Enhancing MPI Communication using Accelerated Verbs and Tag Matching: The MVAPICH Approach

Talk at UCX BoF (ISC ‘19)

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Introduction, Motivation, and Challenge

• HPC applications require high-performance, low overhead data paths that provide
 – Low latency
 – High bandwidth
 – High message rate

• Hardware Offloaded Tag Matching

• Different families of accelerated verbs available
 – Burst family
 • Accumulates packets to be sent into bursts of single SGE packets
 – Poll family
 • Optimizes send completion counts
 • Receive completions for which only the length is of interest
 • Completions that contain the payload in the CQE

• Can we integrate accelerated verbs and tag matching support in UCX into existing HPC middleware to extract peak performance and overlap?
The MVAPICH Approach

High Performance Parallel Programming Models

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Passing Interface (MPI)</td>
<td>High Performance Parallel Programming Models</td>
</tr>
<tr>
<td>PGAS (UPC, OpenSHMEM, CAF, UPC++)</td>
<td>Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)</td>
</tr>
</tbody>
</table>

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology

(InfiniBand, iWARP, RoCE, Omni-Path)

Transport Protocols

- RC
- XRC
- UD
- DC

Modern Interconnect Features

- UMR
- ODP
- SR-IOV
- Multi Rail

Accelerated Verbs Family*

- Burst
- Poll
- Tag Match

Modern Switch Features

- Multicast
- SHARP

* Upcoming
Verbs-level Performance: Message Rate

![Graphs showing Verb Performance](image)

ConnectX-5 EDR (100 Gbps), Intel Broadwell E5-2680 @ 2.4 GHz
MOFED 4.2-1, RHEL-7 3.10.0-693.17.1.el7.x86_64
Verbs-level Performance: Bandwidth

ConnectX-5 EDR (100 Gbps), Intel Broadwell E5-2680 @ 2.4 GHz
MOFED 4.2-1, RHEL-7 3.10.0-693.17.1.el7.x86_64
Hardware Tag Matching Support

- Offloads the processing of point-to-point MPI messages from the host processor to HCA
- Enables zero copy of MPI message transfers
 - Messages are written directly to the user's buffer without extra buffering and copies
- Provides rendezvous progress offload to HCA
 - Increases the overlap of communication and computation
Impact of Zero Copy MPI Message Passing using HW Tag Matching

Removal of intermediate buffering/copies can lead up to 35% performance improvement in latency of medium messages
Impact of Rendezvous Offload using HW Tag Matching

The increased overlap can lead to 1.8X performance improvement in total latency of osu_iscatterv
Future Plans

• Complete designs are being worked out
• Will be available in the future MVAPICH2 releases