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Understanding the Deep Learning Resurgence

e Deep Learning is a sub-set of Machine
Learning

— But, it is perhaps the most radical and
revolutionary subset

— Automatic feature extraction vs. hand-crafted

Deep learning Example:
features i Shallow Example: Example:
Example: autoencoders Logistic
H MLPs reo'rgession
e Deep Learning :

— Arenewed interest and a lot of hype! Representation learning

— Key success: Deep Neural Networks (DNNs)

Machine learning

— Everything was there since the late 80s except
the “computability of DNNs”

Courtesy: http://www.deeplearningbook.org/contents/intro.html
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Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big '
Data, and Deep Learning!
Increasing Need to Run these

applications on the Cloud!!
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Key Phases of Deep Learning

e Deep Learning has two major tasks
1. Training of the Deep Neural Network

2. Inference (or deployment) that uses a trained DNN

e DNN Training

— Training is a compute/communication intensive process — can take days to

weeks

— Faster training is necessary!

e Faster training can be achieved by
— Using Newer and Faster Hardware — But, there is a limit!

— Can we use more GPUs or nodes?

e The need for Parallel and Distributed Training
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Broad Challenge: Exploiting HPC for Deep Learning

How to efficiently scale-out Deep
Learning (DL) workloads by better
exploiting High Performance Computing
(HPC) resources like Multi-/Many-core
CPUs?
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Overview of the MVAPICH2 Project

o High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
—  MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
—  MVAPICH2-X (MPI + PGAS), Available since 2011
—  Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
—  Support for Virtualization (MVAPICH2-Virt), Available since 2015 1 W" ,
—  Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 A&%‘

\\\\\\\ 18Years &

' Counting! )

- | o | =
—  Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015 /%

hY

— Used by more than 3,000 organizations in 88 countries

)

=

7,

—  More than 545,000 (> 0.5 million) downloads from the OSU site directly ‘ ( l
—  Empowering many TOP500 clusters (Nov ‘18 ranking) 2007_20’]9
e 3 ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

S

e 14, 556,104 cores (Oakforest-PACS) in Japan
e 17%, 367,024 cores (Stampede2) at TACC
e 27t 241,108-core (Pleiades) at NASA and many others

— Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

— http://mvapich.cse.ohio-state.edu Partner in the upcoming TACC Frontera System

e  Empowering Top500 systems for over a decade
Network Based Computing Laboratory
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS

(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

Point-to-
point
Primitives

Remote
Memory
Access

Collectives Energy-

Job Startu
Algorithms P

Awareness

File Systems

1/0 and Fault Introspection

& Analysis

Active
Messages

Virtualization
Tolerance

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Modern Features
SR-
10V

Transport Protocols

ils Rail

XRC’ ub UMR ’ obDP ’

Multi

oc |

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Mechanisms Modern Features

Shared
Memory

IVSHMEM NVLink® || CAPI®

CVA MCDRAM"

XPMEM*
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Holistic Evaluation is Important!!

DL Applications (Image Recognition, Speech Processing, etc.)

e My framework is faster than & l l
your framework! DL Frameworks (Caffe, TensorFlow, etc.)

e This needs to be understood Generic MKL Optimized cuDNN Optimized
. . . Convolution Layer Convolution Layer Convolution Layer
in a holistic way. ]

1 .
e Performance depends on J’ " l’
i i MKL/
the entire execution ATLAS || OpenBLAS s CUDNN/CUBLAS
environment (the full stack) Other BLAS Libraries
. BLAS Librari

e Isolated view of — ‘!, l,

performance is not helpful Other Processors Multi-/Many-core Many-core GPU
(Xeon, Xeon Phi) (Pascal P100)
Hardware

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on
Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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Three Key Insights

e Use Message Passing Interface (MPI) for single-node and multi-node training

Multi-process (MP) better than single-process (SP) approach

e Use Intel-optimized TensorFlow (MKL/MKL-DNN primitives)

Single-process (SP) training -- still under-optimized to fully utilize all CPU cores

e OQverall performance depends on

Network Based Computing Laboratory

Number of cores

Process per node (PPN) configuration

Hyper-threading (enabled/disabled)

DNN specifications like inherent parallelism between layers (inter-op parallelism)

Type of DNN (ResNet vs. Inception)
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Distributed Training using TensorFlow (TF)

e TensorFlow is the most popular

Accelerated
DL framework gRPC
e gRPCis the official distributed gRPC+MPI
training runtime e
" RPC+Verb
— Many problems for HPC use- Brrrems
cases gRPC+GDR
e Community efforts - Baidu and
) Baidu-MPI
Uber’s Horovod have added MPI P
support to TF across nodes Horovod

e Need to understand several T m

options currently available 2>

Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112
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Single-Process (SP) vs. Multi-Process (MP) on one node

Two different models on TACC Stampede (Intel Xeon Skylake — 48 cores)

e Keyidea: MP is better than SP for all cases!
— PPN and Hyper-threading needs to be tuned
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Multi-node Performance for TensorFlow
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e Use tuned configuration (based on SP and MP) for
— PPN, batch size, and other parameters need to be |

tuned for best performance
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Multi-node Performance for PyTorch

e Early results with PyTorch (using tuned configuration)
— Good scaling (106X speedup on 128 nodes)

— Overall -- Slower than TensorFlow

m1node m2 nodes m4 nodes m 8 nodes m 16 nodes m32 nodes m 64 nodes m 128 nodes

o
~ S
(=
[T
—
I~
& S
~ —
~ K]
00 o v
| | | | |

INCEPTION-V3 ESNET-50 RESNET-101 RE
NODES

4908

265
196
385
767
134

I 259

— e 511
I 1015
I—— 2018

I 19
e 37
LA

IMAGES/SEC {LOG SCALE)

NET-15

N

Network Based Computing Laboratory ISC (June ‘19) 13




Conclusions

e Scalable distributed training is getting important

e Requires high-performance middleware designs while exploiting modern
interconnects

e Provided a set of different approaches to achieve scalable distributed
training
— Optimized collectives for CPU-based training
— Using Intel-optimized DL frameworks
— Use MPI for both single-node and multi-node training

e Will continue to enable the DL community to achieve scalability and
high-performance for their distributed training workloads
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The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project
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