High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters

Talk at OpenFabrics Workshop (April 2016)

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

Xiaoyi Lu
The Ohio State University
E-mail: luxi@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~luxi
Cloud Computing and Virtualization

- Cloud Computing focuses on maximizing the effectiveness of the shared resources
- Virtualization is the key technology for resource sharing in the Cloud
- Widely adopted in industry computing environment
HPC Cloud - Combining HPC with Cloud

- IDC expects that by 2017, HPC ecosystem revenue will jump to a record $30.2 billion. IDC foresees public clouds, and especially custom public clouds, supporting an increasing proportion of the aggregate HPC workload as these cloud facilities grow more capable and mature (Courtesy: http://www.idc.com/getdoc.jsp?containerId=247846)

- Combining HPC with Cloud is still facing challenges because of the performance overhead associated virtualization support
 - Lower performance of virtualized I/O devices

- HPC Cloud Examples
 - Amazon EC2 with Enhanced Networking
 - Using Single Root I/O Virtualization (SR-IOV)
 - Higher performance (packets per second), lower latency, and lower jitter
 - 10 GigE
 - NSF Chameleon Cloud
NSF Chameleon Cloud: A Powerful and Flexible Experimental Instrument

- Large-scale instrument
 - Targeting Big Data, Big Compute, Big Instrument research
 - ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network

- Reconfigurable instrument
 - Bare metal reconfiguration, operated as single instrument, graduated approach for ease-of-use

- Connected instrument
 - Workload and Trace Archive
 - Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others
 - Partnerships with users

- Complementary instrument
 - Complementing GENI, Grid’5000, and other testbeds

- Sustainable instrument
 - Industry connections

http://www.chameleoncloud.org/
Single Root I/O Virtualization (SR-IOV)

- Single Root I/O Virtualization (SR-IOV) is providing new opportunities to design HPC cloud with very little low overhead
- Allows a single physical device, or a Physical Function (PF), to present itself as multiple virtual devices, or Virtual Functions (VFs)
- VFs are designed based on the existing non-virtualized PFs, no need for driver change
- Each VF can be dedicated to a single VM through PCI pass-through
- Work with 10/40 GigE and InfiniBand
Building HPC Cloud with SR-IOV and InfiniBand

- High-Performance Computing (HPC) has adopted advanced interconnects and protocols
 - InfiniBand
 - 10 Gigabit Ethernet/iWARP
 - RDMA over Converged Enhanced Ethernet (RoCE)

- Very Good Performance
 - Low latency (few micro seconds)
 - High Bandwidth (100 Gb/s with EDR InfiniBand)
 - Low CPU overhead (5-10%)

- OpenFabrics software stack with IB, iWARP and RoCE interfaces are driving HPC systems

- How to Build HPC Cloud with SR-IOV and InfiniBand for delivering optimal performance?
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Used by more than 2,550 organizations in 79 countries
 - More than 360,000 (> 0.36 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov ‘15 ranking)
 - 10th ranked 519,640-core cluster (Stampede) at TACC
 - 13th ranked 185,344-core cluster (Pleiades) at NASA
 - 25th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu

- Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Stampede at TACC (10th in Nov’15, 519,640 cores, 5.168 Plops)
MVAPICH2 Architecture

High Performance Parallel Programming Models

| Message Passing Interface (MPI) | PGAS (UPC, OpenSHMEM, CAF, UPC++) | Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk) |

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, OmniPath)

- Transport Protocols
 - RC
 - XRC
 - UD
 - DC
- Modern Features
 - UMR
 - ODPM
 - SR-IOV
 - Multi Rail

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

- Transport Mechanisms
 - Shared Memory
 - CMA
 - IVSHMEM
- Modern Features
 - MCDRAM*
 - NVLink*
 - CAPI*

* Upcoming
MVAPICH/MVAPICH2 Release Timeline and Downloads

Network Based Computing Laboratory
OpenFabrics-Virtualization (April ‘16)
MVAPICH2 Software Family

<table>
<thead>
<tr>
<th>Requirements</th>
<th>MVAPICH2 Library to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI with IB, iWARP and RoCE</td>
<td>MVAPICH2</td>
</tr>
<tr>
<td>Advanced MPI, OSU INAM, PGAS and MPI+PGAS with IB and RoCE</td>
<td>MVAPICH2-X</td>
</tr>
<tr>
<td>MPI with IB & GPU</td>
<td>MVAPICH2-GDR</td>
</tr>
<tr>
<td>MPI with IB & MIC</td>
<td>MVAPICH2-MIC</td>
</tr>
<tr>
<td>HPC Cloud with MPI & IB</td>
<td>MVAPICH2-Virt</td>
</tr>
<tr>
<td>Energy-aware MPI with IB, iWARP and RoCE</td>
<td>MVAPICH2-EA</td>
</tr>
</tbody>
</table>
Three Designs

• MVAPICH2-Virt with SR-IOV and IVSHMEM
 – Standalone, OpenStack

• MVAPICH2-Virt on SLURM

• MVAPICH2 with Containers
MVAPICH2-Virt 2.1

• Major Features and Enhancements
 – Based on MVAPICH2 2.1
 – Support for efficient MPI communication over SR-IOV enabled InfiniBand networks
 – High-performance and locality-aware MPI communication with IVSHMEM
 – Support for auto-detection of IVSHMEM device in virtual machines
 – Automatic communication channel selection among SR-IOV, IVSHMEM, and CMA/LiMIC2
 – Support for integration with OpenStack
 – Support for easy configuration through runtime parameters
 – Tested with
 • Mellanox InfiniBand adapters (ConnectX-3 (56Gbps))
 • OpenStack Juno
Overview of MVAPICH2-Virt with SR-IOV and IVSHMEM

- Redesign MVAPICH2 to make it virtual machine aware
 - SR-IOV shows near to native performance for inter-node point to point communication
 - IVSHMEM offers shared memory based data access across co-resident VMs
 - Locality Detector: maintains the locality information of co-resident virtual machines
 - Communication Coordinator: selects the communication channel (SR-IOV, IVSHMEM) adaptively

MVAPICH2-Virt with SR-IOV and IVSHMEM over OpenStack

- OpenStack is one of the most popular open-source solutions to build clouds and manage virtual machines
- Deployment with OpenStack
 - Supporting SR-IOV configuration
 - Supporting IVSHMEM configuration
 - Virtual Machine aware design of MVAPICH2 with SR-IOV
- An efficient approach to build HPC Clouds with MVAPICH2-Virt and OpenStack

Three Designs

- MVAPICH2-Virt with SR-IOV and IVSHMEM
 - Standalone, OpenStack
- MVAPICH2-Virt on SLURM
- MVAPICH2 with Containers
Can HPC Clouds be built with MVAPICH2-Virt on SLURM?

- SLURM is one of the most popular open-source solutions to manage huge amounts of machines in HPC clusters.

- How to build a SLURM-based HPC Cloud with near native performance for MPI applications over SR-IOV enabled InfiniBand HPC clusters?

- What are the requirements on SLURM to support SR-IOV and IVSHMEM provided in HPC Clouds?

- How much performance benefit can be achieved on MPI primitive operations and applications in “MVAPICH2-Virt on SLURM”-based HPC clouds?
Typical Usage Scenarios

Compute Nodes

Exclusive Allocation
Sequential Job

Exclusive Allocation
Concurrent Jobs

Shared-host Allocations
Concurrent Jobs

Compute Nodes

Exclusive Allocation
Concurrent Jobs

Shared-host Allocations
Concurrent Jobs

Compute Nodes

Exclusive Allocation
Sequential Job

Exclusive Allocation
Concurrent Jobs

Shared-host Allocations
Concurrent Jobs

Compute Nodes

Exclusive Allocation
Sequential Job

Exclusive Allocation
Concurrent Jobs

Shared-host Allocations
Concurrent Jobs
Need for Supporting SR-IOV and IVSHMEM in SLURM

• Requirement of managing and isolating virtualized resources of SR-IOV and IVSHMEM
• Such kind of management and isolation is hard to be achieved by MPI library alone, but much easier with SLURM
• Efficient running MPI applications on HPC Clouds needs SLURM to support managing SR-IOV and IVSHMEM
 – Can critical HPC resources be efficiently shared among users by extending SLURM with support for SR-IOV and IVSHMEM based virtualization?
 – Can SR-IOV and IVSHMEM enabled SLURM and MPI library provide bare-metal performance for end applications on HPC Clouds?
Workflow of Running MPI Jobs with MVAPICH2-Virt on SLURM

1. SR-IOV virtual function
2. IVSHMEM device
3. Network setting
4. Image management
5. Launching VMs and check availability
6. Mount global storage, etc.
SLURM SPANK Plugin based Design

- **VM Configuration Reader** – Register all VM configuration options, set in the job control environment so that they are visible to all allocated nodes.
- **VM Launcher** – Setup VMs on each allocated nodes.
 - File based lock to detect occupied VF and exclusively allocate free VF
 - Assign a unique ID to each IVSHMEM and dynamically attach to each VM
- **VM Reclaimer** – Tear down VMs and reclaim resources
Benefits of Plugin-based Designs for SLURM

- Coordination
 - With global information, SLURM plugin can manage SR-IOV and IVSHMEM resources easily for concurrent jobs and multiple users
- Performance
 - Faster coordination, SR-IOV and IVSHMEM aware resource scheduling, etc.
- Scalability
 - Taking advantage of the scalable architecture of SLURM
- Fault Tolerance
- Permission
- Security
Performance Evaluation

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Nowlab Cloud</th>
<th>Amazon EC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
<td>4 Core/VM</td>
<td>8 Core/VM</td>
</tr>
<tr>
<td>Platform</td>
<td>RHEL 6.5 Qemu+KVM HVM SLURM 14.11.8</td>
<td>Amazon Linux (EL6) Xen HVM C3.xlarge [1] Instance</td>
</tr>
<tr>
<td>CPU</td>
<td>SandyBridge Intel(R) Xeon E5-2670 (2.6GHz)</td>
<td>IvyBridge Intel(R) Xeon E5-2680v2 (2.8GHz)</td>
</tr>
<tr>
<td>RAM</td>
<td>6 GB</td>
<td>12 GB</td>
</tr>
</tbody>
</table>

[1] Amazon EC2 C3 instances: compute-optimized instances, providing customers with the highest performing processors, good for HPC workloads

[2] Nowlab Cloud is using InfiniBand FDR (56Gbps), while Amazon EC2 C3 instances are using 10 GigE. Both have SR-IOV
Experiments Carried Out

• Point-to-point
 – Two-sided and One-sided
 – Latency and Bandwidth
 – Intra-node and Inter-node \[1\]

• Applications
 – NAS and Graph500

[1] Amazon EC2 does not support users to explicitly allocate VMs in one physical node so far. We allocate multiple VMs in one logical group and compare the point-to-point performance for each pair of VMs. We see the VMs who have the lowest latency as located within one physical node (Intra-node), otherwise Inter-node.
- EC2 C3.2xlarge instances
- Compared to SR-IOV-Def, up to 84% and 158% performance improvement on Lat & BW
- Compared to Native, 3%-7% overhead for Lat, 3%-8% overhead for BW
- Compared to EC2, up to 160X and 28X performance speedup on Lat & BW
Point-to-Point Performance – Latency & Bandwidth (Inter-node)

- EC2 C3.2xlarge instances
- Similar performance with SR-IOV-Def
- Compared to Native, 2%-8% overhead on Lat & BW for 8KB+ messages
- Compared to EC2, up to 30X and 16X performance speedup on Lat & BW
Application-Level Performance (8 VM * 8 Core/VM)

- Compared to Native, 1-9% overhead for NAS
- Compared to Native, 4-9% overhead for Graph500
Application-Level Performance on Chameleon

- 32 VMs, 6 Core/VM
- Compared to Native, 2-5% overhead for Graph500 with 128 Procs
- Compared to Native, 1-9.5% overhead for SPEC MPI2007 with 128 Procs
Three Designs

- MVAPICH2-Virt with SR-IOV and IVSHMEM
 - Standalone, OpenStack
- MVAPICH2-Virt on SLURM
- MVAPICH2 with Containers
Containers-based Design: Issues, Challenges, and Approaches

- Container-based technologies (such as Docker) provide lightweight virtualization solutions
- What are the performance bottlenecks when running MPI applications on multiple containers per host in HPC cloud?
- Can we propose a new design to overcome the bottleneck on such container-based HPC cloud?
- Can optimized design deliver near-native performance for different container deployment scenarios?
- Locality-aware based design to enable CMA and Shared memory channels for MPI communication across co-resident containers
Containers Support: MVAPICH2 Intra-node Inter-Container Point-to-Point Performance on Chameleon

- **Intra-Node Inter-Container**
- Compared to Container-Def, up to 81% and 191% improvement on Latency and BW
- Compared to Native, minor overhead on Latency and BW
Containers Support: MVAPICH2 Collective Performance on Chameleon

- 64 Containers across 16 nodes, pinning 4 Cores per Container
- Compared to Container-Def, up to 64% and 86% improvement on Allreduce and Allgather
- Compared to Native, minor overhead on Allreduce and Allgather
Containers Support: Application-Level Performance on Chameleon

- 64 Containers across 16 nodes, pining 4 Cores per Container
- Compared to Container-Def, up to 11% and 16% of execution time reduction for NAS and Graph 500
- Compared to Native, less than 9% and 4% overhead for NAS and Graph 500
- Optimized Container support will be available with the upcoming release of MVAPICH2-Virt
Conclusions

- MVAPICH2-Virt with SR-IOV and IVSHMEM is an efficient approach to build HPC Clouds
 - Standalone
 - OpenStack
- Building HPC Clouds with MVAPICH2-Virt on SLURM is possible
- Containers-based design for MPAPICH2-Virt
- Very little overhead with virtualization, near native performance at application level
- Much better performance than Amazon EC2
- MVAPICH2-Virt 2.1 is available for building HPC Clouds
 - SR-IOV, IVSHMEM, OpenStack
- Future releases for supporting running MPI jobs in VMs/Containers with SLURM
Thank You!

panda@cse.ohio-state.edu, luxi@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/