MVAPICH2-GDR: Pushing the Frontier of Designing MPI Libraries Enabling GPUDirect Technologies

GPU Technology Conference GTC 2016

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

Khaled Hamidouche
The Ohio State University
E-mail: hamidouc@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~hamidouc
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
 • What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR
 • OpenACC-Aware support
 • Conclusions
Overview of the MVAPICH2 Project

• High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 – MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 – MVAPICH2-X (MPI + PGAS), Available since 2011
 – Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 – Support for Virtualization (MVAPICH2-Virt), Available since 2015
 – Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 – Used by more than 2,550 organizations in 79 countries
 – More than 360,000 (> 0.36 million) downloads from the OSU site directly
 – Empowering many TOP500 clusters (Nov ‘15 ranking)
 • 10th ranked 519,640-core cluster (Stampede) at TACC
 • 13th ranked 185,344-core cluster (Pleiades) at NASA
 • 25th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 – Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 – http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
 – System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 – Stampede at TACC (10th in Nov’15, 519,640 cores, 5.168 Plops)
MVAPICH2 Architecture

High Performance Parallel Programming Models

<table>
<thead>
<tr>
<th>Message Passing Interface (MPI)</th>
<th>PGAS (UPC, OpenSHMEM, CAF, UPC++)</th>
<th>Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)</th>
</tr>
</thead>
</table>

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- **Point-to-point Primitives**
- **Collectives Algorithms**
- **Job Startup**
- **Energy-Awareness**
- **Remote Memory Access**
- **I/O and File Systems**
- **Fault Tolerance**
- **Virtualization**
- **Active Messages**
- **Introspection & Analysis**

Support for Modern Networking Technology

(InfiniBand, iWARP, RoCE, OmniPath)

Transport Protocols

- RC
- XRC
- UD
- DC

Modern Features

- UMR
- ODP*
- SR-IOV
- Multi Rail

Support for Modern Multi-/Many-core Architectures

(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

Transport Mechanisms

- SR-IOV
- Multi Rail

Modern Features

- Shared Memory
- CMA
- IVSHMEM
- MCDRAM*
- NVLink*
- CAPI*

* Upcoming
Optimizing MPI Data Movement on GPU Clusters

• Connected as PCIe devices – Flexibility but Complexity

1. Intra-GPU
2. Intra-Socket GPU-GPU
3. Inter-Socket GPU-GPU
4. Inter-Node GPU-GPU
5. Intra-Socket GPU-Host
6. Inter-Socket GPU-Host
7. Inter-Node GPU-Host

8. Inter-Node GPU-GPU with IB adapter on remote socket

• For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline ...

• Critical for runtimes to optimize data movement while hiding the complexity
GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

At Sender:

\[
\text{MPI_Send}(s_devbuf, \text{size}, \ldots);
\]

At Receiver:

\[
\text{MPI_Recv}(r_devbuf, \text{size}, \ldots);
\]

High Performance and High Productivity
CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases

- Support for MPI communication from NVIDIA GPU device memory
- High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node
- Optimized and tuned collectives for GPU device buffers
- MPI datatype support for point-to-point and collective communication from GPU device buffers
Using MVAPICH2-GPUDirect Version

- MVAPICH2-2.2b with GDR support can be downloaded from
 https://mvapich.cse.ohio-state.edu/download/mvapich2gdr/

- System software requirements
 - Mellanox OFED 2.1 or later
 - NVIDIA Driver 331.20 or later
 - NVIDIA CUDA Toolkit 7.0 or later
 - Plugin for GPUDirect RDMA
 - Strongly recommended
 - GDRCOPY module from NVIDIA
 https://github.com/NVIDIA/gdrcopy

- Contact MVAPICH help list with any questions related to the package
 mvapich-help@cse.ohio-state.edu
Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)

GPU-GPU internode latency

- MV2-GDR2.2b
- MV2-GDR2.0b
- MV2 w/o GDR

GPU-GPU Internode Bandwidth

- MV2-GDR2.2b
- MV2-GDR2.0b
- MV2 w/o GDR

GPU-GPU Internode Bi-Bandwidth

- MV2-GDR2.2b
- MV2-GDR2.0b
- MV2 w/o GDR

System Configuration

- Intel Ivy Bridge (E5-2680 v2) node - 20 cores
- NVIDIA Tesla K40c GPU
- Mellanox Connect-IB Dual-FDR HCA
- CUDA 7
- Mellanox OFED 2.4 with GPU-Direct-RDMA
Application-Level Evaluation (HOOMD-blue)

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- HoomdBlue Version 1.0.5
 - GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

![Graph 1: 64K Particles](image1)
- Number of Processes: 4, 8, 16, 32
- Average Time Steps per second (TPS)
- 4X Performance Improvement

![Graph 2: 256K Particles](image2)
- Number of Processes: 4, 8, 16, 32
- Average Time Steps per second (TPS)
- 2X Performance Improvement
Full and Efficient MPI-3 RMA Support

MVAPICH2-GDR-2.2b
Intel Ivy Bridge (E5-2680 v2) node - 20 cores, NVIDIA Tesla K40c GPU
Mellanox Connect-IB Dual-FDR HCA, CUDA 7
Mellanox OFED 2.4 with GPU-Direct-RDMA
Performance of MVAPICH2-GDR with GPU-Direct RDMA and Multi-Rail Support

GPU-GPU Internode MPI Uni-Directional Bandwidth

- MV2-GDR 2.1
- MV2-GDR 2.1 RC2

Message Size (bytes)

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>1K</th>
<th>4K</th>
<th>16K</th>
<th>64K</th>
<th>256K</th>
<th>1M</th>
<th>4M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

Bandwidth (MB/s)

- MV2-GDR 2.1
- MV2-GDR 2.1 RC2

GPU-GPU Internode Bi-directional Bandwidth

- MV2-GDR 2.1
- MV2-GDR 2.1 RC2

Message Size (bytes)

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>1K</th>
<th>4K</th>
<th>16K</th>
<th>64K</th>
<th>256K</th>
<th>1M</th>
<th>4M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
<td>10000</td>
<td>12000</td>
<td>14000</td>
<td>16000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bandwidth (MB/s)

- MV2-GDR 2.1
- MV2-GDR 2.1 RC2

MVAPICH2-GDR-2.2.b

- Intel Ivy Bridge (E5-2680 v2) node - 20 cores, NVIDIA Tesla K40c GPU
- Mellanox Connect-IB Dual-FDR HCA CUDA 7
- Mellanox OFED 2.4 with GPU-Direct-RDMA
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR
• OpenACC-Aware support
• Conclusions
Non-Blocking Collectives (NBC) using Core-Direct Offload

- MPI NBC decouples initiation (Ialltoall) and completion (Wait) phases and provide overlap potential (Ialltoall + compute + Wait) but CPU drives progress largely in Wait (=> 0 overlap)
- CORE-Direct feature provides true overlap capabilities by providing a priori specification of a list of network-tasks which is progressed by the NIC instead of the CPU (hence freeing it)
- We propose a design that combines GPUDirect RDMA and Core-Direct features to provide efficient support of CUDA-Aware NBC collectives on GPU buffers
 - Overlap communication with CPU computation
 - Overlap communication with GPU computation
- Extend OMB with CUDA-Aware NBC benchmarks to evaluate
 - Latency
 - Overlap on both CPU and GPU

CUDA-Aware Non-Blocking Collectives

Platform: Wilkes: Intel Ivy Bridge
NVIDIA Tesla K20c + Mellanox Connect-IB
Available since MVAPICH2-GDR 2.2b
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR

• OpenACC-Aware support
• Conclusions
Non-contiguous Data Exchange

- Multi-dimensional data
 - Row based organization
 - Contiguous on one dimension
 - Non-contiguous on other dimensions

- Halo data exchange
 - Duplicate the boundary
 - Exchange the boundary in each iteration
MPI Datatype Processing (Computation Optimization)

- Comprehensive support
 - Targeted kernels for regular datatypes - vector, subarray, indexed_block
 - Generic kernels for all other irregular datatypes

- Separate non-blocking stream for kernels launched by MPI library
 - Avoids stream conflicts with application kernels

- Flexible set of parameters for users to tune kernels
 - Vector
 - MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_VECTOR_YSIZE
 - Subarray
 - MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_SUBARR_XDIM
 - MV2_CUDA_KERNEL_SUBARR_YDIM
 - MV2_CUDA_KERNEL_SUBARR_ZDIM
 - Indexed_block
 - MV2_CUDA_KERNEL_IDXBLK_XDIM
MPI Datatype Processing (Communication Optimization)

Common Scenario

MPI_Isend (A,.. Datatype,...)
MPI_Isend (B,.. Datatype,...)
MPI_Isend (C,.. Datatype,...)
MPI_Isend (D,.. Datatype,...)
...

MPI_Waitall (...);

*A, B...contain non-contiguous MPI Datatype

Waste of computing resources on CPU and GPU
Application-Level Evaluation (HaloExchange - Cosmo)

- 2X improvement on 32 GPUs nodes
- 30% improvement on 96 GPU nodes (8 GPUs/node)

On-going Collaboration with CSCS and Meteo Swiss
Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What’s new with MVAPICH2-GDR
 - Efficient MPI-3 Non-Blocking Collective support
 - Maximal overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - RoCE and Optimized Collective
 - Initial support for GPUDirect Async feature
 - Efficient Deep Learning with MVAPICH2-GDR
- OpenACC-Aware support
- Conclusions
Initial (Basic) Support for GPU Managed Memory

- CUDA 6.0 NVIDIA introduced CUDA Managed (or Unified) memory allowing a common memory allocation for GPU or CPU through `cudaMallocManaged()` call
- Significant productivity benefits due to abstraction of explicit allocation and `cudaMemcpy()`
- Extended MVAPICH2 to perform communications directly from managed buffers (Available in MVAPICH2-GDR 2.2b)
- OSU Micro-benchmarks extended to evaluate the performance of point-to-point and collective communications using managed buffers
 - Available since OMB 5.2

D. S. Banerjee, K Hamidouche, and D. K Panda, Designing High Performance Communication Runtime for GPUManaged Memory: Early Experiences, GPGPU-9 Workshop, to be held in conjunction with PPoPP ’16
Enhanced Support for Intra-node Managed Memory

- CUDA Managed => no memory pin down
 - No IPC support for intra-node communication
 - No GDR support for Inter-node communication
- Initial and basic support in MVAPICH2-GDR
 - For both intra- and inter-nodes use "pipeline through" host memory
- Enhance intra-node managed memory to use IPC
 - Double buffering pair-wise IPC-based scheme
 - Brings IPC performance to Managed memory
 - High performance and high productivity
 - 2.5 X improvement in bandwidth
- Will be available in MVAPICH2-GDR 2.2RC1
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR
• OpenACC-Aware support
• Conclusions
ROCE and Optimized Collectives Support

- RoCE V1 and V2 support
- RDMA_CM connection support
- CUDA-Aware Collective Tuning
 - Point-point Tuning (available since MVAPICH2-GDR 2.0)
 - Tuned thresholds for the different communication patterns and features
 - Depending on the system configuration (CPU, HCA and GPU models)
 - Tuning Framework for GPU based collectives
 - Select the best algorithm depending on message size, system size and system configuration
 - Support for Bcast and Gather operations for different GDR-enabled systems
- Will be available with the upcoming MVAPICH2-GDR 2.2RC1 release
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR
• OpenACC-Aware support
• Conclusions
Overview of GPUDirect aSync (GDS) Feature: Current MPI+CUDA interaction

CUDA_Kernel_a<<<>>>(A..., stream1)
cudaStreamSynchronize(stream1)
MPI_ISend (A,...., req1)
MPI_Wait (req1)
CUDA_Kernel_b<<<>>>(B..., stream1)

100% CPU control
• Limit the throughput of a GPU
• Limit the asynchronous progress
• Waste CPU cycles
MVAPICH2-GDS: Decouple GPU Control Flow from CPU

CUDA_Kernel_a<<<>>>(A..., stream1)
MPI_Isend (A..., req1, stream1)
MPI_Wait (req1, stream1) (non-blocking from CPU)
CUDA_Kernel_b<<<>>>(B..., stream1)

CPU offloads the compute, communication and synchronization tasks to GPU
• CPU is out of the critical path
• Tight interaction between GPU and HCA
• Hide the overhead of kernel launch
• Requires MPI semantics extensions
 • All operations are asynchronous from CPU
 • Extend MPI semantics with Stream-based semantics
Latency oriented: Send+kernel and Recv+kernel

- Latency Oriented: Able to hide the kernel launch overhead
 - 25% improvement at 256 Bytes compared to default behavior

- Throughput Oriented: Asynchronously to offload queue the Communication and computation tasks
 - 14% improvement at 1KB message size
 - Requires some tuning and expect better performance for Application with different Kernels

Intel SandyBridge, NVIDIA K20 and Mellanox FDR HCA
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR

• OpenACC-Aware support
• Conclusions
Efficient Deep Learning with MVAPICH2-GDR

- Benefits and Weaknesses
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
- Can we enhance Caffe with MVAPICH2-GDR?
 - Caffe-MPI Enhanced: A CUDA-Aware MPI version
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Initial Evaluation suggests that we can scale up to 64 GPUs for training the CIFAR-10 model

![Graph showing comparison between Caffe (up to 16 GPUs) and Caffe-MPI Enhanced (up to 64 GPUs)]
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR

• OpenACC-Aware support

• Conclusions
OpenACC-Aware MPI

- **acc_malloc** to allocate device memory
 - No changes to MPI calls
 - MVAPICH2 detects the device pointer and optimizes data movement
- **acc_deviceptr** to get device pointer (in OpenACC 2.0)
 - Enables MPI communication from memory allocated by compiler when it is available in OpenACC 2.0 implementations
 - MVAPICH2 will detect the device pointer and optimize communication
- Delivers the same performance as with CUDA

```c
A = acc_malloc(sizeof(int) * N);
......
#pragma acc parallel loop deviceptr(A) . . .
//compute for loop
MPI_Send (A, N, MPI_INT, 0, 1, MPI_COMM_WORLD);
......
acc_free(A);
```

```c
A = malloc(sizeof(int) * N);
......
#pragma acc parallel loop deviceptr(A) . . .
{
#pragma acc data copyin(A) . . .
//compute for loop
MPI_Send(acc_deviceptr(A), N, MPI_INT, 0, 1, MPI_COMM_WORLD);
}
......
free(A);
```
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Efficient MPI-3 Non-Blocking Collective support
 • Maximal overlap in MPI Datatype Processing
 • Efficient Support for Managed Memory
 • RoCE and Optimized Collective
 • Initial support for GPUDirect Async feature
 • Efficient Deep Learning with MVAPICH2-GDR
• OpenACC-Aware support
• Conclusions
Conclusions

- MVAPICH2 optimizes MPI communication on InfiniBand clusters with GPUs
- Provides optimized designs for point-to-point two-sided and one-sided communication, datatype processing and collective operations
- Efficient and maximal overlap for MPI-3 NBC collectives
- Delivers high performance and high productivity with support for the latest NVIDIA GPUs and InfiniBand Adapters
- Looking forward to next-generation designs with GPUDirect Async (GDS) and applications domain like Deep Learning
- Users are strongly encouraged to use the latest MVAPICH2-GDR release to avail all features and performance benefits
A Follow-up Talk on PGAS/OpenSHMEM

- S6418 - Bringing NVIDIA GPUs to the PGAS/OpenSHMEM World: Challenges and Solutions
 - **Day:** Wednesday, 04/06
 - **Time:** 16:30 - 16:55
 - **Location:** Room 211A
Acknowledgments

Dr. Davide Rossetti
Dr. Sreeram Potluri

Filippo Spiga and Stuart Rankin,
HPCS, University of Cambridge
(Wilkes Cluster)
Thank You!

panda@cse.ohio-state.edu, hamidouche@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/