
Bringing NVIDIA GPUs to the PGAS/OpenSHMEM
World: Challenges and Solutions

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

GPU Technology Conference (GTC 2016)

by

http://www.cse.ohio-state.edu/%7Epanda

GTC 2016 2 Network Based Computing Laboratory

High-End Computing (HEC): ExaFlop & ExaByte

100-200
PFlops in
2016-2018

1 EFlops in
2020-2024?

10K-20K
EBytes in
2016-2018

40K EBytes
in 2020 ?

ExaFlop & HPC
•

ExaByte & BigData
•

GTC 2016 3 Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving
importance

GTC 2016 4 Network Based Computing Laboratory

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Conclusions

Outline

GTC 2016 5 Network Based Computing Laboratory

Partitioned Global Address Space (PGAS) Models
• Key features

- Simple shared memory abstractions

- Light weight one-sided communication

- Easier to express irregular communication

• Different approaches to PGAS

- Languages
• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

- Libraries
• OpenSHMEM

• UPC++

• Global Arrays

GTC 2016 6 Network Based Computing Laboratory

OpenSHMEM
• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP SHMEM, GSHMEM

• Subtle differences in API, across versions – example:

 SGI SHMEM Quadrics SHMEM Cray SHMEM

Initialization start_pes(0) shmem_init start_pes

Process ID _my_pe my_pe shmem_my_pe

• Made application codes non-portable

• OpenSHMEM is an effort to address this:

“A new, open specification to consolidate the various extant SHMEM versions

into a widely accepted standard.” – OpenSHMEM Specification v1.0

by University of Houston and Oak Ridge National Lab

SGI SHMEM is the baseline

GTC 2016 7 Network Based Computing Laboratory

• Defines symmetric data objects that are globally
addressable

- Allocated using a collective shmalloc routine

- Same type, size and offset address at all
processes/processing elements (PEs)

- Address of a remote object can be calculated based on info
of local object

OpenSHMEM Memory Model

Symmetric
Object

b

b

 PE 0 PE 1

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

 shmem_int_get (b, b, 1 , 1);
} (dst, src, count, pe)

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

}

GTC 2016 8 Network Based Computing Laboratory

• UPC: a parallel extension to the C standard
• UPC Specifications and Standards:

- Introduction to UPC and Language Specification, 1999

- UPC Language Specifications, v1.0, Feb 2001

- UPC Language Specifications, v1.1.1, Sep 2004

- UPC Language Specifications, v1.2, 2005

- UPC Language Specifications, v1.3, In Progress - Draft Available

• UPC Consortium
- Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland…

- Government Institutions: ARSC, IDA, LBNL, SNL, US DOE…

- Commercial Institutions: HP, Cray, Intrepid Technology, IBM, …

• Supported by several UPC compilers
- Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC

- Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC

• Aims for: high performance, coding efficiency, irregular applications, …

Compiler-based: Unified Parallel C

GTC 2016 9 Network Based Computing Laboratory

• Global Shared Space: can be accessed by all the threads
• Private Space: holds all the normal variables; can only be accessed by the local

thread
• Examples:

 shared int x; //shared variable; allocated with affinity to Thread 0
 int main() {
 int y; //private variable
 }

UPC: Memory Model

Global
Shared Space

Private

Space

Thread 0 Thread 1 Thread 2 Thread 3

x

y y y y

GTC 2016 10 Network Based Computing Laboratory

• Gaining attention in efforts towards Exascale computing

• Hierarchical architectures with multiple address spaces

• (MPI + PGAS) Model

- MPI across address spaces

- PGAS within an address space

• MPI is good at moving data between address spaces

• Within an address space, MPI can interoperate with other shared memory
programming models

• Re-writing complete applications can be a huge effort

• Port critical kernels to the desired model instead

MPI+PGAS for Exascale Architectures and Applications

GTC 2016 11 Network Based Computing Laboratory

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on communication
characteristics

• Benefits:
– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Exascale Roadmap*:
– “Hybrid Programming is a practical way to

 program exascale systems”

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

GTC 2016 12 Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2012
– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Used by more than 2,550 organizations in 79 countries

– More than 360,000 (> 0.36 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘15 ranking)

• 10th ranked 519,640-core cluster (Stampede) at TACC

• 13th ranked 185,344-core cluster (Pleiades) at NASA

• 25th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

– Stampede at TACC (10th in Nov’15, 519,640 cores, 5.168 Plops)

http://mvapich.cse.ohio-state.edu/

GTC 2016 13 Network Based Computing Laboratory

MVAPICH2-X for Advanced MPI and Hybrid MPI + PGAS Applications
MPI, OpenSHMEM, UPC, CAF, UPC++ or

Hybrid (MPI + PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls UPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM, CAF available with MVAPICH2-X
1.9 (2012) onwards!

• UPC++ support available in the latest MVAPICH2-X 2.2RC1
• Feature Highlights

– Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, UPC++, MPI(+OpenMP) + OpenSHMEM,
MPI(+OpenMP) + UPC + CAF

– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard compliant (with initial
support for UPC 1.3), CAF 2008 standard (OpenUH), UPC++ 1.0

– Scalable Inter-node and intra-node communication – point-to-point and collectives

CAF Calls UPC++ Calls

GTC 2016 14 Network Based Computing Laboratory

Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models,
International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation,
Int'l Conference on Parallel Processing (ICPP '12), September 2012

0
5

10
15
20
25
30
35

4K 8K 16K

Ti
m

e
(s

)

No. of Processes

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid (MPI+OpenSHMEM)

13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design
• 8,192 processes
 - 2.4X improvement over MPI-CSR
 - 7.6X improvement over MPI-Simple
• 16,384 processes
 - 1.5X improvement over MPI-CSR
 - 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned
Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0
500

1000
1500
2000
2500
3000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Ti
m

e
(s

ec
on

ds
)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort
Application

• 4,096 processes, 4 TB Input Size
 - MPI – 2408 sec; 0.16 TB/min
 - Hybrid – 1172 sec; 0.36 TB/min

 - 51% improvement over MPI-design

GTC 2016 15 Network Based Computing Laboratory

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Conclusions

Outline

GTC 2016 16 Network Based Computing Laboratory

Limitations of OpenSHMEM for GPU Computing

• OpenSHMEM memory model does not support disjoint memory address spaces -
case with GPU clusters

PE 0

Existing OpenSHMEM Model with CUDA

• Copies severely limit the performance

PE 1

GPU-to-GPU
Data Movement

PE 0

cudaMemcpy (host_buf, dev_buf, . . .)
shmem_putmem (host_buf, host_buf, size, pe)
shmem_barrier (…)

host_buf = shmalloc (…)

PE 1

shmem_barrier (. . .)
cudaMemcpy (dev_buf, host_buf, size, . . .)

host_buf = shmalloc (…)

• Synchronization negates the benefits of one-sided communication
• Similar issues with UPC

cudaMemcpy (host_buf, dev_buf, . . .)

cudaMemcpy (host_buf, dev_buf, . . .)

shmem_barrier (…)

shmem_barrier (…)

GTC 2016 17 Network Based Computing Laboratory

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Conclusions

Outline

GTC 2016 18 Network Based Computing Laboratory

Global Address Space with Host and Device Memory
Host Memory

Private

Shared

Host Memory

Device Memory Device Memory

Private

Shared

Private

Shared

Private

Shared

shared space
on host memory

shared space
on device memory

N N

N N

• Extended APIs:
• heap_on_device/heap_on_host

• a way to indicate location of heap

• host_buf = shmalloc (sizeof(int), 0);

• dev_buf = shmalloc (sizeof(int), 1);

CUDA-Aware OpenSHMEM
Same design for UPC
 PE 0

shmem_putmem (dev_buf, dev_buf, size, pe)

PE 1

dev_buf = shmalloc (size, 1);

dev_buf = shmalloc (size, 1);
S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K. Panda, Extending
OpenSHMEM for GPU Computing, IPDPS’13

GTC 2016 19 Network Based Computing Laboratory

• After device memory becomes part of the global shared space:

- Accessible through standard UPC/OpenSHMEM communication APIs

- Data movement transparently handled by the runtime

- Preserves one-sided semantics at the application level

• Efficient designs to handle communication

- Inter-node transfers use host-staged transfers with pipelining

- Intra-node transfers use CUDA IPC

- Possibility to take advantage of GPUDirect RDMA (GDR)

• Goal: Enabling High performance one-sided communications semantics with GPU devices

CUDA-aware OpenSHMEM and UPC runtimes

GTC 2016 20 Network Based Computing Laboratory

Inter-Node Communication
• Pipelined data transfers through host memory - overlap between CUDA copies and IB transfers

• Done transparently by the runtime

• Designs with GPUDirect RDMA can help considerably improve performance

• Hybrid design:
– GPUDirect RDMA

– Pipeline 1 Hop

– Proxy-based design

HOST

IOH

HOST

IOH

GPU1 GPU0

Inter-Node
P0 P1

GTC 2016 21 Network Based Computing Laboratory

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Conclusions

Outline

GTC 2016 22 Network Based Computing Laboratory

• Using IPC for intra-node communication

• Small messages – 3.4X improvement for 4Byte messages

• Large messages – 5X for 4MByte messages

Shmem_putmem Intra-node Communication (IPC)

Small Messages Large Messages

0
5

10
15
20
25
30

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

5X 3.4X

Based on MVAPICH2X-2.0b + Extensions
Intel WestmereEP node with 8 cores

2 NVIDIA Tesla K20c GPUs, Mellanox QDR HCA
CUDA 6.0RC1

GTC 2016 23 Network Based Computing Laboratory

0

2

4

6

8

10

1 4 16 64 256 1K 4K

IPC GDR

Small Message shmem_put D-H

Message Size (bytes)

La
te

nc
y

(u
s)

• GDR for small and medium message sizes

• IPC for large message to avoid PCIe bottlenecks

• Hybrid design brings best of both

• 2.42 us Put D-H latency for 4 Bytes (2.6X improvement) and 3.92 us latency for 4 KBytes

• 3.6X improvement for Get operation

• Similar results with other configurations (D-D, H-D and D-H)

0
2
4
6
8

10
12
14

1 4 16 64 256 1K 4K

IPC GDR

Small Message shmem_get D-H

Message Size (bytes)

La
te

nc
y

(u
s)

2.6X 3.6X

Shmem_putmem Intra-node Communication (GDR Enhancement)

GTC 2016 24 Network Based Computing Laboratory

• Small messages benefit from selective CUDA registration – 22% for 4Byte messages

• Large messages benefit from pipelined overlap – 28% for 4MByte messages

S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K. Panda, Extending OpenSHMEM for GPU Computing, Int'l Parallel
and Distributed Processing Symposium (IPDPS '13)

Shmem_putmem Inter-node Communication (Pipeline)

Small Messages Large Messages

0
5

10
15
20
25
30
35

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

28% 22%

GTC 2016 25 Network Based Computing Laboratory

• GDR for small/medium message sizes

• Host-staging for large message to avoid PCIe
bottlenecks

• Hybrid design brings best of both

• 3.13 us Put latency for 4B (6.6X improvement) and 4.7
us latency for 4KB

• 9X improvement for Get latency of 4B

0
5

10
15
20
25

1 4 16 64 256 1K 4K

Host-Pipeline
GDR

Small Message shmem_put D-D

Message Size (bytes)

La
te

nc
y

(u
s)

0

200

400

600

800

8K 32K 128K 512K 2M

Host-Pipeline
GDR

Large Message shmem_put D-D

Message Size (bytes)

La
te

nc
y

(u
s)

0
5

10
15
20
25
30
35

1 4 16 64 256 1K 4K

Host-Pipeline
GDR

Small Message shmem_get D-D

Message Size (bytes)

La
te

nc
y

(u
s)

6.6X

9X

Shmem_putmem Inter-node Communication (GDR and Proxy Enhancement)

GTC 2016 26 Network Based Computing Laboratory

0

0.05

0.1

8 16 32 64Ex
ec

ut
io

n
tim

e
(s

ec
)

Number of GPU Nodes

Host-Pipeline Enhanced-GDR

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

- New designs achieve 20% and 19% improvements on 32 and 64 GPU nodes for 2Kx2K input size

Application Evaluation: 2DStencil

19%

2DStencil 2Kx2K

45 %

2DStencil 1Kx1K

K . Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C. Ching and D. K. Panda, Exploiting GPUDirect RDMA in
Designing High Performance OpenSHMEM for GPU Clusters. IEEE Cluster 2015

mailto:panda@cse.ohio-state.edu

GTC 2016 27 Network Based Computing Laboratory

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c +
Mellanox Connect-IB)

- Platform: CSCS (CS-Storm based): Haswell + NVIDA K80+ IB
FDR

K. Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C. Ching and D.
K. Panda, Exploiting GPUDirect RDMA in Designing High Performance
OpenSHMEM for GPU Clusters. Elsevier PARCO Journal

Application Evaluation: GPULBM

Wilkes CSCS
• Redesign the application

• CUDA-Aware MPI : Send/Recv=> hybrid CUDA-Aware
MPI+OpenSHMEM
• cudaMalloc =>shmalloc(size,1);
• MPI_Send/recv => shmem_put + fence
• 45% benefits

45 %

GTC 2016 28 Network Based Computing Laboratory

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Conclusions

Outline

GTC 2016 29 Network Based Computing Laboratory

• PGAS models offer lightweight synchronization and one-sided
communication semantics

• Low-overhead synchronization is suited for GPU architectures

• Extensions to the PGAS memory model needed to efficiently support
CUDA-Aware PGAS models

• High-performance GDR-based design for OpenSHMEM is proposed

• Plan on exploiting the GDR-based designs for UPC and UPC++

• Enhanced designs are planned to be incorporated into MVAPICH2-X

Conclusions

GTC 2016 30 Network Based Computing Laboratory

 International Workshop on Communication
Architectures at Extreme Scale (ExaComm)

ExaComm 2015 was held with Int’l Supercomputing Conference (ISC ‘15), at Frankfurt,
Germany, on Thursday, July 16th, 2015

One Keynote Talk: John M. Shalf, CTO, LBL/NERSC

Four Invited Talks: Dror Goldenberg (Mellanox); Martin Schulz (LLNL);
Cyriel Minkenberg (IBM-Zurich); Arthur (Barney) Maccabe (ORNL)

Panel: Ron Brightwell (Sandia)
Two Research Papers

ExaComm 2016 will be held in conjunction with ISC ’16
http://web.cse.ohio-state.edu/~subramon/ExaComm16/exacomm16.html

Technical Paper Submission Deadline: Friday, April 15, 2016

GTC 2016 31 Network Based Computing Laboratory

Funding Acknowledgments
Funding Support by

Equipment Support by

GTC 2016 32 Network Based Computing Laboratory

Personnel Acknowledgments
Current Students

– A. Augustine (M.S.)

– A. Awan (Ph.D.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

– N. Islam (Ph.D.)

– M. Li (Ph.D.)

Past Students
– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist
– S. Sur

Current Post-Doc
– J. Lin

– D. Banerjee

Current Programmer
– J. Perkins

Past Post-Docs
– H. Wang

– X. Besseron

– H.-W. Jin

– M. Luo

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)
– R. Rajachandrasekar (Ph.D.)

– K. Kulkarni (M.S.)

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– E. Mancini

– S. Marcarelli

– J. Vienne

Current Research Scientists Current Senior Research Associate
– H. Subramoni

– X. Lu

Past Programmers
– D. Bureddy

 - K. Hamidouche

Current Research Specialist
– M. Arnold

GTC 2016 33 Network Based Computing Laboratory

panda@cse.ohio-state.edu

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

mailto:panda@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

	Bringing NVIDIA GPUs to the PGAS/OpenSHMEM World: Challenges and Solutions
	High-End Computing (HEC): ExaFlop & ExaByte
	Parallel Programming Models Overview
	Slide Number 4
	Partitioned Global Address Space (PGAS) Models
	OpenSHMEM
	Slide Number 7
	Slide Number 8
	UPC: Memory Model
	Slide Number 10
	Hybrid (MPI+PGAS) Programming
	Overview of the MVAPICH2 Project
	MVAPICH2-X for Advanced MPI and Hybrid MPI + PGAS Applications
	Application Level Performance with Graph500 and Sort
	Slide Number 15
	Limitations of OpenSHMEM for GPU Computing
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Inter-Node Communication
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	 International Workshop on Communication Architectures at Extreme Scale (ExaComm)
	Funding Acknowledgments
	Personnel Acknowledgments
	Thank You!

