From the micro-benchmark results and analysis, we have
seen that MVAPICH and MVAPICH-LiMIC2 both have ad-
vantages and limitations in different situations and for dif-
ferent message sizes. In this section, we propose two op-
timization schemes, topology-aware thresholds and skew-
aware thresholds, that efficiently combine the shared mem-
ory approach in MVAPICH with LiMIC2.

4.1 Topology Aware Thresholds

We need to carefully decide the threshold to switch from
shared memory to LiMIC2 in order to efficiently combine
these two approaches. From the results shown in Sec-
tion 3.1, we know that the performance characteristics of
MVAPICH and MVAPICH-LiMIC2 are different for differ-
ent intra-node communication cases (shared cache, intra-
socket, and inter-socket). Therefore, a single threshold may
not suffice for all the cases. In this section, we illustrate our
design of the topology aware thresholds.

The latest Linux kernels have the ability to detect the
topology of multi-core processors. The information is ex-
ported in “sysfs” file system [19]. The following fields ex-
ported under /sys/devices/system/cpu/cpuX/topology/ pro-
vide the topology information that we need (X in cpuX is
the CPU number):
• physical package id: Physical socket id of the logical

CPU
• core id: Core id of the logical CPU on the socket
By parsing this information, every process has the

knowledge about the topology. If the cache architecture is
also known (Figure 1), for a given connection, a process
knows which case it belongs to - shared cache, intra-socket,
or inter-socket. It is thus able to use different thresholds
for different cases. Of course, to make sure that the pro-
cess does not migrate to other processors, we use the CPU
affinity feature provided by MVAPICH [2].

Based on the results in Figure 2, we use 32KB as the
threshold for the shared cache case, 2KB for intra-socket,
and 1KB for inter-socket. After we apply these thresholds,
we have the optimized results for all the cases.

The topology detection method discussed in this section
can be used on other Linux based platforms too, such as
AMD multi-core systems. Also, different kinds of opti-
mizations can be applied based on topology information and
platform features.

4.2 Skew Aware Thresholds

We have seen from Section 3.4 that the shared memory
approach used in MVAPICH is more resilient to process
skew for medium messages. On the other hand, MVAPICH-
LiMIC2 provides higher performance for medium mes-
sages. To take advantages of both methods, we have de-
signed an adaptive scheme that uses shared memory when
there is process skew, and LiMIC2 otherwise.

We detect process skew by keeping track of the length of
the unexpected queue at the receiver side. Messages that are
received before the matching receive operations have been
posted are called unexpected messages. Such requests are
queued in an unexpected queue. When the matching receive
is posted, the corresponding request is removed from the
unexpected queue. Therefore, the length of the unexpected
queue reflects the extent of process skew. If the length is
larger than the threshold for a long period of time, then
the receiver determines that process skew has occurred, and
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Figure 7. Impact of Skew Aware Thresholds

sends a control message to the sender to indicate the situa-
tion. Upon receiving this message, the sender increases the
threshold to switch to LiMIC2 for this connection so that
medium messages will go through shared memory to alle-
viate the process skew effect. Later if the receiver detects
process skew has gone, it can send another control mes-
sage so that the sender will change back the threshold to
use LiMIC2 for higher performance.

We show the results of the skew-aware thresholds in Fig-
ure 7. We used the same benchmark with the same set of pa-
rameters as described in Section 3.4. We see that the send-
ing process can quickly notice the process skew situation
and adapt the threshold to it. As a result, the skew-aware
MVAPICH-LiMIC2 achieves much lower producer latency,
close to that of MVAPICH.

5 Performance Evaluation with Collectives
and Applications

In this section we study the impact of the hybrid ap-
proach on MPI collective operations and applications. We
refer to the hybrid approach as MVAPICH-LiMIC2-opt be-
cause it is essentially an optimized version of MVAPICH-
LiMIC2. We use Intel MPI Benchmark (IMB) [1] for col-
lectives, and NAS [8], PSTSWM [5] and HPL from HPCC
benchmark suite [14] for applications. To better understand
the application behaviors and relationship with MPI imple-
mentations we have also done profiling to the applications.

5.1 Impact on Collectives

We show the results of three typical collective opera-
tions, MPI Alltoall, MPI Allgather, and MPI Allreduce, in
Figure 8. MPI collective operations can be implemented
either on top of point-to-point communication or directly in
the message passing layer using optimized algorithms. Cur-
rently MVAPICH-LiMIC2-opt uses point-to-point based
collectives and MVAPICH uses optimized algorithms for
MPI Allreduce for messages up to 32KB [17]. From the fig-
ures we see that MPI collective operations can benefit from
using MVAPICH-LiMIC2-opt, especially for large mes-
sages. The performance improves by up to 60%, 28%, and
21% for MPI Alltoall, MPI Allgather, and MPI Allreduce,
respectively. We note that for messages between 1KB and

Table 1. Message Size Distribution (Single
Node 1x8)

Apps < 1K 1K-32K 32K-1M > 1M
CG 62% 0 38% 0
MG 52% 28% 20% 0
FT 17% 0 0 83%

PSTSWM 2% 1% 97% 0
IS 44% 15% 0 41%
LU 30% 69% 1% 0

HPL 58% 37% 3% 2%
BT 1% 0% 99% 0
SP 1% 0% 99% 0

8KB, MVAPICH performs better for MPI Allreduce due to
the use of the optimized algorithms. This indicates that the
performance of LiMIC2 based collectives can be further op-
timized by using specially designed algorithms.

5.2 Impact on Applications

In this section we evaluate the impact of the hybrid ap-
proach on application performance. The single-node results
are shown in Figures 9 and 10 (Class B for NAS and small
problem size for PSTSWM). The corresponding message
size distribution is shown in Table 1. The cluster-mode re-
sults are shown in Figure 11 (Class C for NAS and medium
problem size for PSTSWM), in which we use 8 nodes and
8 processes per node (8x8).

From Figure 9(a) we see that MVAPICH-LiMIC2-opt
can improve the performance of FT, PSTSWM, and IS
significantly. The improvement is 8% for FT, 14% for
PSTSWM, and 17% for IS, respectively. If we look at
Figure 10(a) we find that MVAPICH-LiMIC2-opt has bet-
ter cache utilization for these benchmarks. Most messages
used in these benchmarks are large as shown in Table 1.
This means that applications that use large messages will
potentially benefit from MVAPICH-LiMIC2-opt.

The improvement is under 5% for other benchmarks
mostly because these benchmarks do not use many large
messages. For BT and SP, although most messages are
large, since the fraction of time spent on communication
is not significant we do not observe large performance im-
provement.

From Figure 11 we see that in cluster mode where there
is a mix of intra-node and inter-node communication, appli-
cations can still benefit from using MVAPICH-LiMIC2-opt,
e.g. PSTSWM performance improves by 6%, which sug-
gests that MVAPICH-LiMIC2-opt is a promising approach
for cluster computing.

6 Related Work
Buntinas et al. have evaluated five data transfer methods

between processes and their applications to MPI on a single-
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Figure 8. Collective Results (Single Node 1x8)

 0

 20

 40

 60

 80

 100

ISPSTSWMFTMGCG
 0

 5

 10

 15

 20

 25

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Im
pr

ov
em

en
t (

%
)

Benchmark

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

SPBTHPLLU
 0

 0.5

 1

 1.5

 2

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Im
pr

ov
em

en
t (

%
)

Benchmark

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(b)
Figure 9. Application Performance (Single Node 1x8)

core based 2-way SMP system [9]. However, in this paper,
we focus on the shared memory and the OS kernel-assisted
direct copy approaches on a multi-core cluster. In addition
to performance comparison and analysis we have proposed
optimizations to build a hybrid approach and evaluated its
benefits on applications.

As multi-core processors emerge, research has been done
to understand the application performance on multi-core
systems. Work done in [7] presents a scientific work-
loads characterization on AMD Opteron based multi-core
systems. In our previous work [12], we have done a case
study on an Intel dual-core cluster that analyzes impact of
multi-core architecture on high performance computing.

Researchers have explored OS kernel-assisted ap-
proaches for MPI intra-node communication. Besides
LiMIC and LiMIC2 discussed in Section 2.3, there are Ka-
put [11] and I/OAT based approaches [21, 20].

Various MPI implementations besides MVAPICH use
the shared memory approach for intra-node communica-
tion, such as MPICH2 Nemesis [10], MPICH-MX [3], etc.

7 Conclusions and Future Work

In this paper, we use a three-step methodology to de-
sign a hybrid approach for MPI intra-node communica-
tion using two popular approaches, shared memory (MVA-
PICH) and OS kernel assisted direct copy (MVAPICH-
LiMIC2). The study has been done on an Intel quad-core
(Clovertown) cluster. We have evaluated the impacts of pro-

cessor topology, communication buffer reuse, and process
skew effects on these two approaches, and profiled the L2
cache utilization. From the results we find that MVAPICH-
LiMIC2 in general provides better performance than MVA-
PICH for medium and large messages due to fewer num-
ber of copies and efficient cache utilization, but the rel-
ative performance varies in different situations. For ex-
ample, depending on the physical topology of the send-
ing and receiving processes, the thresholds to switch from
shared memory to LiMIC2 can be different. In addition,
if the application has higher buffer reuse rate, it can po-
tentially benefit more from MVAPICH-LiMIC2. We also
observe that MVAPICH-LiMIC2 has a potential limitation
that it is not as skew-tolerant as MVAPICH. Based on the
results and the analysis, we have proposed topology-aware
and skew-aware thresholds to build an efficient hybrid ap-
proach. We have evaluated the hybrid approach using MPI
collective and application level benchmarks. We observe
that the hybrid approach can improve the performance of
MPI Alltoall, MPI Allgather, and MPI Allreduce by up to
60%, 28%, and 21%, respectively. And for applications, it
can improve the performance of FT, PSTSWM, and IS by
8%, 14%, and 17%, respectively.

In the future we plan to study on algorithms to optimize
LiMIC2 based collective operations. In addition, we plan
to do evaluation and analysis on other platforms, such as
AMD dual-core and quad-core systems. We also plan to
do in-depth studies on how the improvements in MPI intra-
node communication benefit the application performance.
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Figure 10. L2 Cache Misses in Applications (Single Node 1x8)
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Figure 11. Application Performance on 8
Nodes (8x8)
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