

2024 OFA Virtual Workshop

SCALING LARGE LANGUAGE MODEL TRAINING USING HYBRID GPU-BASED COMPRESSION IN MVAPICH

Aamir Shafi, Research Scientist Lang Xu, Ph.D. Student

Network Based Computing Laboratory The Ohio State University http://nowlab.cse.ohio-state.edu/

Presentation Outline

- Introduction & Background
- Motivation & Challenges
- Hybrid Compression Design
- Performance Evaluation
- Conclusion

Training Large Language Model

- Large Language Models (LLaMA2, GPT4, Claude3 ...) are powerful in various areas (dialogue systems, knowledge base, ...)
- Model capability scales with number of parameters (100 Million [BERT] to 500 Billion [Megatron-Turing NLG])
- Training Billion parameter models requires:
 - Parallelism strategies (scaling up to thousands of GPUs)
 - Memory optimization (fitting models within GPUs)
 - Efficient communication (reducing interconnect bandwidth pressure)

Parallelism Strategies

- Data Parallelism (DP):
 - Maintains full model replica on each
 DP rank and takes mini-batch as input
 - Data-intensive gradient synchronization using Allreduce
- Pipeline Parallelism (PP):
 - Shards model layers across devices and executes in a pipeline order
 - Point-to-point communication passing activations and gradients
- Tensor Parallelism (TP):
 - Distributes Matrix Multiplication over different devices
 - Frequent Allreduce and Allgather communication ensuring correctness
- 3D Parallelism combines DP+PP+TP (Megatron-LM)

2024 Virtual OFA Workshop

Memory Optimization

- DeepSpeed ZeRO Optimizer:
 - A novel memory optimization technology for large-scale distributed deep learning
 - Enables training models with billions of parameter among GPU
 - Each GPU only updates its portion of data
 (optimizer states, gradients, model parameters)
 - Reduces memory footprint
 - Requires Allgather and Reduce-Scatter to synchronize between processes
 - ZeRO-1: Partitions optimizer states (momentum & variances) across GPUs
 - ZeRO-2: Further partitions gradients
 - ZeRO-3: Further partitions model parameters

Deepspeed Zero: https://arxiv.org/abs/1910.02054v3

Profiling and Optimizing Communication

- LLM Training requires data-intensive collective communication using 3D parallelism + ZeRO-1
 - Large communication overhead [1]
 - Saturates interconnect bandwidth
- Different sparsity across data structure [2]
 - Gradients are generally sparse (mostly zeros)
 - Activations and optimizer states are dense
- Co-designing MPI with GPU-based Compression has proved to greatly leverage bandwidth and throughput! [3][4]

(a) Proportion of computation to communication for distributed DL training

(b) Breakdown of individual communication operations for distributed DL training

[1] Q. Anthony, et al., "MCR-DL: Mix-and-Match Communication Runtime for Deep Learning," in 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, 2023 [2] S. Bian et al "Does compression activations help model parallel training?" https://arxiv.org/abs/2301.02654

- [3] Q. Zhou et al., "Designing High-Performance MPI Libraries with On-the-fly Compression for Modern GPU Clusters," 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland, OR, USA, 2021, pp. 444-453, doi: 10.1109/IPDPS49936.2021.00053.
- [4] Q. Zhou *et al.*, "Accelerating Distributed Deep Learning Training with Compression Assisted Allgather and Reduce-Scatter Communication," 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, 2023, pp. 134-144, doi: 10.1109/IPDPS54959.2023.00023.

Network Based Computing Laboratory

2024 Virtual OFA Workshop

Using compression-assisted MPI collectives (Allgather, Reducescatter & point-to-point) to accelerate large language model training (in a 3D parallelism+ ZeRO-1 setting)

Challenges

- What are the major communication routines involved in a typical 3D parallelism + ZeRO-1 training scenario?
 - Understanding different implementations on these parallelism strategies
- How to efficiently utilize the different sparsity inherent in the messages without compromising accuracy?
 - Determine message types being transferred in each parallelism degree
 - Utilize lossless and lossy compression
- How to avoid over-compression in certain parallelism degree?
 - Different parallelism stage uses different compression ratio

Presentation Outline

- Introduction & Background
- Motivation & Challenges
- Hybrid Compression Design
- Performance Evaluation
- Conclusion

MZHybrid: MPC for MP & ZFP for DP

- Utilize *lossless MPC* compression for model parallelism
 - Maintains activation accuracy
 - Applies to inter-layer gradients to avoid over-compression
 - Preserving accuracy
- Utilize <u>lossy ZFP</u> compression for Data-Parallel data-intensive gradient Allreduce
 - Compress sparse gradients
 - Providing speedups

MZHybrid	MPI Collectives	Compression Schemes
DP	All-reduce	ZFP
PP	Point-to-point	MPC
TP	All-reduce	MPC
	All-gather	MPC
ZeRO stage 1	All-gather	MPC
	Reduce-Scatter	MPC

ZHybrid: high-rate ZFP for MP & low-rate ZFP for DP

- Utilize <u>high-rate ZFP</u> compression for model parallelism
 - Maintains activation accuracy
 - Applies to inter-layer gradients to avoid over-compression
 - Preserving accuracy
- Utilize *low-rate ZFP* compression for Data-Parallel data-intensive gradient Allreduce
 - Compress sparse gradients
 - Providing speedups
- More throughput oriented (no lossless components)

ZHybrid	MPI Collectives	Compression Schemes
DP	All-reduce	low-rate ZFP
PP	Point-to-point	high-rate ZFP
TP	All-reduce	high-rate ZFP
	All-gather	high-rate ZFP
ZeRO stage 1	All-gather	high-rate ZFP
	Reduce-Scatter	high-rate ZFP

2024 Virtual OFA Workshop

Presentation Outline

- Introduction & Background
- Motivation & Challenges
- Hybrid Compression Design
- Performance Evaluation
- Conclusion

Experiment Setup

Model	GPT-NeoX-20B
Dataset	Books3
PP Degree	6
MP Degree	4
Grad Accumulation Step	1
Micro batch size per GPU	4

Lassen cluster configuration

CPU	IBM Power9 44 Cores/Node
Memory	256GB
GPU	NVIDIA Tesla V100 (32GB)
Interconnect	InfiniBand EDR 100GB/s

Starting from Naive Compression (ZFP)

- Enforce consistent ZFP compression across all parallelism and ZeRO-1
- ZFP-8 is more aggressive than ZFP-16 in compression (loses more info)
- ZFP-16:
 - 15.4% increase in throughput (samples/sec)
 - <u>11.14%</u> increase in TFLOPS per GPU
- ZFP-8:
 - <u>23.6%</u> increase in throughput (samples/sec)
 - **22.5%** increase in TFLOPS per GPU

Aggressive lossy compression across all collective communication results in model performance degradation! (higher final test loss)

(a) Naive ZFP: Training samples per second

(b) Naïve ZFP: TFLOPS per GPU

(c) Naïve ZFP: Books3 test loss

Network Based Computing Laboratory

Starting from Naive Compression (MPC)

- Enforce lossless MPC for all collectives
- Close to baseline accuracy!
- However, we lose TFLOPS and throughput

Network Based Computing Laboratory

Hybrid Compression

- Naïve ZFP or MPC solution poses different pros and cons
 - Lossy ZFP provides speedups but degradation in accuracy
 - Lossless MPC maintains baseline accuracy but degradation in throughput

- DP Gradients are sparse, MP activations are dense
 - Possible Hybrid solution for according parallelism degree

MZHybrid

- lossy ZFP compression for Data Parallel gradient Allreduce + lossless MPC compression for Model Parallel (TP + PP) communication
- Good performance speedup (4.4% increase for samples/sec & 5.3% increase for TFLOPS), loss curves greatly improved

Network Based Computing Laboratory

2024 Virtual OFA Workshop

ZHybrid

- Low-rate ZFP compression for Data Parallel gradient Allreduce + high-rate ZFP compression for Model Parallel (TP + PP) communication
- Even better performance speedup (17.3% increase for samples/sec & 12.7% increase for TFLOPS), loss curves still acceptable

(a) ZHybrid: Training samples per second

(b) ZHybrid: TFLOPS per GPU

(c) ZHybrid: Books3 test loss

Discussion

- Comparing Zhybrid with NCCL:
 - Up to <u>7.6%</u> increase in samples/sec and <u>12.9%</u> in TFLOPS per GPU on 192 V100 GPUs
- Compression-assisted MPI collectives capable of reducing message size and mitigate bandwidth pressure as we scale up
- Higher ZFP rates lead to loss closer to baseline than lower ZFP rates
- For specific tradeoffs on accuracy and speedups, the users can select a proper ZFP rate.

Presentation Outline

- Introduction & Background
- Motivation & Challenges
- Hybrid Compression Design
- Performance Evaluation
- Conclusion

Conclusion

- Analyzed different communication routines under 3D parallelism and ZeRO stage 1 for a typical LLM training scenario
- Proposed <u>MZHybrid</u> and <u>ZHybrid</u>, two hybrid compression schemes that adopts GPU-based Compression MPI collectives on LLM training.
- The two proposed schemes consider <u>data sparsity</u> within communication and utilizes different compression library (MPC & ZFP) for different parallelism to provide training speedups and baseline-level model performance
- MZHybrid provides up to <u>4.4%</u> increase in samples/sec and <u>5.3%</u> increase in TFLOPS per GPU while maintaining baseline model accuracy
- ZHybrid provides up to <u>20.4%</u> increase in samples/sec and <u>20.6%</u> increase in TFLOPS per GPU

Thank You!

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

High-Performance Big Data

The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>

Network Based Computing Laboratory

2024 Virtual OFA Workshop

22