Exploiting Multi-core Processors for HPC and Deep Learning: The MVAPICH2 Approach

Intel Booth Talk at SC ‘19

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!

HPC
(MPI, RDMA, Lustre, etc.)

Big Data
(Hadoop, Spark, HBase, Memcached, etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, etc.)

Increasing Need to Run these applications on the Cloud!!
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002 (Supercomputing ‘02)
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 3,050 organizations in 89 countries
 - More than 615,000 (> 0.6 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov ‘19 ranking)
 - 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 5th, 448,448 cores (Frontera) at TACC
 - 8th, 391,680 cores (ABCI) in Japan
 - 14th, 570,020 cores (Nurion) in South Korea and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - http://mvapich.cse.ohio-state.edu Partner in the #5th TACC Frontera System
- Empowering Top500 systems for over a decade
Architecture of MVAPICCH2 Software Family (HPC and DL)

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEM, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

- Transport Protocols: RC, SRD, UD, DC
- Modern Features: UMR, ODP, SR-IOV, Multi Rail

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU)

- Transport Mechanisms: Shared Memory, CMA, IVSHMEM, XPMEM
- Modern Features: Optane*, NVLink, CAPI*

* Upcoming
One-way Latency: MPI over IB with MVAPICH2

Small Message Latency

Message Size (bytes)

Latency (us)

Large Message Latency

Message Size (bytes)

Latency (us)

- TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
- ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch
- ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
- ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch
- Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch
- ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch
Bandwidth: MPI over IB with MVAPICH2

Unidirectional Bandwidth

- **Message Size (bytes)**: 4, 16, 64, 256, 1024, 4K, 16K, 64K, 256K, 1M
- **Bandwidth (MBytes/sec)**: 0, 5000, 10000, 15000, 20000, 25000, 30000
- **Points**:
 - TrueScale-QDR: (4, 3,373), (16, 6,356), (64, 12,366), (256, 12,083), (1024, 12,590), (4K, 24,532)
 - ConnectX-3-FDR: (4, 12,083), (16, 12,366), (64, 12,590), (256, 24,532)
 - ConnectIB-DualFDR: (4, 3,373), (16, 6,356), (64, 12,366), (256, 24,532)
 - ConnectX-4-EDR: (4, 3,373), (16, 6,356), (64, 12,083), (256, 24,532)
 - Omni-Path: (4, 3,373), (16, 6,356), (64, 12,366), (256, 24,532)
 - ConnectX-6 HDR: (4, 3,373), (16, 6,356), (64, 12,366), (256, 24,532)

Bidirectional Bandwidth

- **Message Size (bytes)**: 4, 16, 64, 256, 1024, 4K, 16K, 64K, 256K, 1M
- **Bandwidth (MBytes/sec)**: 0, 10000, 20000, 30000, 40000, 50000, 60000
- **Points**:
 - TrueScale-QDR: (4, 6,228), (16, 12,161), (64, 21,983), (256, 48,027)
 - ConnectX-3-FDR: (4, 3,373), (16, 6,356), (64, 12,366), (256, 24,136)
 - ConnectIB-DualFDR: (4, 3,373), (16, 6,356), (64, 12,366), (256, 24,136)
 - ConnectX-4-EDR: (4, 3,373), (16, 6,356), (64, 12,083), (256, 24,136)
 - Omni-Path: (4, 3,373), (16, 6,356), (64, 12,161), (256, 6,228)
 - ConnectX-6 HDR: (4, 3,373), (16, 6,356), (64, 12,366), (256, 6,228)

Network Based Computing Laboratory
Intel-Booth (SC ‘19)
Startup Performance on TACC Frontera

- MPI_Init takes 3.9 seconds on 57,344 processes on 1,024 nodes
- All numbers reported with 56 processes per node

New designs available in MVAPICH2-2.3.2
Multicast-based Bcast on Frontera

- Scalable broadcast with increase in system size
For MPI_Allreduce latency with 32K bytes, MVAPICH2-OPT can reduce the latency by 2.4X.

Available since MVAPICH2-X 2.3b
Performance of MPI_Ialltoall using HW Tag Matching on Frontera

- Up to 1.8x Performance Improvement
- Sustained benefits as system size increases
Overlap with MPI_Ialltoall using HW Tag Matching on Frontera

- Maximizing the overlap of communication and computation
- Sustained benefits as system size increases
Evaluation of Applications on Frontera (Cascade Lake + HDR100)

Performance of MILC and WRF2 applications scales well with increase in system size.
Broad Challenge: Exploiting HPC for Deep Learning

How to efficiently scale-out Deep Learning (DL) workloads by better exploiting High Performance Computing (HPC) resources like Multi-/Many-core CPUs?
Data Parallel Training with TensorFlow

- **gRPC**
 - Officially available and supported
 - Open-source – can be enhanced by others
 - Accelerated gRPC (add RDMA to gRPC)

- **gRPC+X**
 - Use gRPC for bootstrap and rendezvous
 - *Actual communication is in “X”*
 - X → MPI, Verbs, GPUDirect RDMA (GDR), etc.

- **No-gRPC**
 - Baidu – the first one to use MPI Collectives for TF
 - Horovod – Use NCCL, or MPI, or any other future library (e.g. IBM DDL support recently added)

CPU-based Training: Single-Node Multi-Process (MP) mode

ResNet-152 Training performance
- BS=64, 4ppn is better; BS=32, 8ppn is slightly better
- However, keeping effective batch size (EBS) low is more important! – Why? (DNN does not converge to SOTA when batch size is large)

ResNet-152: Single Process (SP) vs. Multi-Process (MP)
- MP is better for all effective batch sizes
- Up to 1.35X better performance for MP compared to SP for BS=64.
CPU-based Training: Multi-Process (MN): MP vs. SP?

Skylake-3 (48 cores, 96 threads)

- Scale—32 nodes
- MP-Tuned—up to 1.5X better than SP
- MP-Tuned—10% better than MP-Default
- Why MP-Tuned is better?
 - Uses the best possible number of inter-op and intra-op threads

Multi-Node Multi-Process (MN): TensorFlow vs. PyTorch

- This is an early experience with PyTorch
- TensorFlow is up to 2.5X faster than PyTorch for 128 Nodes.
- TensorFlow: up to 125X speedup for ResNet-152 on 128 nodes
- PyTorch: Scales well but overall lower performance than TensorFlow

Scaling ResNet-50 on TACC Frontera: 2,048 nodes!

- Scaled TensorFlow to 2048 nodes on Frontera using MVAPICH2 and IntelMPI
- MVAPICH2 and IntelMPI give similar performance for DNN training
- Report a peak of **260,000 images/sec** on 2048 nodes
- On 2048 nodes, ResNet-50 can be trained in **7 minutes**!

Benchmarking HyPar-Flow on Stampede2

- CPU based Hybrid-Parallel (Data Parallelism and Model Parallelism) training on Stampede2
- Benchmark developed for various configuration
 - Batch sizes
 - No. of model partitions
 - No. of model replicas
- Evaluation on a very deep model
 - ResNet-1000 (a 1,000-layer model)

110x speedup on 128 Intel Xeon Skylake nodes (TACC Stampede2 Cluster)

Conclusions

- Scalable performance for HPC and distributed training is getting important
- Requires high-performance middleware designs while exploiting modern interconnects
- Provided the approaches being taken care of by the MVAPICH2 project to achieve scalable distributed training
- Will continue to enable the HPC and DL communities to achieve scalability and high-performance for their scientific and distributed training workloads
Funding Acknowledgments

Funding Support by

Equipment Support by
Personnel Acknowledgments

Current Students (Graduate)
- A. Awan (Ph.D.)
- M. Bayatpour (Ph.D.)
- C.-H. Chu (Ph.D.)
- J. Hashmi (Ph.D.)
- A. Jain (Ph.D.)
- K. S. Kandadi (M.S.)
- Kamal Raj (M.S.)
- K. S. Khorassani (Ph.D.)
- P. Kousha (Ph.D.)
- A. Quentin (Ph.D.)
- B. Ramesh (M. S.)
- S. Xu (M.S.)
- Q. Zhou (Ph.D.)

Current Students (Undergraduate)
- V. Gangal (B.S.)
- N. Sarkauskas (B.S.)

Current Research Scientist
- H. Subramoni

Current Post-doc
- M. S. Ghazimeersaeed
- A. Ruhela
- K. Manian

Past Students
- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- R. Biswas (M.S.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- S. Chakraborthy (Ph.D.)
- N. Dandapanthula (M.S.)
- V. Dhanraj (M.S.)
- T. Gangadharappa (M.S.)
- K. Gopalakrishnan (M.S.)
- W. Huang (Ph.D.)
- W. Jiang (M.S.)
- J. Jose (Ph.D.)
- S. Kini (M.S.)
- M. Koop (Ph.D.)
- K. Kulkarni (M.S.)
- R. Kumar (M.S.)
- S. Krishnamoorthy (M.S.)
- K. Kandalla (Ph.D.)
- M. Li (Ph.D.)
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- S. Pai (M.S.)
- S. Potluri (Ph.D.)
- R. Rajachandrasekar (Ph.D.)
- D. Shankar (Ph.D.)
- G. Santhanaraman (Ph.D.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Past Research Scientist
- K. Hamidouche
- S. Sur
- X. Lu

Past Post-Docs
- D. Banerjee
- X. Besseron
- H.-W. Jin
- J. Lin
- M. Luo
- E. Mancini
- S. Marcarelli
- J. Vienne
- H. Wang

Past Programmers
- D. Bureddy
- J. Perkins

Past Research Specialist
- M. Arnold
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/