
An Assessment of MPI 3.x (Part I)

High Performance MPI Support for Clouds with IB and
SR-IOV (Part II)

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Talk at HP-CAST 25 (Nov 2015)

by

http://www.cse.ohio-state.edu/~panda
http://www.cse.ohio-state.edu/~panda
http://www.cse.ohio-state.edu/~panda

High-End Computing (HEC): ExaFlop & ExaByte

HP-CAST (Nov '15) 2

100-200

PFlops in

2016-2018

1 EFlops in

2020-2024?

10K-20K

EBytes in

2016-2018

40K

EBytes in

2020 ?

ExaFlop & HPC
•

ExaByte & BigData
•

Trends for Commodity Computing Clusters in the Top 500
List (http://www.top500.org)

3 HP-CAST (Nov '15)

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

500

P
e

rc
e

n
ta

ge
 o

f
C

lu
st

e
rs

N
u

m
b

e
r

o
f

C
lu

st
e

rs

Timeline

Percentage of Clusters

Number of Clusters

87%

Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Accelerators / Coprocessors
high compute density, high

performance/watt
>1 TFlop DP on a chip

High Performance
Interconnects - InfiniBand
<1usec latency, 100Gbps

Bandwidth>

Tianhe – 2 Titan Stampede Tianhe – 1A

4

Multi-core Processors

HP-CAST (Nov '15)

SSD, NVMe-SSD,
NVRAM

• 259 IB Clusters (51%) in the June 2015 Top500 list

 (http://www.top500.org)

• Installations in the Top 50 (24 systems):

Large-scale InfiniBand Installations

519,640 cores (Stampede) at TACC (8th) 76,032 cores (Tsubame 2.5) at Japan/GSIC (22nd)

185,344 cores (Pleiades) at NASA/Ames (11th) 194,616 cores (Cascade) at PNNL (25th)

72,800 cores Cray CS-Storm in US (13th) 76,032 cores (Makman-2) at Saudi Aramco (28th)

72,800 cores Cray CS-Storm in US (14th) 110,400 cores (Pangea) in France (29th)

265,440 cores SGI ICE at Tulip Trading Australia (15th) 37,120 cores (Lomonosov-2) at Russia/MSU (31st)

124,200 cores (Topaz) SGI ICE at ERDC DSRC in US (16th) 57,600 cores (SwiftLucy) in US (33rd)

72,000 cores (HPC2) in Italy (17th) 50,544 cores (Occigen) at France/GENCI-CINES (36th)

115,668 cores (Thunder) at AFRL/USA (19th) 76,896 cores (Salomon) SGI ICE in Czech Republic (40th)

147,456 cores (SuperMUC) in Germany (20th) 73,584 cores (Spirit) at AFRL/USA (42nd)

86,016 cores (SuperMUC Phase 2) in Germany (21st) and many more!

5 HP-CAST (Nov '15)

http://www.top500.org/

HP-CAST (Nov '15) 6

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Logical shared memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Message Passing Library standardized by MPI Forum

– C and Fortran

• Goal: portable, efficient and flexible standard for writing

parallel applications

• Not IEEE or ISO standard, but widely considered “industry

standard” for HPC application

• Evolution of MPI

– MPI-1: 1994

– MPI-2: 1996

– MPI-3.0: 2008 – 2012, standardized before SC ’12

– MPI-3.1, standardized on June 4, 2015

– Next plans for MPI 4.0

 7

MPI Overview and History

HP-CAST (Nov '15)

• Point-to-point Two-sided Communication

• Collective Communication

• One-sided Communication

• Job Startup

• Parallel I/O

Major MPI Features

8 HP-CAST (Nov '15)

• Power required for data movement operations is one of

the main challenges

• Non-blocking collectives

– Overlap computation and communication

• Much improved One-sided interface

– Reduce synchronization of sender/receiver

• Manage concurrency

– Improved interoperability with PGAS (e.g. UPC, Global Arrays,

OpenSHMEM)

• Resiliency

– New interface for detecting failures

HP-CAST (Nov '15) 9

How does MPI Plan to Meet Exascale Challenges?

• MPI 3.0 Features

• MPI 3.1 Features

• MPI 4.0 Features

• Upcoming Trends for PGAS and Hybrid MPI+PGAS

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS

Features and Solutions

HP-CAST (Nov '15) 10

Presentation Outline

• Major Features

– Non-blocking Collectives

– Improved One-Sided (RMA) Model

– MPI Tools Interface

• Specification is available from: http://www.mpi-

forum.org/docs/mpi-3.0/mpi30-report.pdf

HP-CAST (Nov '15) 11

Major New Features in MPI-3

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

HP-CAST (Nov '15) 12

Problems with Blocking Collective Operations
Application

 Process

Application

 Process

Application

 Process

Application

 Process

Computation

Communication

• Communication time cannot be used for compute

– No overlap of computation and communication

– Inefficient

• Application processes schedule collective operation

• Check periodically if operation is complete

• Overlap of computation and communication => Better Performance

• Catch: Who will progress communication
HP-CAST (Nov '15) 13

Concept of Non-blocking Collectives
Application

 Process

Application

 Process

Application

 Process

Application

 Process

Computation

Communication

Communication

 Support Entity

Communication

 Support Entity

Communication

 Support Entity

Communication

 Support Entity

Schedule

Operation

Schedule

Operation

Schedule

Operation

Schedule

Operation

Check if

Complete

Check if

Complete

Check if

Complete

Check if

 Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

 Complete

void main()

{

 MPI_Init()

 …..

 MPI_Ialltoall(…)

 Computation that does not depend on result of Alltoall

 MPI_Test(for Ialltoall) /* Check if complete (non-blocking) */

 Computation that does not depend on result of Alltoall

 MPI_Wait(for Ialltoall) /* Wait till complete (Blocking) */

 …

 MPI_Finalize()

}

HP-CAST (Nov '15) 14

How do I write applications with NBC?

• Non-blocking Collectives

• Improved One-Sided (RMA) Model

• MPI Tools Interface

HP-CAST (Nov '15) 15

MPI-3 Features

HP-CAST (Nov '15) 16

One-sided Communication Model
HCA HCA HCA P 1 P 2 P 3

Write to P2

Write to P3

Write Data from P1

Write data from P2

Post to HCA

Post to HCA

Buffer at P2 Buffer at P3

Global Region Creation
(Buffer Info Exchanged)

Buffer at P1

HCA Write

Data to P2

HCA Write

Data to P3

• Non-blocking one-sided communication routines

– Put, Get

– Accumulate, Get_accumulate

– Atomics

• Flexible synchronization operations to control initiation

and completion

HP-CAST (Nov '15) 17

MPI-3 One-Sided Primitives

MPI One-sided Synchronization/Completion Primitives

Synchronization Completion Win_sync

Lock/
Unlock

Lock_all/
Unlock_all

Fence

Post-Wait/
 Start-Complete

Flush

Flush_all

Flush_local

Flush_local_all

• Network adapters can provide

RDMA feature that doesn’t require

software involvement at remote

side

• As long as puts/gets are executed

as soon as they are issued, overlap

can be achieved

• RDMA-based implementations do

just that

HP-CAST (Nov '15) 18

Overlapping Communication with MPI-3-RMA

• Non-blocking Collectives

• Improved One-Sided (RMA) Model

• MPI Tools Interface

HP-CAST (Nov '15) 19

MPI-3 Features

HP-CAST (Nov '15) 20

MPI Tools Interface

• Introduced to expose internals of MPI tools and applications

• Generalized interface – no defined variables in the standard

• Variables can differ between

• MPI implementations

• Compilations of same MPI library (production vs debug)

• Executions of the same application/MPI library

• There could be no variables provided

• Two types of variables supported

• Control Variables (CVARS)

• Typically used to configure and tune MPI internals

• Environment variables, configuration parameters and toggles

• Performance Variables (PVARS)

• Insights into performance of an MPI library

• Highly-implementation specific

• Memory consumption, timing information, resource-usage, data transmission info.

• Per-call basis or an entire MPI job

• Who???

– Interface intended for tool developers

• Generally will do *anything* to get the data

• Are willing to support the many possible variations

• How???

– Can be called from user code

– Useful for setting control variables for performance

– Documenting settings for understanding performance

– Care must be taken to avoid code that is not portable

– Several workflows based on role: End Users / Performance Tuners / MPI Implementers

• Two main workflows

– Transparently using MPIT-Aware external tools

– Co-designing applications and MPI-libraries using MPI-T

HP-CAST (Nov '15) 21

Who should use MPI-T and How?

Return Var.
Information

MPI Library with MPI-T Support

Applications and External Tools

Query All
Variables

Measured Interval

Start
Counter

Stop
Counter

Counter
Value

MPI_T_init_thread()

MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)

if (msg_size < MV2_EAGER_THRESHOLD + 1KB)

 MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024)

MPI_Send(..)

MPI_T_finalize()

 HP-CAST (Nov '15) 22

Co-designing Applications to use MPI-T

Initialize MPI-T

Get #variables

Query Metadata

Allocate Session

Allocate Handle

Read/Write/Reset

Start/Stop var

Free Handle

Finalize MPI-T

Free Session

Allocate Handle

Read/Write var

Free Handle

Performance

Variables

Control

Variables

Example: Optimizing the eager limit dynamically ->

• MPI 3.0 Features

• MPI 3.1 Features

• MPI 4.0 Features

• Upcoming Trends for PGAS and Hybrid MPI+PGAS

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS

Features and Solutions

HP-CAST (Nov '15) 23

Presentation Outline

MPI-3.1 – Features

• Standardized in June 2015 meeting. Available from

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-

report.pdf

• Primarily Errata Items

– Datatype Allowed in Overlapping Accumulates

– Deprecate MPI_Cancel for send requests

– Correcting Shared Memory Access with RMA

– Add Immediate for Non-blocking Collective I/O routines

• Similar to Non-blocking Collective communication operations

• E.g. MPI_File_iread_all (MPI_File file, void *buf, int count,

MPI_Datatype type, MPI_Request *req);

 HP-CAST (Nov '15) 24

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

• MPI 3.0 Features

• MPI 3.1 Features

• MPI 4.0 Features

• Upcoming Trends for PGAS and Hybrid MPI+PGAS

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS

Features and Solutions

HP-CAST (Nov '15) 25

Presentation Outline

• Dynamic Endpoints

• Persistent collective operations

– Explore “streams” and “channels” to cut overhead

– Explore I/O persistence

• Better support hybrid programming models

• Support for fault tolerance

– User Level Failure Migration (ULFM)

– Fault Tolerance for MPI – (Re-init)

• Performance Assertions and Hints

• Enhancements to RMA/One-sided communication

• Large Datatype Support

HP-CAST (Nov '15) 26

MPI-4.0 - Proposed Features

• Introduces a new communicator creation function

• Can be used to create additional ranks, or endpoints, at an

existing MPI process

• Endpoints behave the same as processes and can be

associated with threads, allowing threads to fully

participate in MPI operation

HP-CAST (Nov '15) 27

Dynamic Endpoints

• Use concept of “streams” and “channels” to cut the overhead

• Explore I/O persistence

HP-CAST (Nov '15) 28

Persistent Collectives

User Level Failure Mitigation (ULFM)

• Allows the application react to failures but maintain a minimal

code path for failure-free execution

• Processes can invalidate and shrink communication objects and

prevent waiting indefinitely

• Failures do not alter state of MPI communicators

• Allows point-to-point communication to continue between non-

faulty processes

• Enhance notification in passive synchronization

– Add notification counter associated with the window is

incremented at the target after each epoch

– Processes can query number of notifications received

HP-CAST (Nov '15) 29

RMA Enhancements

• Proposed non-blocking I/O semantics use MPI_Request

• MPI_Test is used to check for completion

Immediate Non-blocking I/O

• Current datatype interface supports count up to INT_MAX

• Proposed function MPI_Type_contiguous_x allows the

creation of very large contiguous datatypes

Very Large Datatype Support

• Active Messages

• Tools: Extensions for MPI_T

• Generalized Requests

• MPI+X (special focus on MPI+CAF)

• New assertions for passive-target epochs

• MPI Plans (An alternate strategy for collective

communication)

HP-CAST (Nov '15) 30

MPI-4.0 - Additional Features

• MPI 3.0 Features

• MPI 3.1 Features

• MPI 4.0 Features

• Upcoming Trends for PGAS and Hybrid MPI+PGAS

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS

Features and Solutions

HP-CAST (Nov '15) 31

Presentation Outline

32

Partitioned Global Address Space (PGAS) Models

HP-CAST (Nov '15)

• Key features

- Simple shared memory abstractions

- Light weight one-sided communication

- Easier to express irregular communication

• Different approaches to PGAS

- Languages

• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

- Libraries

• OpenSHMEM

• Global Arrays

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based

on communication characteristics

• Benefits:

– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Exascale Roadmap*:

– “Hybrid Programming is a practical way to

 program exascale systems”

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

HP-CAST (Nov '15) 33

• MPI 3.0 Features

• MPI 3.1 Features

• MPI 4.0 Features

• Upcoming Trends for PGAS and Hybrid MPI+PGAS

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS

Features and Solutions

HP-CAST (Nov '15) 34

Presentation Outline

Middleware

Designing High-Performance Middleware for HPC
and Big Data Applications: Challenges

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, OpenACC, Cilk,

Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Tech.
(InfiniBand, 40/100GigE,

Aries, and OmniPath)

 Multi/Many-core
Architectures

35

Accelerators
(NVIDIA and MIC)

HP-CAST (Nov '15)

Co-Design

Opportunities

and

Challenges

across Various

Layers

Performance

Scalability

Fault-

Resilience

Communication Library or Runtime for Programming Models

Point-to-point

Communication

(two-sided and

one-sided

Collective

Communication

Energy-

Awareness

Synchronization

and Locks

I/O and

File Systems

Fault

Tolerance

Storage Tech.
(HDD, SSD, and

 NVMe-SSD)

• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication (both two-sided

and one-sided)

• Scalable Collective communication
– Offload

– Non-blocking

– Topology-aware

• Balancing intra-node and inter-node communication for next generation
multi-core (128-1024 cores/node)

– Multiple end-points per node

• Support for efficient multi-threading

• Integrated Support for GPGPUs and Accelerators

• Fault-tolerance/resiliency

• QoS support for communication and I/O

• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC,
MPI + OpenSHMEM, CAF, …)

• Virtualization

• Energy-Awareness

Broad Challenges in Designing Communication Libraries for
(MPI+X) at Exascale

36
HP-CAST (Nov '15)

• High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over

Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Used by more than 2,475 organizations in 76 countries

– More than 300,000 downloads from the OSU site directly

– Empowering many TOP500 clusters (June ‘15 ranking)

• 8th ranked 519,640-core cluster (Stampede) at TACC

• 11th ranked 185,344-core cluster (Pleiades) at NASA

• 22nd ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

– Stampede at TACC (8th in Jun’15, 519,640 cores, 5.168 Plops)

MVAPICH2 Software

37 HP-CAST (Nov '15)

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

HP-CAST (Nov '15) 38

MVAPICH2 Software Family

Requirements MVAPICH2 Library to use

MPI with IB, iWARP and RoCE MVAPICH2

Advanced MPI, OSU INAM, PGAS and MPI+PGAS with
IB and RoCE

MVAPICH2-X

MPI with IB & GPU MVAPICH2-GDR

MPI with IB & MIC MVAPICH2-MIC

HPC Cloud with MPI & IB MVAPICH2-Virt

Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA

• Non-blocking Collectives

• Support for MPI-T Interface

• Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, …) with
Unified Runtime

• Support for Virtualization with SR-IOV

Overview of A Few Challenges being Addressed by
MVAPICH2/MVAPICH2-X for Exascale

39
HP-CAST (Nov '15)

0

1

2

3

4

5

512 600 720 800A
p

p
lic

at
io

n
 R

u
n

-T
im

e

(s
)

Data Size

0

5

10

15

64 128 256 512R
u

n
-T

im
e

 (
s)

Number of Processes

PCG-Default Modified-PCG-Offload

Co-Design with MPI-3 Non-Blocking Collectives and Collective
Offload Co-Direct Hardware (Available since MVAPICH2-X 2.2a)

40

Modified P3DFFT with Offload-Alltoall does up to
17% better than default version (128 Processes)

K. Kandalla, et. al.. High-Performance and Scalable Non-Blocking

All-to-All with Collective Offload on InfiniBand Clusters: A Study

with Parallel 3D FFT, ISC 2011

HP-CAST (Nov '15)

17%

0
0.2
0.4
0.6
0.8

1
1.2

10 20 30 40 50 60 70

N
o

rm
al

iz
e

d

P
e

rf
o

rm
an

ce

HPL-Offload HPL-1ring HPL-Host

HPL Problem Size (N) as % of Total Memory

4.5%

Modified HPL with Offload-Bcast does up to 4.5%
better than default version (512 Processes)

Modified Pre-Conjugate Gradient Solver with
Offload-Allreduce does up to 21.8% better than
default version

K. Kandalla, et. al, Designing Non-blocking Broadcast with Collective

Offload on InfiniBand Clusters: A Case Study with HPL, HotI 2011

K. Kandalla, et. al., Designing Non-blocking Allreduce with Collective
Offload on InfiniBand Clusters: A Case Study with Conjugate Gradient
Solvers, IPDPS ’12

21.8%

Can Network-Offload based Non-Blocking Neighborhood MPI
Collectives Improve Communication Overheads of Irregular Graph
Algorithms? K. Kandalla, A. Buluc, H. Subramoni, K. Tomko, J. Vienne,
L. Oliker, and D. K. Panda, IWPAPS’ 12

• Initial focus on performance variables

• Variables to track different components

– MPI library’s internal memory usage

– Unexpected receive queue

– Registration cache

– VBUF allocation

– Shared-memory communication

– Collective operation algorithms

– IB channel packet transmission

– Many more in progress..
HP-CAST (Nov '15) 41

MPI-T Support in MVAPICH2

Memory Usage:
- current level

- maximum watermark

Registration cache:
- hits

- misses

Pt-to-pt messages:
- unexpected queue length

- unexp. match attempts
- recvq. length

Shared-memory:
- LiMIC2/ CMA

- buffer pool size & usage

Collective ops:
- comm. creation

- #algorithm invocations
[Bcast – 8; Gather – 10]

…

InfiniBand N/W:
- #control packets

- #out-of-order packets

MVAPICH2-X for Advanced MPI and Hybrid MPI + PGAS
Applications

HP-CAST (Nov '15)

MPI, OpenSHMEM, UPC, CAF or Hybrid (MPI + PGAS)

Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls UPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM, CAF available with

MVAPICH2-X 1.9 (2012) onwards!

– http://mvapich.cse.ohio-state.edu

• Feature Highlights

– Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + OpenSHMEM,

MPI(+OpenMP) + UPC

– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard

compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH)

– Scalable Inter-node and intra-node communication – point-to-point and collectives

CAF Calls

42

http://mvapich.cse.ohio-state.edu/overview/mvapich2x
http://mvapich.cse.ohio-state.edu/overview/mvapich2x
http://mvapich.cse.ohio-state.edu/overview/mvapich2x
http://mvapich.cse.ohio-state.edu/overview/mvapich2x

Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche, K. W. Schulz, H. Sundar, D. K. Panda, Designing Scalable Out-of-core Sorting with Hybrid

MPI+PGAS Programming Models, PGAS ‘14, Oct. 2014.

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models,

International Supercomputing Conference (ISC’13), June 2013

0

5

10

15

20

25

30

35

4K 8K 16K

Ti
m

e
 (

s)

No. of Processes

MPI-Simple

MPI-CSC

MPI-CSR

Hybrid (MPI+OpenSHMEM)
13X

7.6X

• Performance of Hybrid (MPI+
OpenSHMEM) Graph500 Design

• 8,192 processes
 - 2.4X improvement over MPI-CSR

 - 7.6X improvement over MPI-Simple

• 16,384 processes
 - 1.5X improvement over MPI-CSR

 - 13X improvement over MPI-Simple

Sort Execution Time

0

500

1000

1500

2000

2500

3000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Ti
m

e
 (

se
co

n
d

s)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid
(MPI+OpenSHMEM) Sort Application

• 4,096 processes, 4 TB Input Size
 - MPI – 2408 sec; 0.16 TB/min

 - Hybrid – 1172 sec; 0.36 TB/min

 - 51% improvement over MPI-design

43 HP-CAST (Nov '15)

• Non-blocking Collectives

• Support for MPI-T Interface

• Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, …) with
Unified Runtime

• Support for Virtualization with SR-IOV

Overview of A Few Challenges being Addressed by
MVAPICH2/MVAPICH2-X for Exascale

44
HP-CAST (Nov '15)

• IDC expects that by 2017, HPC ecosystem revenue will jump to a

record $30.2 billion. IDC foresees public clouds, and especially custom

public clouds, supporting an increasing proportion of the aggregate

HPC workload as these cloud facilities grow more capable and mature

– Courtesy: http://www.idc.com/getdoc.jsp?containerId=247846

• Combining HPC with Cloud is still facing challenges because of the

performance overhead associated virtualization support

– Lower performance of virtualized I/O devices

• HPC Cloud Examples

– Amazon EC2 with Enhanced Networking

• Using Single Root I/O Virtualization (SR-IOV)

• Higher performance (packets per second), lower latency, and lower jitter.

• 10 GigE

– NSF Chameleon Cloud

HPC Cloud - Combining HPC with Cloud

HP-CAST (Nov '15) 45

NSF Chameleon Cloud: A Powerful and Flexible
Experimental Instrument

• Large-scale instrument
– Targeting Big Data, Big Compute, Big Instrument research

– ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network

– Virtualization technology (e.g., SR-IOV, accelerators), systems, networking (InfiniBand), infrastructure-
level resource management, etc.

• Reconfigurable instrument
– Bare metal reconfiguration, operated as single instrument, graduated approach for ease-of-use

• Connected instrument
– Workload and Trace Archive

– Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others

– Partnerships with users

• Complementary instrument
– Complementing GENI, Grid’5000, and other testbeds

• Sustainable instrument
– Industry connections

http://www.chameleoncloud.org/

HP-CAST (Nov '15) 46

http://www.chameleoncloud.org/
http://www.chameleoncloud.org/
http://www.chameleoncloud.org/

• Single Root I/O Virtualization (SR-IOV) is providing new opportunities

to design HPC cloud with very little low overhead

Single Root I/O Virtualization (SR-IOV)

– Allows a single physical device,

or a Physical Function (PF), to

present itself as multiple

virtual devices, or Virtual

Functions (VFs)

– Each VF can be dedicated to a

single VM through PCI pass-

through

– VFs are designed based on the

existing non-virtualized PFs, no

need for driver change

– Work with 10/40 GigE and

InfiniBand

HP-CAST (Nov '15) 47

• Support for SR-IOV

– Inter-node Inter-VM communication

• Locality-aware communication through IVSHMEM

– Inter-VM Shared Memory (IVSHMEM) is a novel feature proposed

for inter-VM communication, and offers shared memory backed

communication for VMs within a given host

– Intra-node Inter-VM communication

• Building efficient HPC Cloud

• Available publicly as MVAPICH2-Virt 2.1 Library

MVAPICH2-Virt: High-Performance MPI Library over
SR-IOV capable InfiniBand Clusters

HP-CAST (Nov '15) 48

• Redesign MVAPICH2 to make it

virtual machine aware

– SR-IOV shows near to native

performance for inter-node point

to point communication

– IVSHMEM offers zero-copy access

to data on shared memory of co-

resident VMs

– Locality Detector: maintains

the locality information of co-

resident virtual machines

– Communication Coordinator:

selects the communication

channel (SR-IOV, IVSHMEM)

adaptively

Overview of MVAPICH2-Virt with SR-IOV and IVSHMEM

Host Environment

Guest 1

Hypervisor PF Driver

Infiniband Adapter

Physical
Function

user space

kernel space

MPI
proc

PCI
Device

VF
Driver

Guest 2

user space

kernel space

MPI
proc

PCI
Device

VF
Driver

Virtual

Function

Virtual

Function

/dev/shm/

IV-SHM

IV-Shmem Channel

SR-IOV Channel

J. Zhang, X. Lu, J. Jose, R. Shi, D. K. Panda. Can Inter-VM

Shmem Benefit MPI Applications on SR-IOV based

Virtualized InfiniBand Clusters? Euro-Par, 2014.

J. Zhang, X. Lu, J. Jose, R. Shi, M. Li, D. K. Panda. High

Performance MPI Library over SR-IOV Enabled InfiniBand

Clusters. HiPC, 2014.

HP-CAST (Nov '15) 49

• OpenStack is one of the most popular

open-source solutions to build clouds

and manage virtual machines

• Deployment with OpenStack

– Supporting SR-IOV configuration

– Supporting IVSHMEM configuration

– Virtual Machine aware design of

MVAPICH2 with SR-IOV

• An efficient approach to build HPC

Clouds with MVAPICH2-Virt and

OpenStack

MVAPICH2-Virt with SR-IOV and IVSHMEM over OpenStack

J. Zhang, X. Lu, M. Arnold, D. K. Panda. MVAPICH2 over OpenStack with SR-IOV: An Efficient Approach to Build

HPC Clouds. CCGrid, 2015.

HP-CAST (Nov '15) 50

Experimental Setup
Cluster Nowlab Cloud Amazon EC2

Instance 4 Core/VM 8 Core/VM 4 Core/VM 8 Core/VM

Platform RHEL 6.5 Qemu+KVM HVM
Slurm 14.11.8

Amazon Linux
(EL6)
Xen HVM
C3.xlarge [1]
Instance

Amazon Linux
(EL6)
Xen HVM
C3.2xlarge [1]

Instance

CPU SandyBridge Intel(R) Xeon
E5-2670 (2.6GHz)

IvyBridge Intel(R) Xeon E5-
2680v2 (2.8GHz)

RAM 6 GB 12 GB 7.5 GB 15 GB

Interconnect FDR (56Gbps) InfiniBand
Mellanox ConnectX-3 with
SR-IOV [2]

10 GigE with Intel ixgbevf SR-
IOV driver [2]

[1] Amazon EC2 C3 instances: compute-optimized instances, providing customers with the highest performing

processors, good for HPC workloads

[2] Nowlab Cloud is using InfiniBand FDR (56Gbps), while Amazon EC2 C3 instances are using 10 GigE. Both

have SR-IOV support.

HP-CAST (Nov '15) 51

• Point-to-point

– Two-sided and One-sided

– Latency and Bandwidth

– Intra-node and Inter-node [1]

• Applications

– NAS and Graph500

Experiments Carried Out

[1] Amazon EC2 does not support users to explicitly allocate VMs in one physical node so far. We allocate

multiple VMs in one logical group and compare the point-to-point performance for each pair of VMs. We see

the VMs who have the lowest latency as located within one physical node (Intra-node), otherwise Inter-node.

HP-CAST (Nov '15) 52

• EC2 C3.2xlarge instances

• Compared to SR-IOV-Def, up to 84% and 158% performance improvement on Lat & BW

• Compared to Native, 3%-7% overhead for Lat, 3%-8% overhead for BW

• Compared to EC2, up to 160X and 28X performance speedup on Lat & BW

Intra-node Inter-VM pt2pt Latency Intra-node Inter-VM pt2pt Bandwidth

Point-to-Point Performance – Latency & Bandwidth
(Intra-node)

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

La
te

n
cy

 (
u

s)

Message Size (bytes)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

MV2-EC2

0

2000

4000

6000

8000

10000

12000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message Size (bytes)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

MV2-EC2

160X
28X

3%

3%
7%

8%

HP-CAST (Nov '15) 53

Point-to-Point Performance – Latency & Bandwidth
(Inter-node)

• EC2 C3.2xlarge instances

• Similar performance with SR-IOV-Def

• Compared to Native, 2%-8% overhead on Lat & BW for 8KB+ messages

• Compared to EC2, up to 30X and 16X performance speedup on Lat & BW

1

10

100

1000

10000

100000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

La
te

n
cy

 (
u

s)

Message Size (bytes)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

MV2-EC2

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message Size (bytes)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

MV2-EC2

Inter-node Inter-VM pt2pt Latency Inter-node Inter-VM pt2pt Bandwidth

30X
16X

HP-CAST (Nov '15) 54

0

50

100

150

200

250

300

350

400

450

20,10 20,16 20,20 22,10 22,16 22,20

Ex
e

cu
ti

o
n

 T
im

e
 (

u
s)

Problem Size (Scale, Edgefactor)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

4%

9%

0

5

10

15

20

25

30

35

FT-64-C EP-64-C LU-64-C BT-64-C

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

NAS Class C

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

1%

9%

• Compared to Native, 1-9% overhead for NAS

• Compared to Native, 4-9% overhead for Graph500

HP-CAST (Nov '15) 65

Application-Level Performance (8 VM * 8 Core/VM)

NAS Graph500

• Performance and Memory scalability toward 500K-1M cores
– Dynamically Connected Transport (DCT) service with Connect-IB

• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)
– Support for UPC++

• Enhanced Optimization for GPU Support and Accelerators

• Taking advantage of advanced features
– User Mode Memory Registration (UMR)

– On-demand Paging

• Enhanced Inter-node and Intra-node communication schemes for
upcoming OmniPath enabled Knights Landing architectures

• Extended RMA support (as in MPI 3.0)

• Extended topology-aware collectives

• Energy-aware point-to-point (one-sided and two-sided) and collectives

• Extended Support for MPI Tools Interface (as in MPI 3.0)

• Extended Checkpoint-Restart and migration support with SCR

• Enhanced support with Virtualization

MVAPICH2 – Plans for Exascale

56 HP-CAST (Nov '15)

HP-CAST (Nov '15)

Funding Acknowledgments

Funding Support by

Equipment Support by

57

Personnel Acknowledgments
Current Students

– A. Augustine (M.S.)

– A. Awan (Ph.D.)

– A. Bhat (M.S.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

– N. Islam (Ph.D.)

Past Students

– P. Balaji (Ph.D.)

– D. Buntinas (Ph.D.)

– S. Bhagvat (M.S.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist
– S. Sur

Current Post-Docs

– J. Lin

– D. Shankar

Current Programmer

– J. Perkins

Past Post-Docs
– H. Wang

– X. Besseron

– H.-W. Jin

– M. Luo

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– R. Rajachandrasekar (Ph.D.)

– K. Kulkarni (M.S.)

– M. Li (Ph.D.)

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– E. Mancini

– S. Marcarelli

– J. Vienne

Current Research Scientists

– H. Subramoni

– X. Lu

Past Programmers

– D. Bureddy

Current Research Specialist

– M. Arnold

HP-CAST (Nov '15) 58

Current Senior Research

Associate

 - K. Hamidouche

panda@cse.ohio-state.edu

HP-CAST (Nov '15)

Thank You!

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

59

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

• Many events

– Workshop (ESPM2)

– Tutorials (IB-HSE and Big Data)

– Talks

– Presentation-demo-discussion

• Detailed events available from:

– http://mvapich.cse.ohio-state.edu

• Will be at Ohio Supercomputer Center / OH-TECH Booth (#1209)

60

Multiple events from the Group at SC ‘15

HP-CAST (Nov '15)

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

