Accelerating HPC Applications on HPC Systems with Intel Omni-Path: The MVAPICH Approach

Omni-Path User Group (OPUG) Meeting at ISC’19

by

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 3,000 organizations in 89 countries
 - More than 549,000 (> 0.5 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov ’18 ranking)
 - 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
 - 16th, 556,104 cores (Oakforest-PACS) in Japan
 - 19th, 367,024 cores (Stampede2) at TACC
 - 31st, 241,108-core (Pleiades) at NASA and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - http://mvapich.cse.ohio-state.edu
 Partner in the TACC Frontera System

- Empowering Top500 systems for over a decade
MVAPICH2 Release Timeline and Downloads

Number of Downloads

Timeline

- MV0.9.4
- MV2.0.9.0
- MV2.0.9.8
- MV2.1.0
- MV2.1.0.3
- MV1.1
- MV2.1.4
- MV2.1.5
- MV2.1.6
- MV2.1.7
- MV2.1.8
- MV2.1.9
- MV2-GDR 2.0b
- MV2-MIC 2.0
- MV2-Virt 2.2
- MV2-X 2.3rc1
- OSU INAM 0.9.4
- MV2-GDR 2.3
- MV2-Virt 2.3
- MV2-GDR 2.3.1
History of Support for Omni-Path in MVAPICH2

- Initial designs for the Performance Scaled Messaging (PSM) interface for QLogic cards added in 2008
- Designs later enhanced in collaboration with Intel for Omni-Path by updating to the PSM2 interface
- Code being actively developed, tested and deployed at multiple supercomputing centers including Stampede2@TACC, OakForest-PACS, ...
Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEM, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology (InfiniBand, iWARP, RoCE, Omni-Path)

- Transport Protocols: RC, XRC, UD, DC
- Modern Features: UMR, ODP, SR-IOV, Multi Rail

Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU)

- Transport Mechanisms: Shared Memory, CMA, IVSHMEM, XPMEM
- Modern Features: MCDRAM*, NVLink, CAPI*

* Upcoming
One-way Latency: MPI over IB with MVAPICH2

Small Message Latency

<table>
<thead>
<tr>
<th>Message Size (bytes)</th>
<th>Latency (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.11</td>
</tr>
<tr>
<td>4</td>
<td>1.19</td>
</tr>
<tr>
<td>8</td>
<td>1.15</td>
</tr>
<tr>
<td>16</td>
<td>1.01</td>
</tr>
<tr>
<td>32</td>
<td>1.15</td>
</tr>
<tr>
<td>64</td>
<td>1.04</td>
</tr>
<tr>
<td>128</td>
<td>1.1</td>
</tr>
<tr>
<td>256</td>
<td>1.11</td>
</tr>
<tr>
<td>512</td>
<td>1.19</td>
</tr>
<tr>
<td>1K</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Large Message Latency

<table>
<thead>
<tr>
<th>Message Size (bytes)</th>
<th>Latency (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>0</td>
</tr>
<tr>
<td>4K</td>
<td>20</td>
</tr>
<tr>
<td>8K</td>
<td>40</td>
</tr>
<tr>
<td>16K</td>
<td>60</td>
</tr>
<tr>
<td>32K</td>
<td>80</td>
</tr>
<tr>
<td>64K</td>
<td>100</td>
</tr>
<tr>
<td>128K</td>
<td>120</td>
</tr>
<tr>
<td>256K</td>
<td>140</td>
</tr>
</tbody>
</table>

- TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
- ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch
- ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
- ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch
- Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch
- ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch
Bandwidth: MPI over IB with MVAPICH2

Unidirectional Bandwidth

<table>
<thead>
<tr>
<th>Message Size (bytes)</th>
<th>Bandwidth (MBytes/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4,123</td>
</tr>
<tr>
<td>16</td>
<td>12,590</td>
</tr>
<tr>
<td>64</td>
<td>24,532</td>
</tr>
<tr>
<td>256</td>
<td>6,356</td>
</tr>
<tr>
<td>1024</td>
<td>12,083</td>
</tr>
<tr>
<td>4K</td>
<td>12,366</td>
</tr>
<tr>
<td>16K</td>
<td>24,136</td>
</tr>
<tr>
<td>64K</td>
<td>3,373</td>
</tr>
<tr>
<td>256K</td>
<td>12,161</td>
</tr>
<tr>
<td>1M</td>
<td>21,227</td>
</tr>
</tbody>
</table>

Bidirectional Bandwidth

<table>
<thead>
<tr>
<th>Message Size (bytes)</th>
<th>Bandwidth (MBytes/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4,123</td>
</tr>
<tr>
<td>16</td>
<td>12,590</td>
</tr>
<tr>
<td>64</td>
<td>24,532</td>
</tr>
<tr>
<td>256</td>
<td>6,356</td>
</tr>
<tr>
<td>1024</td>
<td>12,083</td>
</tr>
<tr>
<td>4K</td>
<td>12,366</td>
</tr>
<tr>
<td>16K</td>
<td>24,136</td>
</tr>
<tr>
<td>64K</td>
<td>3,373</td>
</tr>
<tr>
<td>256K</td>
<td>12,161</td>
</tr>
<tr>
<td>1M</td>
<td>21,227</td>
</tr>
</tbody>
</table>

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch
ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch
Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch
ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch
• MPI_Init takes 22 seconds on 231,936 processes on 3,624 KNL nodes (Stampede2 – Full scale)
• At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)
• All numbers reported with 64 processes per node, MVAPICH2-2.3a
• Designs integrated with mpirun_rsh, available for srun (SLURM launcher) as well
For MPI_Allreduce latency with 32K bytes, MVAPICH2-OPT can reduce the latency by \(2.4\times\).

Available since MVAPICH2-X 2.3b
Optimized CMA-based Collectives for Large Messages

Performance of MPI_Gather on KNL nodes with Omni-Path (64PPN)

- Significant improvement over existing implementation for Scatter/Gather with 1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPower)
- New two-level algorithms for better scalability
- Improved performance for other collectives (Bcast, Allgather, and Alltoall)

Available since MVAPICH2-X 2.3b
Shared Address Space (XPMEM)-based Collectives Design

- **OSU_Allreduce (Broadwell 256 procs)**
 - MVAPICH2-2.3b
 - IMPI-2017v1.132
 - MVAPICH2-X-2.3rc1

- **OSU_Reduce (Broadwell 256 procs)**
 - MVAPICH2-2.3b
 - IMPI-2017v1.132
 - MVAPICH2-2.3rc1

Graphs and Observations

![Graph](image)

- “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2
- Offloaded computation/communication to peers ranks in reduction collective operation
- Up to **4X** improvement for 4MB Reduce and up to **1.8X** improvement for 4M AllReduce

Available since MVAPICH2-X 2.3rc1
Benefits of the New Asynchronous Progress Design

Observations:
1. Up to 25% performance improvement for SPECMPI applications on 384 processes with KNL + Omni-Path
2. Up to 38% performance improvement for SPECMPI applications on 384 processes with Skylake + Omni-Path
Application Scalability on Skylake and KNL (Stamepede2)

MiniFE (1300x1300x1300 ~ 910 GB)

- **MVAPICH2**

NEURON (YuEtAl2012)

- **MVAPICH2**

Cloverleaf (bm64) MPI+OpenMP,
NUM_OMP_THREADS = 2

Runtime parameters:

MV2_SMPI_LENGTH_QUEUE=524288
PSM2_MQ_RNDV_SHM_THRESH=128K
PSM2_MQ_RNDV_HFI_THRESH=128K

Courtesy: Mahidhar Tatineni @SDSC, Dong Ju (DJ) Choi@SDSC, and Samuel Khuvis@OSC ---- Testbed: TACC Stampede2 using MVAPICH2-2.3b
Concluding Remarks

- High-performance interconnects critical to the continued advancement of HPC
- Presented an overview of solutions available in MVAPICH2 for Omni-Path enabled systems
- Highlighted performance impact of proposed designs on HPC applications running on Omni-Path enabled systems
Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

- Supported through X-ScaleSolutions (http://x-scalesolutions.com)
- Benefits:
 - Help and guidance with installation of the library
 - Platform-specific optimizations and tuning
 - Timely support for operational issues encountered with the library
 - Web portal interface to submit issues and tracking their progress
 - Advanced debugging techniques
 - Application-specific optimizations and tuning
 - Obtaining guidelines on best practices
 - Periodic information on major fixes and updates
 - Information on major releases
 - Help with upgrading to the latest release
 - Flexible Service Level Agreements
- Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years
Upcoming 7th Annual MVAPICH User Group (MUG) Meeting

- **August 19-21, 2019; Columbus, Ohio, USA**
- Keynote Talks, Invited Talks, Invited Tutorials by ARM, IBM, Mellanox, Contributed Presentations, Student Poster Presentations, Tutorial on MVAPICH2 Libraries as well as other optimization and tuning hints.

Keynote Speakers
- Dan Stanzione, Texas Advanced Computing Center (TACC)
- Robert Harrison, Director of the Institute of Advanced Computational Science (IACS) and Brookhaven Computational Science Center (CSC)

Tutorials (Confirmed so far)
- ARM
- IBM
- Mellanox
- OSU/MVAPICH2

Invited Speakers (Confirmed so far)
- Gene Cooperman, Northeastern University
- Hyon-Wook Jin, Konkuk University (South Korea)
- Jithin Jose, Microsoft Azure
- Minsik Kim, KISTI Supercomputing Center (South Korea)
- Pramod Kumbhar, Blue Brain Project, EPFL (Switzerland)
- Heechang Na, Ohio Supercomputer Center
- Vikram Saletore, Intel
- Jeffrey Salmond, University of Cambridge (United Kingdom)
- Gilad Shainer, Mellanox
- Sameer Shende, Paratools and University of Oregon
- Sayantan Sur, Intel
- Mahidhar Tatineni, San Diego Supercomputing Center (SDSC)
- Karen Tomko, Ohio Supercomputer Center

More details at: http://mug.mvapich.cse.ohio-state.edu
Funding Acknowledgments

Funding Support by

Equipment Support by
Personnel Acknowledgments

Current Students (Graduate)
- A. Awan (Ph.D.)
- M. Bayatpour (Ph.D.)
- S. Chakraborty (Ph.D.)
- C.-H. Chu (Ph.D.)
- J. Hashmi (Ph.D.)
- A. Jain (Ph.D.)
- K. S. Kandadi (M.S.)

Current Students (Undergraduate)
- K. S. Khorassani (Ph.D.)
- P. Kousha (Ph.D.)
- A. Quentin (Ph.D.)
- B. Ramesh (M.S.)
- D. Shankar (Ph.D.)
- S. Xu (M.S.)
- Q. Zhou (Ph.D.)

Current Research Scientist
- H. Subramoni

Current Post-doc
- M. S. Ghazimeeraeed
- A. Ruhela
- K. Manian

Past Students
- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- R. Biswas (M.S.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- N. Dandapanthula (M.S.)
- V. Dhanraj (Ph.D.)
- T. Gangadharappa (M.S.)
- K. Gopalakrishnan (M.S.)
- W. Huang (Ph.D.)
- W. Jiang (M.S.)
- J. Jose (Ph.D.)
- S. Kini (M.S.)
- M. Koop (Ph.D.)
- K. Kulkarni (M.S.)
- R. Kamar (M.S.)
- S. Krishnamoorthy (M.S.)
- K. Kandalla (Ph.D.)
- M. Li (Ph.D.)
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Maidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- S. Pai (M.S.)
- S. Potluri (Ph.D.)
- R. Rajachandrasekar (Ph.D.)
- G. Santhanaraman (Ph.D.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- V. Kishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Past Research Scientist
- K. Hamidouche
- S. Sur
- X. Lu

Past Post-Docs
- D. Banerjee
- X. Besserion
- H.-W. Jin
- J. Lin
- M. Luo
- E. Mancini
- S. Marcarelli
- J. Vienne
- H. Wang

Past Programmers
- D. Bureddy
- J. Perkins

Past Research Specialist
- M. Arnold
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/