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Introduction: Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, Slingshot)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs)

Accelerators
high compute density, high 

performance/watt
>9.7 TFlop DP on a chip 

High Performance Interconnects –
InfiniBand

<1usec latency, 200-400Gbps Bandwidth>
Multi-/Many-core 

Processors SSD, NVMe-SSD, NVRAM

Frontier Summit LumiFugaku
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• Reduction collectives (such as MPI_Allreduce) are important for HPC and AI
– Involve both compute and communication

• Using CPUs everywhere leads to sub-optimal scale-up and scale-out efficiency
– Motivates the need for offloading common operations away from the CPU to allow 

the CPU to perform other useful tasks

• In-network compute allows offloading operations to network devices
– Switches are a good candidate due to high bandwidth and ability to reduce data on-

the-fly eliminating redundancy

– High scale-out efficiency and network topology awareness

– Frees up CPU cycles for other operations

MPI Reduction collectives and In-network Computing
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SHARP Reduction trees and Streaming Aggregation (SAT)

Aggregation Tree Switch-level reduction (radix 16)

Images taken from  Graham, Richard et al. Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM Streaming-Aggregation Hardware Design 
and Evaluation. DOI : 10.1007/978-3-030-50743-5_3 (https://link.springer.com/content/pdf/10.1007/978-3-030-50743-5_3.pdf )
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Hierarchical design for small message MPI_Allreduce

Phase 1 : Intra-socket 
reduction

Phase 2 : Inter-socket 
reduction

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Reduce from shared memory

Intra-socket leader process

Regular process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Reduce from shared memory

Intra-socket leader process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2
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Hierarchical design for small message MPI_Allreduce

Phase 3 : Inter-node allreduce. Uses SHARP for scale-out performance

Legend

Socket leader shared memory

Intra-socket shared memory

Intra-socket leader process

Inter-node allreduce

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2
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Hierarchical design for small message MPI_Allreduce

Phase 4 : Inter-socket 
broadcast

Phase 5 : Intra-socket 
broadcast

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Read from shared memory

Intra-socket leader process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Read from shared memory

Intra-socket leader process

Regular process

Socket 1 Socket 2

Node 1
Socket 1 Socket 

2

Node 2
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Overview of the MVAPICH Project
• High Performance open-source MPI Library 

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS 

EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:
– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,375 organizations in 91 countries

• More than 1.77 Million downloads from the OSU site 
directly

• Empowering many TOP500 clusters (Nov ‘23 ranking)
– 11th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 29th , 448, 448 cores (Frontera) at TACC

– 46th, 288,288 cores (Lassen) at LLNL

– 61st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and 
Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 29th ranked TACC Frontera system

• Empowering Top500 systems for more than 18 years

http://mvapich.cse.ohio-state.edu/
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Results for small MPI_Allreduce – Varying message sizes

• Scaling with message size, average latency

• Close to a flat curve across message sizes up to 2K

1 ppn, 7861 nodes 16 ppn, 1024 nodes

Available in the MVAPICH 3.0 release

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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Results for small MPI_Allreduce – Varying node counts

• Scaling with increasing node counts, 16 bytes, average latency

• Same as trends with reduce (implementations are almost the same except 
for the intra-node broadcast phases)

1 ppn, 7861 nodes 16 ppn, 1024 nodes

B. Ramesh, K. Suresh, N. Sarkauskas, M. Bayatpour, J. Hashmi, H. Subramoni, and 
DK Panda – “Scalable MPI Collectives using SHARP: Large Scale Performance 

Evaluation on the TACC Frontera System”, ExaMPI’20 

More information in the following paper

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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• Two-copy reduction collectives with SHARP
– Used leader-based schemes that had a reduction, followed by a SHARP operation and 

finally a broadcast

– Not suitable for large message sizes (>=128k)

• Single-copy schemes are very efficient for large message data movement
– XPMEM allows remote process to have load/store access through address space mapping

• Using Sharp SAT in MPI has a few limitations and bottlenecks that need to be 
addressed for achieving good scale-out performance

• Motivates the need for large message reduction designs that combine advantages 
of SHARP and single-copy schemes like XPMEM

Limitations of state-of-the-art schemes for large message 
reduction collectives
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Motivation
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Allreduce runtime registration overhead

SHARP-allreduce-without-registration SHARP-registration

• SHARP SAT provides excellent bandwidth with close to 
point-to-point latency

• Registration involves pinning pages to memory (like 
InfiniBand registration)

– Overhead increases significantly with increase in message size

– Requires a cache that avoids expensive calls to 
sharp_coll_reg_mr

• Switch resources are limited
– Causes bottlenecks when scaling up on modern CPUs with 

hundreds of cores

– The SHARP runtime places limits to manage resources

• Motivates need for designs that are aware of SHARP 
runtime capabilities, overcome bottlenecks and scale-up 
efficiently for many processes per node
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• Problem Statement - Can we propose an algorithm for large message AllReduce 
that overcomes bottlenecks and resource constraints in the SHARP runtime by 
making efficient use of node and network level resources?

• Contributions
– Identify registration overheads involved in the use of SHARP streaming aggregation for 

large messages and propose solutions to address them

– Analyze the impact of chunking reductions when using streaming aggregation for 
different message sizes to empirically determine ways to overlap intra-node reductions 
with SHARP-based reductions

– Propose an algorithm for large AllReduce that utilizes SAT and CPUs efficiently

– Evaluate the proposed design by comparing it against state-of-the-art MPI libraries

Problem Statement and Contributions



19Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline



20Network Based Computing Laboratory OFA workshop – April’24

• Use a registration cache to amortize registration costs in the SHARP runtime

• Designate a “leader” process on each node to interact with SHARP

• Chunk buffer into PPN (number of processes per node) chunks and reduce to a 
single buffer belonging to the leader process

– Uses XPMEM for load/store access

– All processes perform local reductions, but only leader process calls the SHARP runtime

– Once local reductions are complete, leader calls a non-blocking MPI_Allreduce
• Perfect overlap of intra-node and inter-node steps

– Local reduction happens in batches for good network utilization

– Final result broadcast within the node

Proposed Design Overview
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Registration cache design
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SAT-with-registration-cache SAT-without-registration-cache

• Use an AVL tree or similar, to store buffer 
addresses

– O(log n) insertion/query time

– If buffer entry exists, directly get 
registration information from cache

• Up to 5.6X reduction in latency
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Analyzing impact of chunking iallreduce operations
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Iallreduce + waitall using SHARP SAT

1 chunk 2 chunks 4 chunks

8 chunks 16 chunks 32 chunks

• Measure impact of a message sent using one call 
to the SHARP library vs multiple calls

• Given a message size M and number of chunks C, 
call non-blocking SHARP allreduce C times (of size 
M/C each) followed by waitall

• Indirect measure of overlap at the network level

• Splitting into chunks of size >= 16384 gives the 
same latency (independent of num_chunks)

– Can be overlapped with reductions within the node
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Proposed Allreduce Design
P0 P1
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recvbuf

Initial State 

Reduce to leader

• First process on each node is designated as leader

• Before reduction, exchange buffer information 
using shared memory (for XPMEM load/stores)

• Process i reduces the ith chunk from every process 
and stores to tmpbuf at leader

• At the end of this step, leader on every node has 
the reduced result for the current phase

• Leader process initiates non-blocking inter-node 
SHARP allreduce

• Use “request” objects to track progress of SHARP 
Allreduce operations

P0 P1

N0

sendbuf

tmpbuf

recvbuf

P3 P4

N1

sendbuf

tmpbuf

recvbuf

Initiate non-blocking SHARP-based inter-node allreduce
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Proposed Allreduce Design – Continued
• For large buffers, the intra-node reduction and inter-

node phases are run multiple times
• Reduction of large buffers is time consuming

• Done in multiple phases for good network utilization

• Chunk size if tuned to get perfect overlap of intra-node 
and inter-node operations

• Leader waits for non-blocking allreduces to complete 
after all runs of the first two phases are done

• Perform and intra-node broadcast to get final result

P0 P1
N0

sendbuf

tmpbuf

recvbuf

P3 P4
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sendbuf
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recvbuf

P0 P1
N0

sendbuf

tmpbuf

recvbuf

P3 P4
N1

sendbuf

tmpbuf

recvbuf

After Waitall

After Broadcast

B. Ramesh, G. Kuncham, K. Suresh, R. Vaidya, N. Alnaasan, M. Abduljabbar, A. 
Shafi, D. Panda, Designing In-network Computing Aware Reduction Collectives in 

MPI, Hot Interconnects 2023, Aug 2023.

More information in the following paper
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Experimental setup

Cluster MRI HPCAC

Processor model AMD EPYC 7713 Intel(R) Xeon(R) Gold 6138

Max Clock speed 3.72GHz 2GHz

Number of sockets 2 2

Cores per socket 64 20

RAM 256GB 196GB

Interconnect NVIDIA HDR-200 with 
Quantum 2 switches

NVIDIA HDR-200 with 
Quantum 2 switches

MPI libraries MVAPICH2-X, HPC-X MVAPICH2-X, HPC-X
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Results for large MPI_Allreduce – 2 nodes
• Increased parallelism by 

using multiple processes and 
SHARP for reduction

• Up to 81.43% over state-of-
the-art for 32PPN and 
86.4% for 64PPN on MRI

• Up to 33.67% over state-of-
the-art for 32PPN and 60% 
for 64PPN on HPCAC

• Increased number of page 
faults leads to decreased 
benefits at 1M (Needs to be 
investigated further)

MRI - 32PPN MRI - 64PPN

HPCAC - 32PPN HPCAC - 64PPN
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Results for large MPI_Allreduce – 4 nodes
• Increased parallelism by 

using multiple processes and 
SHARP for reduction

• Up to 83.05% over state-of-
the-art for 32PPN and 
88.52% for 64PPN on MRI

• Up to 32.62% over state-of-
the-art for 32PPN and 
46.91% for 64PPN on HPCAC

MRI - 32PPN MRI - 64PPN

HPCAC - 32PPN HPCAC - 64PPN
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Results for large MPI_Allreduce – 8 nodes
• Increased parallelism by 

using multiple processes and 
SHARP for reduction

• Up to 79.44% over state-of-
the-art for 32PPN and 
78.36% for 64PPN on MRI

• Up to 58.08% over state-of-
the-art for 32PPN and 
52.13% for 64PPN on HPCAC

MRI - 32PPN MRI - 64PPN

HPCAC - 32PPN HPCAC - 64PPN
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• SHARP runtime enables in-network offload with excellent bandwidth utilization

• Proposed designs overcome various bottlenecks by using a leader-based 
algorithm and streaming aggregation for large message reductions

– Outperforms state-of-the-art by up to 86%

• Will be available in a future release of MVAPICH-plus

• Future work
– Comprehensive application evaluation

– Evaluating performance at larger scales

– Exploring NUMA-awareness

Conclusion and Future Work
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THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS
Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data 
Project

http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning 
Project

http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
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