Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach

Talk at OpenFabrics Workshop (April 2016)

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Parallel Programming Models Overview

- Programming models provide abstract machine models
- Models can be mapped on different types of systems
 - e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
- PGAS models and Hybrid MPI+PGAS models are gradually receiving importance
Partitioned Global Address Space (PGAS) Models

- **Key features**
 - Simple shared memory abstractions
 - Light weight one-sided communication
 - Easier to express irregular communication

- **Different approaches to PGAS**
 - **Languages**
 - Unified Parallel C (UPC)
 - Co-Array Fortran (CAF)
 - X10
 - Chapel
 - **Libraries**
 - OpenSHMEM
 - UPC++
 - Global Arrays
Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on communication characteristics

• Benefits:
 – Best of Distributed Computing Model
 – Best of Shared Memory Computing Model

• Exascale Roadmap*:
 – “Hybrid Programming is a practical way to program exascale systems”

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Used by more than 2,550 organizations in 79 countries
 - More than 360,000 (> 0.36 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov ‘15 ranking)
 - 10th ranked 519,640-core cluster (Stampede) at TACC
 - 13th ranked 185,344-core cluster (Pleiades) at NASA
 - 25th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu

- Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Stampede at TACC (10th in Nov’15, 519,640 cores, 5.168 Plops)
MVAPICH2 Architecture

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEM, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology (InfiniBand, iWARP, RoCE, OmniPath)

- Transport Protocols: RC, XRC, UD, DC
- Modern Features: UMR, ODP*, SR-IOV, Multi Rail

Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

- Transport Mechanisms: Shared Memory, CMA, IVSHMEM
- Modern Features: MCDRAM*, NVLink*, CAPI*

* Upcoming
MVAPICH2 Software Family

<table>
<thead>
<tr>
<th>Requirements</th>
<th>MVAPICH2 Library to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI with IB, iWARP and RoCE</td>
<td>MVAPICH2</td>
</tr>
<tr>
<td>Advanced MPI, OSU INAM, PGAS and MPI+PGAS with IB and RoCE</td>
<td>MVAPICH2-X</td>
</tr>
<tr>
<td>MPI with IB & GPU</td>
<td>MVAPICH2-GDR</td>
</tr>
<tr>
<td>MPI with IB & MIC</td>
<td>MVAPICH2-MIC</td>
</tr>
<tr>
<td>HPC Cloud with MPI & IB</td>
<td>MVAPICH2-Virt</td>
</tr>
<tr>
<td>Energy-aware MPI with IB, iWARP and RoCE</td>
<td>MVAPICH2-EA</td>
</tr>
</tbody>
</table>
MVAPICH2 2.2rc1

- Released on 03/30/2016
- Major Features and Enhancements
 - Based on MPICH-3.1.4
 - Support for OpenPower architecture
 - Optimized inter-node and intra-node communication
 - Support for Intel Omni-Path architecture
 - Thanks to Intel for contributing the patch
 - Introduction of a new PSM2 channel for Omni-Path
 - Support for RoCEv2
 - Architecture detection for PSC Bridges system with Omni-Path
 - Enhanced startup performance and reduced memory footprint for storing InfiniBand end-point information with SLURM
 - Support for shared memory based PMI operations
 - Availability of an updated patch from the MVAPICH project website with this support for SLURM installations
 - Optimized pt-to-pt and collective tuning for Chameleon InfiniBand systems at TACC/UoC
 - Enable affinity by default for TrueScale(PSM) and Omni-Path(PSM2) channels
 - Enhanced tuning for shared-memory based MPI_Bcast
 - Enhanced debugging support and error messages
 - Update to hwloc version 1.11.2
MVAPICH2-X 2.2rc1

• Released on 03/30/2016

• Introducing UPC++ Support
 – Based on Berkeley UPC++ v0.1
 – Introduce UPC++ level support for new scatter collective operation (upcxx_scatter)
 – Optimized UPC collectives (improved performance for upcxx_reduce, upcxx_bcast, upcxx_gather, upcxx_allgather, upcxx_alltoall)

• MPI Features
 – Based on MVAPICH2 2.2rc1 (OFA-IB-CH3 interface)
 – Support for OpenPower, Intel Omni-Path, and RoCE v2

• UPC Features
 – Based on GASNET v1.26
 – Support for OpenPower, Intel Omni-Path, and RoCE v2

• OpenSHMEM Features
 – Support for OpenPower and RoCE v2

• CAF Features
 – Support for RoCE v2

• Hybrid Program Features
 – Introduce support for hybrid MPI+UPC++ applications
 – Support OpenPower architecture for hybrid MPI+UPC and MPI+OpenSHMEM applications

• Unified Runtime Features
 – Based on MVAPICH2 2.2rc1 (OFA-IB-CH3 interface). All the runtime features enabled by default in OFA-IB-CH3 and OFA-IB-RoCE interface of MVAPICH2 2.2rc1 are available in MVAPICH2-X 2.2rc1
 – Introduce support for UPC++ and MPI+UPC++ programming models

• Support for OSU InfiniBand Network Analysis and Management (OSU INAM) Tool v0.9
 – Capability to profile and report process to node communication matrix for MPI processes at user specified granularity in conjunction with OSU INAM
 – Capability to classify data flowing over a network link at job level and process level granularity in conjunction with OSU INAM
Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
 - Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided RMA)
 - Support for advanced IB mechanisms (UMR and ODP)
 - Extremely minimal memory footprint
- Collective communication
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
Latency & Bandwidth: MPI over IB with MVAPICH2

Small Message Latency

- **Message Size (bytes)**: 0, 4, 8, 16, 32, 64, 128, 256, 512, 1K
- Latency (us): 0.95, 1.15, 1.19, 1.26

Unidirectional Bandwidth

- **Message Size (bytes)**: 4, 16, 64, 1024, 4K, 16K, 64K, 256K, 1M
- Bandwidth (MBytes/sec): 3387, 6356, 12104, 12465

Networks Tested:
- TrueScale-QDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch
- ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch
- ConnectIB-Dual FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch
- ConnectX-4-EDR - 2.8 GHz Deca-core (Haswell) Intel PCI Gen3 Back-to-back
MVAPICH2 Two-Sided Intra-Node Performance
(Shared memory and Kernel-based Zero-copy Support (LiMIC and CMA))

Latest MVAPICH2 2.2rc1
Intel Ivy-bridge
User-mode Memory Registration (UMR)

- Introduced by Mellanox to support direct local and remote noncontiguous memory access
 - Avoid packing at sender and unpacking at receiver

- Available since MVAPICH2-X 2.2b

Connect-IB (54 Gbps): 2.8 GHz Dual Ten-core (IvyBridge) Intel PCI Gen3 with Mellanox IB FDR switch

On-Demand Paging (ODP)

- Introduced by Mellanox to support direct remote memory access without pinning
- Memory regions paged in/out dynamically by the HCA/OS
- Size of registered buffers can be larger than physical memory
- Will be available in future MVAPICH2 release

Graph500 BFS Kernel

Graph500 Pin-down Buffer Sizes

Connect-IB (54 Gbps): 2.6 GHz Dual Octa-core (SandyBridge) Intel PCI Gen3 with Mellanox IB FDR switch
Minimizing Memory Footprint by Direct Connect (DC) Transport

- Constant connection cost (One QP for any peer)
- Full Feature Set (RDMA, Atomics etc)
- Separate objects for send (DC Initiator) and receive (DC Target)
 - DC Target identified by “DCT Number”
 - Messages routed with (DCT Number, LID)
 - Requires same “DC Key” to enable communication
- Available since MVAPICH2-X 2.2a

Memory Footprint for Alltoall

NAMD - Apoa1: Large data set

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
- **Collective communication**
 - Offload and Non-blocking
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
Co-Design with MPI-3 Non-Blocking Collectives and Collective Offload Co-Direct Hardware (Available since MVAPICH2-X 2.2a)

Modified P3DFFT with Offload-Alltoall does up to 17% better than default version (128 Processes)

Modified Pre-Conjugate Gradient Solver with Offload-Allreduce does up to 21.8% better than default version

Modified HPL with Offload-Bcast does up to 4.5% better than default version (512 Processes)

K. Kandalla, et. al.. High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A Study with Parallel 3D FFT, ISC 2011

K. Kandalla, et. al, Designing Non-blocking Broadcast with Collective Offload on InfiniBand Clusters: A Case Study with HPL, HotI 2011

K. Kandalla, et. al., Designing Non-blocking Allreduce with Collective Offload on InfiniBand Clusters: A Case Study with Conjugate Gradient Solvers, IPDPS ’12

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
- Collective communication
 - Offload and Non-blocking
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
MVAPICH2-X for Advanced MPI and Hybrid MPI + PGAS Applications

- Unified communication runtime for MPI, UPC, OpenSHMEM, CAF, UPC++ available with MVAPICH2-X 1.9 onwards! (since 2012)
- UPC++ support is available in MVAPICH2-X 2.2RC1
- Feature Highlights
 - Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, UPC++, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC
 - MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH), UPC++
 - Scalable Inter-node and intra-node communication – point-to-point and collectives
Application Level Performance with Graph500 and Sort

Graph500 Execution Time

- Performance of Hybrid (MPI+OpenSHMEM) Graph500 Design
 - 8,192 processes
 - 2.4X improvement over MPI-CSR
 - 7.6X improvement over MPI-Simple
 - 16,384 processes
 - 1.5X improvement over MPI-CSR
 - 13X improvement over MPI-Simple

Sort Execution Time

- Performance of Hybrid (MPI+OpenSHMEM) Sort Application
 - 4,096 processes, 4 TB Input Size
 - MPI – 2408 sec; 0.16 TB/min
 - Hybrid – 1172 sec; 0.36 TB/min
 - 51% improvement over MPI-design

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, Int’l Conference on Parallel Processing (ICPP '12), September 2012
Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
- Collective communication
 - Offload and Non-blocking
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
At Sender:

MPI_Send(s_devbuf, size, ...);

At Receiver:

MPI_Recv(r_devbuf, size, ...);

High Performance and High Productivity
CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases

- Support for MPI communication from NVIDIA GPU device memory
- High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node
- Optimized and tuned collectives for GPU device buffers
- MPI datatype support for point-to-point and collective communication from GPU device buffers
Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)

GPU-GPU internode latency
- MV2-GDR2.2b
- MV2-GDR2.0b
- MV2 w/o GDR

GPU-GPU Internode Bandwidth
- MV2-GDR2.2b
- MV2-GDR2.0b
- MV2 w/o GDR

GPU-GPU Internode Bi-Bandwidth
- MV2-GDR2.2b
- MV2-GDR2.0b
- MV2 w/o GDR

Intel Ivy Bridge (E5-2680 v2) node - 20 cores
NVIDIA Tesla K40c GPU
Mellanox Connect-IB Dual-FDR HCA
CUDA 7
Mellanox OFED 2.4 with GPU-Direct-RDMA
Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

HoomdBlue Version 1.0.5

- GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384
Exploiting GDR for OpenSHMEM

- Introduced CUDA-aware OpenSHMEM
- GDR for small/medium message sizes
- Host-staging for large message to avoid PCIe bottlenecks
- Hybrid design brings best of both
- 3.13 us Put latency for 4B (7X improvement) and 4.7 us latency for 4KB
- 9X improvement for Get latency of 4B

Will be available in future MVAPICH2-X Release
Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
- Collective communication
 - Offload and Non-blocking
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
MVAPICH2-MIC 2.0 Design for Clusters with IB and MIC

- Offload Mode
- Intranode Communication
 - Coprocessor-only and Symmetric Mode
- Internode Communication
 - Coprocessors-only and Symmetric Mode
- Multi-MIC Node Configurations
- Running on three major systems
 - Stampede, Blueridge (Virginia Tech) and Beacon (UTK)
MIC-Remote-MIC P2P Communication with Proxy-based Communication

Intra-socket P2P

- **Latency (Large Messages)**
 - MV2: Red line
 - MV2-MIC: Green line
 - Message Size: 8K, 32K, 128K, 512K, 2M
 - Latency (usec): 0, 1000, 2000, 3000, 4000, 5000

- **Bandwidth**
 - Message Size: 1, 16, 256, 4K, 64K, 1M
 - Bandwidth (MB/sec): 0, 2000, 4000, 5000

Inter-socket P2P

- **Latency (Large Messages)**
 - Message Size: 8K, 32K, 128K, 512K, 2M
 - Latency (usec): 0, 1000, 2000, 3000, 4000

- **Bandwidth**
 - Message Size: 1, 16, 256, 4K, 64K, 1M
 - Bandwidth (MB/sec): 0, 2000, 4000, 5000

Better results are indicated by an upward trend.
Optimized MPI Collectives for MIC Clusters (Allgather & Alltoall)

32-Node-Allgather (16H + 16 M)
Small Message Latency

32-Node-Alltoall (8H + 8 M)
Large Message Latency

32-Node-Alltoall (8H + 8 M)
Large Message Latency

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
- Collective communication
 - Offload and Non-blocking
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT)

- MVAPICH2-EA 2.1 (Energy-Aware)
 - A white-box approach
 - New Energy-Efficient communication protocols for pt-pt and collective operations
 - Intelligently apply the appropriate Energy saving techniques
 - Application oblivious energy saving

- OEMT
 - A library utility to measure energy consumption for MPI applications
 - Works with all MPI runtimes
 - PRELOAD option for precompiled applications
 - Does not require ROOT permission:
 - A safe kernel module to read only a subset of MSRs
MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)

- An energy efficient runtime that provides energy savings without application knowledge
- Uses automatically and transparently the best energy lever
- Provides guarantees on maximum degradation with 5-41% savings at <= 5% degradation
- Pessimistic MPI applies energy reduction lever to each MPI call

![Energy Profile](chart1)
![Speedup](chart2)

A Case for Application-Oblivious Energy-Efficient MPI Runtime
Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

- Scalability for million to billion processors
- Collective communication
 - Offload and Non-blocking
- Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, ...)
- Integrated Support for GPGPUs
- Integrated Support for MICs
- Energy-Awareness
- InfiniBand Network Analysis and Monitoring (INAM)
Overview of OSU INAM

- A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the MPI runtime
 - http://mvapich.cse.ohio-state.edu/tools/osu-inam/
 - http://mvapich.cse.ohio-state.edu/userguide/osu-inam/
- Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes
- Capability to analyze and profile node-level, job-level and process-level activities for MPI communication (Point-to-Point, Collectives and RMA)
- Ability to filter data based on type of counters using “drop down” list
- Remotely monitor various metrics of MPI processes at user specified granularity
- "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X
- Visualize the data transfer happening in a “live” or “historical” fashion for entire network, job or set of nodes
OSU INAM – Network Level View

- Show network topology of large clusters
- Visualize traffic pattern on different links
- Quickly identify congested links/links in error state
- See the history unfold – play back historical state of the network
OSU INAM – Job and Node Level Views

Visualizing a Job (5 Nodes)

- **Job level view**
 - Show different network metrics (load, error, etc.) for any live job
 - Play back historical data for completed jobs to identify bottlenecks

- **Node level view provides details per process or per node**
 - CPU utilization for each rank/node
 - Bytes sent/received for MPI operations (pt-to-pt, collective, RMA)
 - Network metrics (e.g. XmitDiscard, RcvError) per rank/node

Finding Routes Between Nodes
MVAPICH2 – Plans for Exascale

- Performance and Memory scalability toward 1M cores
- Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)
 - MPI + Task*
- Enhanced Optimization for GPU Support and Accelerators
- Taking advantage of advanced features of Mellanox InfiniBand
 - On-Demand Paging (ODP)*
 - Switch-IB2 SHArP*
 - GID-based support*
- Enhanced communication schemes for upcoming architectures
 - Knights Landing with MCDRAM*
 - NVLINK*
 - CAPI*
- Extended topology-aware collectives
- Extended Energy-aware designs and Virtualization Support
- Extended Support for MPI Tools Interface (as in MPI 3.0)
- Extended Checkpoint-Restart and migration support with SCR
- Support for * features will be available in future MVAPICH2 Releases
Funding Acknowledgments

Funding Support by

Equipment Support by
Personnel Acknowledgments

Current Students
- A. Augustine (M.S.)
- A. Awan (Ph.D.)
- S. Chakraborty (Ph.D.)
- C.-H. Chu (Ph.D.)
- N. Islam (Ph.D.)
- M. Li (Ph.D.)

Current Research Scientists
- K. Kulkarni (M.S.)
- M. Rahman (Ph.D.)
- D. Shankar (Ph.D.)
- A. Venkatesh (Ph.D.)
- J. Zhang (Ph.D.)

Current Post-Doc
- J. Lin
- D. Banerjee

Current Programmer
- J. Perkins

Current Research Specialist
- M. Arnold

Past Students
- P. Balaji (Ph.D.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- N. Dandapanthula (M.S.)
- V. Dhanraj (M.S.)
- T. Gangadharappa (M.S.)
- K. Gopalakrishnan (M.S.)
- G. Santhanaraman (Ph.D.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)

Past Research Scientist
- H. Subramoni
- X. Lu

Past Post-Docs
- H. Wang
- X. Besseron
- H.-W. Jin
- M. Luo
- K. Hamidouche

Current Senior Research Associate
- J. Perkins

Current Research Scientists
- G. Santhanaraman (Ph.D.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)

Past Programmers
- D. Bureddy
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/