Accelerating HPC, Big Data and Deep Learning on OpenPOWER Platforms

Talk at OpenPOWER Academic Discussion Group Workshop 2019

by

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Follow us on
https://twitter.com/mvapich
High-End Computing (HEC): PetaFlop to ExaFlop

Expected to have an ExaFlop system in 2020-2021!

100 PFlops in 2017

1 EFlops in 2020-2021?

149 PFlops in 2018
Presentation Overview

- Challenges in Designing Convergent HPC, Big Data and Deep Learning Architectures
- MVAPICH Project - MPI and PGAS (MVAPICH) Library with CUDA-Awareness
- HiDL Project – High-Performance Deep Learning
- HiBD Project – High-Performance Big Data Analytics Library
- Commercial Support from X-ScaleSolutions
- Conclusions and Q&A
Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!

HPC
(MPI, RDMA, Lustre, etc.)

Big Data
(Hadoop, Spark, HBase, Memcached, etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, etc.)

Increasing Need to Run these applications on the Cloud!!
Can We Run HPC, Big Data and Deep Learning Jobs on Existing HPC Infrastructure?
Can We Run HPC, Big Data and Deep Learning Jobs on Existing HPC Infrastructure?
Can We Run HPC, Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Parallel File Systems (Lustre, GPFS)

Resource Manager
(Torque, SLURM, etc.)
Can We Run HPC, Big Data and Deep Learning Jobs on Existing HPC Infrastructure?
Presentation Overview

- Challenges in Designing Convergent HPC, Big Data and Deep Learning Architectures
- **MVAPICH Project – MPI and PGAS (MVAPICH) Library with CUDA-Awareness**
  - HiDL Project – High-Performance Deep Learning
  - HiBD Project – High-Performance Big Data Analytics Library
- Commercial Support from X-ScaleSolutions
- Conclusions and Q&A
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
  - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002 (SC ‘02)
  - MVAPICH2-X (MPI + PGAS), Available since 2011
  - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
  - Support for Virtualization (MVAPICH2-Virt), Available since 2015
  - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
  - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
- Used by more than 3,050 organizations in 89 countries
- More than 615,000 (> 0.6 million) downloads from the OSU site directly
- Empowering many TOP500 clusters (June ‘19 ranking)
  - 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
  - 5th, 448,448 cores (Frontera) at TACC
  - 8th, 391,680 cores (ABCI) in Japan
  - 15th, 570,020 cores (Neurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
- Partner in the TACC Frontera System
  - http://mvapich.cse.ohio-state.edu
- Empowering Top500 systems for over a decade
MVAPICH2 Release Timeline and Downloads

Number of Downloads

Timeline

MV0.9.4  MV2.0.9.0  MV2 0.9.8  MV21.0  MV1.0  MV21.0.3  MV1.1  MV21.4  MV2.1.5  MV2.1.6  MV2.1.7  MV2.1.8  MV2.1.9  MV2.1.9  MV2-GDR 2.0.6  MV2-MIC 2.0  MV2-GDR 2.3.2  MV2-2.3.2  MV2-Azure 2.3.2  MV2-AWS 2.3.
Architecture of MVAPICH2 Software Family (MPI, PGAS and DL)

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEM, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology (InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

- Transport Protocols: RC, SRD, UD, DC
- Modern Features: UMR, ODP, SR-IOV, Multi Rail

Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU)

- Transport Mechanisms: Shared Memory, CMA, IVSHMEM, XPMEM
- Modern Features: Optane*, NVLink, CAPI*

* Upcoming
## MVAPICH2 Software Family

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI with IB, iWARP, Omni-Path, and RoCE</td>
<td>MVAPICH2</td>
</tr>
<tr>
<td>Advanced MPI Features/Support, OSU INAM, PGAS and MPI+PGAS with IB, Omni-Path, and RoCE</td>
<td>MVAPICH2-X</td>
</tr>
<tr>
<td>MPI with IB, RoCE &amp; GPU and Support for Deep Learning</td>
<td>MVAPICH2-GDR</td>
</tr>
<tr>
<td>HPC Cloud with MPI &amp; IB</td>
<td>MVAPICH2-Virt</td>
</tr>
<tr>
<td>Energy-aware MPI with IB, iWARP and RoCE</td>
<td>MVAPICH2-EA</td>
</tr>
<tr>
<td>MPI Energy Monitoring Tool</td>
<td>OEMT</td>
</tr>
<tr>
<td>InfiniBand Network Analysis and Monitoring</td>
<td>OSU INAM</td>
</tr>
<tr>
<td>Microbenchmarks for Measuring MPI and PGAS Performance</td>
<td>OMB</td>
</tr>
</tbody>
</table>
Convergent Software Stacks for HPC, Big Data and Deep Learning

HPC
(MPI, RDMA, Lustre, etc.)

Big Data
(Hadoop, Spark, HBase, Memcached, etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, etc.)

MVAPICH2
MVAPICH2-X
MVAPICH2-GDR
OpenPOWER Platform Support in MVAPICH2 Libraries

- MVAPICH2
  - Basic MPI support
    - since MVAPICH2 2.2rc1 (March 2016)

- MVAPICH2-X
  - PGAS (OpenSHMEM and UPC) and Hybrid MPI+PGAS support
    - since MVAPICH2-X 2.2b (March 2016)
  - Advanced Collective Support with CMA
    - Since MVAPICH2-X 2.3b (Oct 2017)

- MVAPICH2-GDR
  - NVIDIA GPGPU support with NVLink (CORAL systems like Summit and Sierra)
    - Since MVAPICH2-GDR 2.3a (Nov 2017)
MPI, PGAS and Deep Learning Support for OpenPOWER

• Message Passing Interface (MPI) Support
  – Point-to-point Inter-node and Intra-node
  – XPMEM-based collectives

• Exploiting Accelerators (NVIDIA GPGPUs)
  – CUDA-aware MPI
  – Point-to-point
  – Applications
  – Integrated Support with TAU
Intra-node Point-to-Point Performance on OpenPOWER

**Intra-Socket Small Message Latency**

- MVAPICH2-X 2.3.2
- SpectrumMPI-10.3.0.01

0.25us

4 8 16 32 64 128 256 512 1K 2K

Latency (us)

**Intra-Socket Large Message Latency**

- MVAPICH2-X 2.3.2
- SpectrumMPI-10.3.0.01

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Latency (us)

**Intra-Socket Bandwidth**

- MVAPICH2-X 2.3.2
- SpectrumMPI-10.3.0.01

1 8 64 512 4K 32K 256K 2M

Bandwidth (MB/s)

**Intra-Socket Bi-directional Bandwidth**

- MVAPICH2-X 2.3.2
- SpectrumMPI-10.3.0.01

1 8 64 512 4K 32K 256K 2M

Bandwidth (MB/s)

**Platform:** Two nodes of OpenPOWER (Power9-ppc64le) CPU using Mellanox EDR (MT4121) HCA
Inter-node Point-to-Point Performance on OpenPower

**Small Message Latency**

![Small Message Latency Graph]

- MVAPICH2-2.3.2
- SpectrumMPI-10.3.0.01

**Large Message Latency**

![Large Message Latency Graph]

- MVAPICH2-2.3.2
- SpectrumMPI-10.3.0.01

**Bandwidth**

![Bandwidth Graph]

- MVAPICH2-2.3.2
- SpectrumMPI-10.3.0.1

Platform: Two nodes of OpenPOWER (POWER9-ppc64le) CPU using Mellanox EDR (MT4121) HCA

Bi-directional Bandwidth

![Bi-directional Bandwidth Graph]

- MVAPICH2-2.3.2
- SpectrumMPI-10.3.0.01

24,743 MB/s

49,249 MB/s
Optimized MPI All-Reduce Design in MVAPICH2

- **Up to 2X** performance improvement over Spectrum MPI and **4X** over OpenMPI for intra-node

*Optimized Runtime Parameters: MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=bunch*
Optimized MVAPICH2 All-Reduce with XPMEM

- Optimized MPI All-Reduce Design in MVAPICH2
  - Up to 2X performance improvement over OpenMPI for inter-node. (Spectrum MPI didn’t run for >2 processes)

Optimized Runtime Parameters: MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=bunch
MiniAMR Performance using Optimized XPMEM-based Collectives

- MiniAMR application execution time comparing MVAPICHD2-2.3rc1 and optimized All-Reduce design
  - Up to 45% improvement over MVAPICHD2-2.3rc1 in mesh-refinement time of MiniAMR application for weak-scaling workload on up to four POWER8 nodes.

Optimized Runtime Parameters: MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=scatter
MPI, PGAS and Deep Learning Support for OpenPOWER

• Message Passing Interface (MPI) Support
  – Point-to-point Inter-node and Intra-node
  – XPMEM-based collectives

• Exploiting Accelerators (NVIDIA GPGPUs)
  – CUDA-aware MPI
  – Point-to-point
  – Applications
  – Integrated Support with TAU
GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

At Sender:

MPI_Send(s_devbuf, size, ...);

At Receiver:

MPI_Recv(r_devbuf, size, ...);

*High Performance and High Productivity*
Optimized MVAPICH2-GDR Design (D-D) Performance

GPU-GPU Inter-node Latency

- MV2-(NO-GDR)
- MV2-GDR 2.3

1.85us
10x

GPU-GPU Inter-node Bandwidth

- MV2-(NO-GDR)
- MV2-GDR-2.3

9x

Latency (us)

Bandwidth (MB/s)

Message Size (Bytes)

MVAPICH2-GDR-2.3

Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU

Mellanox Connect-X4 EDR HCA

CUDA 9.0

Mellanox OFED 4.0 with GPU-Direct-RDMA
D-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

**Intra-Node Latency (Small Messages)**

Intra-node Latency: **0.76 us** (with GDRCopy)

**Intra-Node Latency (Large Messages)**

**Intra-Node Bandwidth**

Intra-node Bandwidth: **65.48 GB/sec** for 4MB (via NVLINK2)

**Inter-Node Latency (Small Messages)**

Inter-node Latency: **2.18 us** (with GDRCopy 2.0)

**Inter-Node Latency (Large Messages)**

**Inter-Node Bandwidth**

Inter-node Bandwidth: **23 GB/sec** for 4MB (via 2 Port EDR)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect
D-to-H & H-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

**Platform:** OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

**Intra-node D-H Latency:** 0.49 us (with GDRCopy)

**Intra-node H-D Latency:** 0.49 us (with GDRCopy 2.0)

**Intra-node D-H Bandwidth:** 16.70 GB/sec for 2MB (via NVLINK2)

**Intra-node H-D Bandwidth:** 26.09 GB/sec for 2MB (via NVLINK2)
Managed Memory Performance (OpenPOWER Intra-node)

Latency MD MD

Bandwidth MD MD

Bi-Bandwidth MD MD

Message Size (Bytes)

Latency (us)

10000

100

10

1

1

1

SpectrumMPI

OpenMPI+UCX

MV2-GDR

Message Size (Bytes)

1

8

64

512

4K

32K

256K

2M

Bandwidth (MBps)

10000

1000

100

10

0.1

0.01

1

8

64

512

4K

32K

256K

2M

SpectrumMPI

OpenMPI+UCX

MV2-GDR

Network Based Computing Laboratory

OpenPOWER-ADG ‘19
MVAPICH2 with SHARP Support (Preliminary Results)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect
Application: HYPRE - BoomerAMG

RUN MVAPICH2-GDR 2.3.2:

export MV2_USE_CUDA=1 MV2_USE_GDRCOPY=0 MV2_USE_RDMA_CM=0
export MV2_USE_GPUDIRECT_LOOPBACK=0 MV2_HYBRID_BINDING_POLICY=spread MV2_IBA_HCA=mlx5_0:mlx5_3
OMP_NUM_THREADS=20 lrun -n 128 -N 32 mpibind ./ij -P 8 4 4 -n 50 50 50 -pmis -Pmx 8 -keepT 1 -rlx 18

RUN Spectrum-MPI 10.3.0.1:

OMP_NUM_THREADS=20 lrun -n 128 -N 32 --smpiargs "-gpu --disable_gdr" mpibind ./ij -P 8 4 4 -n 50 50 50 -pmis -Pmx 8 -keepT 1 -rlx 18
### Application: COMB

Run Scripts pushed to COMB Github repo: [https://github.com/LLNL/Comb/pull/2](https://github.com/LLNL/Comb/pull/2)

<table>
<thead>
<tr>
<th>16 GPUs on POWER9 system (test Comm mpi Mesh cuda Device Buffers mpi_type)</th>
<th>pre-comm</th>
<th>post-recv</th>
<th>post-send</th>
<th>wait-recv</th>
<th>wait-send</th>
<th>post-comm</th>
<th>start-up</th>
<th>test-comm</th>
<th>bench-comm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum MPI 10.3</td>
<td>0.0001</td>
<td>0.0000</td>
<td>1.6021</td>
<td>1.7204</td>
<td>0.0112</td>
<td>0.0001</td>
<td>0.0004</td>
<td>7.7383</td>
<td><strong>83.6229</strong></td>
</tr>
<tr>
<td>MVAPICH2-GDR 2.3.2</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0862</td>
<td>0.0871</td>
<td>0.0018</td>
<td>0.0001</td>
<td>0.0009</td>
<td>0.3558</td>
<td><strong>4.4396</strong></td>
</tr>
<tr>
<td>MVAPICH2-GDR 2.3.3 (Upcoming)</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0030</td>
<td>0.0032</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0009</td>
<td>0.0133</td>
<td><strong>0.1602</strong></td>
</tr>
</tbody>
</table>

- Improvements due to enhanced support for GPU-kernel based packing/unpacking routines
Application: UMT - GPU

- Use MV2-GDR pgi/18.7 w/ jsrun rpm
- Use TAU for profiling application

PREPARE MV2-GDR

export MV2_USE_GDRCOPY=0
export MV2_USE_CUDA=1
export MV2_SUPPORT_TENSOR_FLOW=1
export MV2_ENABLE_AFFINITY=0
export OMPILD_PRELOAD_PREPEND=$HOME/software/mvapich232-jsrun-pgi/install/lib/libmpi.so

RUN Spectrum-MPI/MV2-GDR

jsrun -r 4 -p 16 mpibind tau_exec -ebs ./SuOlsonTest ../sierra-runs/2x2x4_20.cmg 16 2 16 8 4
Application: SW4

NPROCS=<#gpus per node>*<#allocated nodes>
Input_file= hayward-att-h200-ref.in

RUN MV2-GDR

$MPI_HOME/bin/bin/mpirun_rsh -export-all -np $NPROCS --hostfile <hostfile> $mv2-gdr-flags LD_PRELOAD=$MPI_HOME/lib/libmpi.so ./sw4 $Input_file

RUN Spectrum-MPI

GPU_SUPPORT='-M "-gpu"' (for device & managed buffers)
jrun -n $NPROCS -g1 -c7 -a1 $GPU_SUPPORT ./sw4 $Input_file

MV2-GDR-flags

MV2_USE_CUDA=1
MV2_USE_GPUDIRECT_RDMA=1
MV2_USE_GPUDIRECT_GDRCOPY=0
MV2_USE_RDMA_CM=0
MV2_DEBUG_SHOW_BACKTRACE=1
MV2_SHOW_CPU_BINDING=1
MV2_SHOW_ENV_INFO=2
MV2_USE_GPUDIRECT_LOOPBACK=0
MV2_CPU_BINDING_POLICY=HYBRID
MV2_HYBRID_BINDING_POLICY=SPREAD
MV2_IBA_HCA=mlx5_0:mlx5_3
Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

Wilkes GPU Cluster

- Default
- Callback-based
- Event-based

CSCS GPU cluster

- Default
- Callback-based
- Event-based

- 2X improvement on 32 GPUs nodes
- 30% improvement on 96 GPU nodes (8 GPUs/node)

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application


Cosmo model: http://www2.cosmo-model.org/content/tasks/operational/meteoSwiss/
TAU Profile with MVAPICH2-GDR
Presentation Overview

- Challenges in Designing Convergent HPC, Big Data and Deep Learning Architectures
- MVAPICH Project - MPI and PGAS (MVAPICH) Library with CUDA-Awareness
- **HiDL Project – High-Performance Deep Learning**
  - HiBD Project – High-Performance Big Data Analytics Library
  - Commercial Support from X-ScaleSolutions
  - Conclusions and Q&A
Deep Learning: New Challenges for MPI Runtimes

- Deep Learning frameworks are a different game altogether
  - Unusually large message sizes (order of megabytes)
  - Most communication based on GPU buffers
- Existing State-of-the-art
  - cuDNN, cuBLAS, NCCL → *scale-up* performance
  - NCCL2, CUDA-Aware MPI → *scale-out* performance
    - For small and medium message sizes only!
- Proposed: Can we *co-design* the MPI runtime (*MVAPICH2-GDR*) and the DL framework (*Caffe*) to achieve both?
  - Efficient *Overlap* of Computation and Communication
  - Efficient *Large-Message* Communication (Reductions)
  - What application co-designs are needed to exploit communication-runtime co-designs?

Convergent Software Stacks for HPC, Big Data and Deep Learning

MVAPICH2
MVAPICH2-X
MVAPICH2-GDR

HPC
(MPI, RDMA, Lustre, etc.)

Big Data
(Hadoop, Spark, HBase, Memcached, etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, etc.)

MVAPICH2-X
MVAPICH2-GDR
High-Performance Deep Learning

- CPU-based Deep Learning
  - Using MVAPICH2-X

- GPU-based Deep Learning
  - Using MVAPICH2-GDR
ResNet-50 using various DL benchmarks on Frontera

- Observed 260K images per sec for ResNet-50 on 2,048 Nodes
- Scaled MVAPICH2-X on 2,048 nodes on Frontera for Distributed Training using TensorFlow
- ResNet-50 can be trained in 7 minutes on 2048 nodes (114,688 cores)

High-Performance Deep Learning

• CPU-based Deep Learning
  – Using MVAPICH2-X

• GPU-based Deep Learning
  – Using MVAPICH2-GDR
Exploiting CUDA-Aware MPI for TensorFlow (Horovod)

- MVAPICH2-GDR offers excellent performance via advanced designs for MPI_Allreduce.
- Up to **11% better** performance on the RI2 cluster (16 GPUs)
- Near-ideal – **98% scaling efficiency**

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

- Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
MVAPICH2-GDR vs. NCCL2: Allreduce Optimization (DGX-2)

- Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on a DGX-2 machine

Platform: Nvidia DGX-2 system @ PSC (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2
MVAPICH2-GDR: MPI_Allreduce (Device Buffers) on Summit

- Optimized designs in MVAPICH2-GDR offer better performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs

Platform: Dual-socket IBM POWER9 CPU, 6 NVIDIA Volta V100 GPUs, and 2-port InfiniBand EDR Interconnect
Distributed Training with TensorFlow and MVAPICH2-GDR on Summit

- ResNet-50 Training using TensorFlow benchmark on SUMMIT -- 1536 Volta GPUs!
- 1,281,167 (1.2 mil.) images
- Time/epoch = 3.6 seconds
- Total Time (90 epochs) = 3.6 x 90 = 332 seconds = 5.5 minutes!

*We observed errors for NCCL2 beyond 96 GPUs

Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2
New Benchmark for Image Segmentation on Summit

- Near-linear scaling may be achieved by tuning Horovod/MPI
  - Optimizing MPI/Horovod towards large message sizes for high-resolution images
- Develop a generic Image Segmentation benchmark
- Tuned DeepLabV3+ model using the benchmark and Horovod, up to 1.3X better than default

*Anthony et al., “Scaling Semantic Image Segmentation using Tensorflow and MVAPICH2-GDR on HPC Systems” (Submission under review)
Using HiDL Packages for Deep Learning on Existing HPC Infrastructure

- Deep Learning Jobs
  - MVAPICH2-X for CPUs
  - MVAPICH2-GDR for GPUs
  - Both use Horovod for TF and PyTorch
Presentation Overview

- Challenges in Designing Convergent HPC, Big Data and Deep Learning Architectures
- MVAPICH Project - MPI and PGAS (MVAPICH) Library with CUDA-Awareness
- HiDL Project – High-Performance Deep Learning
- **HiBD Project – High-Performance Big Data Analytics Library**
- Commercial Support from X-ScaleSolutions
- Conclusions and Q&A
Data Management and Processing on Modern Datacenters

- Substantial impact on designing and utilizing data management and processing systems in multiple tiers
  - Front-end data accessing and serving (Online)
    - Memcached + DB (e.g. MySQL), HBase
  - Back-end data analytics (Offline)
    - HDFS, MapReduce, Spark
Convergent Software Stacks for HPC, Big Data and Deep Learning

HPC
(MPI, RDMA, Lustre, etc.)

Big Data
(Hadoop, Spark, HBase, Memcached, etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, etc.)

MVAPICH2
MVAPICH2-X
MVAPICH2-GDR

RDMA-Hadoop
RDMA-Spark
RDMA-HBase
RDMA-Memcached
RDMA-Kafka
The High-Performance Big Data (HiBD) Project

- RDMA for Apache Spark
- RDMA for Apache Hadoop 3.x (RDMA-Hadoop-3.x)
- RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
  - Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions
- RDMA for Apache Kafka
- RDMA for Apache HBase
- RDMA for Memcached (RDMA-Memcached)
- RDMA for Apache Hadoop 1.x (RDMA-Hadoop)
- **OSU HiBD-Benchmarks (OHB)**
  - HDFS, Memcached, HBase, and Spark Micro-benchmarks
- [http://hibd.cse.ohio-state.edu](http://hibd.cse.ohio-state.edu)
- Users Base: 315 organizations from 35 countries
- More than 31,600 downloads from the project site

Available for InfiniBand and RoCE
Also run on Ethernet

Available for x86 and OpenPOWER

Support for Singularity and Docker
• **HHH**: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to have better fault-tolerance as well as performance. This mode is enabled by default in the package.

• **HHH-M**: A high-performance in-memory based setup has been introduced in this package that can be utilized to perform all I/O operations in-memory and obtain as much performance benefit as possible.

• **HHH-L**: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.

• **HHH-L-BB**: This mode deploys a Memcached-based burst buffer system to reduce the bandwidth bottleneck of shared file system access. The burst buffer design is hosted by Memcached servers, each of which has a local SSD.

• **MapReduce over Lustre, with/without local disks**: Besides, HDFS based solutions, this package also provides support to run MapReduce jobs on top of Lustre alone. Here, two different modes are introduced: with local disks and without local disks.

• **Running with Slurm and PBS**: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different running modes (HHH, HHH-M, HHH-L, and MapReduce over Lustre).
RDMA for Apache Hadoop 2.x Distribution

• High-Performance Design of Hadoop over RDMA-enabled Interconnects
  – High performance RDMA-enhanced design with native InfiniBand and RoCE support at the verbs-level for HDFS, MapReduce, and RPC components
  – Enhanced HDFS with in-memory and heterogeneous storage
  – High performance design of MapReduce over Lustre
  – Memcached-based burst buffer for MapReduce over Lustre-integrated HDFS (HHH-L-BB mode)
  – Plugin-based architecture supporting RDMA-based designs for Apache Hadoop, CDH and HDP
  – Support for OpenPOWER, Singularity, and Docker

• Current release: 1.3.5
  – Based on Apache Hadoop 2.8.0
  – Compliant with Apache Hadoop 2.8.0, HDP 2.5.0.3 and CDH 5.8.2 APIs and applications
  – Tested with
    • Mellanox InfiniBand adapters (DDR, QDR, FDR, and EDR)
    • RoCE support with Mellanox adapters
    • Various multi-core platforms (x86, POWER)
    • Different file systems with disks and SSDs and Lustre

http://hibd.cse.ohio-state.edu
• For TestDFSIO throughput experiment, RDMA-IB design of HHH mode has an improvement of 1.57x - 2.06x compared to IPoIB (100Gbps).

• In HHH-M mode, the improvement goes up to 2.18x - 2.26x compared to IPoIB (100Gbps).
Performance of RDMA-Hadoop on OpenPOWER

**Sort Execution Time**

**HHH Mode**
- The RDMA-IB design of HHH mode reduces the job execution time of Sort by a maximum of 41% compared to IPoIB (100Gbps).

**HHH-M Mode**
- The HHH-M design reduces the execution time by a maximum of 55%.
The RDMA-IB design of HHH mode reduces the job execution time of TeraSort by a maximum of 12% compared to IPoIB (100Gbps).

In HHH-M mode, the execution time of TeraSort is reduced by a maximum of 21% compared to IPoIB (100Gbps).
Using HiBD Packages for Big Data Processing on Existing HPC Infrastructure
RDMA for Apache Spark Distribution

• High-Performance Design of Spark over RDMA-enabled Interconnects
  – High performance RDMA-enhanced design with native InfiniBand and RoCE support at the verbs-level for Spark
  – RDMA-based data shuffle and SEDA-based shuffle architecture
  – Non-blocking and chunk-based data transfer
  – Off-JVM-heap buffer management
  – Support for OpenPOWER
  – Easily configurable for different protocols (native InfiniBand, RoCE, and IPoIB)

• Current release: 0.9.5
  – Based on Apache Spark 2.1.0
  – Tested with
    • Mellanox InfiniBand adapters (DDR, QDR, FDR, and EDR)
    • RoCE support with Mellanox adapters
    • Various multi-core platforms (x86, POWER)
    • RAM disks, SSDs, and HDD
  – [http://hibd.cse.ohio-state.edu](http://hibd.cse.ohio-state.edu)
Performance of RDMA-Spark on OpenPOWER

- **GroupBy**: RDMA design outperforms IPoIB by a maximum of 11%
- **SortBy**: RDMA design outperforms IPoIB by a maximum of 18%
Performance of RDMA-Spark on OpenPOWER

- TeraSort: RDMA design outperforms IPoIB by a maximum of 35%
- Sort: RDMA design outperforms IPoIB by a maximum of 25%
Using HiBD Packages for Big Data Processing on Existing HPC Infrastructure

Spark Job with HiBD
- RDMA-Spark
- Integration with HHH
- Spark SQL, MLlib, etc.
Presentation Overview

- Challenges in Designing Convergent HPC, Big Data and Deep Learning Architectures
- MVAPICH Project - MPI and PGAS (MVAPICH) Library with CUDA-Awareness
- HiDL Project – High-Performance Deep Learning
- HiBD Project – High-Performance Big Data Analytics Library
- **Commercial Support from X-ScaleSolutions**
- Conclusions and Q&A
Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

- Supported through X-ScaleSolutions (http://x-scalesolutions.com)
- Benefits:
  - Help and guidance with installation of the library
  - Platform-specific optimizations and tuning
  - Timely support for operational issues encountered with the library
  - Web portal interface to submit issues and tracking their progress
  - Advanced debugging techniques
  - Application-specific optimizations and tuning
  - Obtaining guidelines on best practices
  - Periodic information on major fixes and updates
  - Information on major releases
  - Help with upgrading to the latest release
  - Flexible Service Level Agreements
- Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years
Silver ISV Member for the OpenPOWER Consortium + Products

• Has joined the OpenPOWER Consortium as a silver ISV member
• Provides flexibility:
  – To have MVAPICH2, HiDL and HiBD libraries getting integrated into the OpenPOWER software stack
  – A part of the OpenPOWER ecosystem
  – Can participate with different vendors for bidding, installation and deployment process
• Introduced two new integrated products with support for OpenPOWER systems
  (Presented at the OpenPOWER North America Summit)
  – X-ScaleHPC
  – X-ScaleAI
  – Send an e-mail to contactus@x-scalesolutions.com for free trial!!
X-ScaleHPC Package

• Scalable solutions of communication middleware based on OSU MVAPICH2 libraries
• “out-of-the-box” fine-tuned and optimal performance on various HPC systems including OpenPOWER platforms
• Contact us for more details and a free trial!!
  – contactus@x-scalesolutions.com
• Stop by X-ScaleSolutions booth (#2094) for a Demo!!
X-ScaleAI Package

• High-Performance and scalable solutions for deep learning
  – Fully exploiting HPC resources using our X-ScaleHPC package
• “out-of-the-box” optimal performance on OpenPOWER (POWER9) + GPU platforms such as #1 Summit system
• What’s in the X-ScaleAI package?
  – Fine-tuned CUDA-Aware MPI library
  – Google TensorFlow framework built with OpenPOWER system
  – Distributed training using Horovod on top of TensorFlow
  – Simple installation and execution in one command!

• Contact us for more details and a free trial!!
  – contactus@x-scalesolutions.com
• Stop by X-ScaleSolutions booth (#2094) for a Demo!!
Concluding Remarks

• Upcoming Exascale systems need to be designed with a holistic view of HPC, Big Data, Deep Learning, and Cloud

• OpenPOWER, InfiniBand, and NVIDIA GPGPUs are emerging technologies for such systems

• Presented a set of solutions from OSU to enable HPC, Big Data and Deep Learning through a convergent software architecture for OpenPOWER platforms

• X-ScaleSolutions is an ISV provider in the OpenPOWER consortium to provide commercial support, optimizations, tuning and training for the OSU solutions

• OpenPOWER users are encouraged to take advantage of these solutions to extract highest performance and scalability for their applications on OpenPOWER platforms
Multiple Events at SC ‘19

• Presentations at OSU and X-Scale Booth (#2094)
  – Members of the MVAPICH, HiBD and HiDL members
  – External speakers

• Presentations at SC main program (Tutorials, Workshops, BoFs, Posters, and Doctoral Showcase)

• Presentation at many other booths (Mellanox, Intel, Microsoft, and AWS) and satellite events

• Complete details available at
  http://mvapich.cse.ohio-state.edu/conference/752/talks/
Funding Acknowledgments

Funding Support by

Equipment Support by
# Personnel Acknowledgments

## Current Students (Graduate)

- A. Awan (Ph.D.)
- M. Bayatpour (Ph.D.)
- C.-H. Chu (Ph.D.)
- J. Hashmi (Ph.D.)
- A. Jain (Ph.D.)
- K. S. Kandadi (M.S.)
- Kamal Raj (M.S.)
- K. S. Khorassani (Ph.D.)
- P. Kousha (Ph.D.)
- A. Quentin (Ph.D.)
- B. Ramesh (M.S.)
- S. Xu (M.S.)
- Q. Zhou (Ph.D.)

## Past Students

- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- R. Biswas (M.S.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- S. Chakraborty (Ph.D.)
- N. Dandapanthula (M.S.)
- V. Dhanraj (M.S.)
- T. Gangadharappa (M.S.)
- K. Gopalakrishnan (M.S.)
- W. Huang (Ph.D.)
- W. Jiang (M.S.)
- J. Jose (Ph.D.)
- S. Kini (M.S.)
- M. Koop (Ph.D.)
- K. Kulkarni (M.S.)
- R. Kumar (M.S.)
- S. Krishnamoorthy (M.S.)
- K. Kandalla (Ph.D.)
- M. Li (Ph.D.)
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- S. Pai (M.S.)
- S. Potluri (Ph.D.)

## Past Post-Docs

- D. Banerjee
- X. Besseron
- H.-W. Jin
- J. Lin
- M. Luo
- E. Mancini
- S. Marcarelli
- J. Vienne
- H. Wang

## Current Research Scientist

- H. Subramoni

## Current Students (Undergraduate)

- V. Gangal (B.S.)
- N. Sarkauskas (B.S.)

## Current Post-doc

- M. S. Ghazimeersaeed
- A. Ruhela
- K. Manian

## Current Research Specialist

- J. Smith

## Past Research Scientist

- K. Hamidouche
- S. Sur
- X. Lu

## Past Programmers

- D. Bureddy
- J. Perkins

## Past Research Specialist

- M. Arnold
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

MVAPICH

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

HiBD

High-Performance Big Data
The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

HiDL

High-Performance Deep Learning
The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/