MVAPICH2 - High-Performance MPI and PGAS Libraries for Modern Clusters

Dhabaleswar K (DK) Panda, The Ohio State University
Overview of MVAPICH2 for MPI and PGAS

- High performance open-source MPI for InfiniBand, 10-40Gig/iWARP, and RoCE
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR), Available since 2014
 - Support for MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - To be Used for Comet@SDSC
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
- Used by more than 2,475 organizations in 76 countries
- More than 307,000 downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov’15 ranking)
 - 10th ranked 519,640-core cluster (Stampede) at TACC
 - 13th ranked 185,344-core cluster (Pleiades) at NASA
 - 25th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology
 - 350th ranked 16,160-core cluster (Gordon) at SDSC
 - http://mvapich.cse.ohio-state.edu

- Unified communication runtime for MPI, UPC, OpenSHMEM, CAF
- Available with MVAPICH2-X 1.9 (2012) onwards!
 - http://mvapich.cse.ohio-state.edu
- Feature Highlights
 - Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC + CAF
 - MPI-3 compliant, OpenSHMEM v1.0h standard compliant, UPC v1.2 standard compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH)
 - Scalable Inter-node and intra-node communication – point-to-point and collectives
Hybrid MPI+PGAS Performance with Graph500 and Sort

Graph500 Execution Time

- **Performance of Hybrid (MPI+OpenSHMEM) Graph500 Design**
 - 8,192 processes
 - 2.4X improvement over MPI-CSR
 - 7.6X improvement over MPI-Simple
 - 16,384 processes
 - 1.5X improvement over MPI-CSR
 - 13X improvement over MPI-Simple

Sort Execution Time

- **Performance of Hybrid (MPI+OpenSHMEM) Sort Application**
 - 4,096 processes, 4 TB Input Size
 - MPI – 2408 sec; 0.16 TB/min
 - Hybrid – 1172 sec; 0.36 TB/min
 - 51% improvement over MPI-design

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC’13), June 2013