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• Examples - surveillance, habitat 
monitoring, etc.. 

• Require efficient transport of data 
from/to distributed sources/sinks 

• Sensitive to latency and throughput 
metrics  

• Require HPC resources to 
efficiently carry out compute-
intensive tasks 

Streaming Applications 
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• Pipelined data parallel compute phases that form 
the crux of streaming applications lend 
themselves for GPGPUs 

• Data distribution to GPGPU sites occur over PCIe 
within the node and over InfiniBand interconnects 
across nodes 
 

Courtesy: Agarwalla, Bikash, et al. "Streamline: A scheduling heuristic 
for streaming applications on the grid." Electronic Imaging 2006 

• Broadcast operation is a key dictator of 
throughput of streaming applications 

• Reduced latency for each operation 
• Support multiple back-to-back operations 

 
 

Nature of Streaming Applications 
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Drivers of Modern HPC Cluster Architectures 

 

• Multi-core processors are ubiquitous 

• InfiniBand very popular in HPC clusters 
•   

• Accelerators/Coprocessors becoming common in high-end systems 

• Pushing the envelope for Exascale computing   

 
 

 
 

 

Accelerators / Coprocessors  
high compute density, high performance/watt 

>1 Tflop/s DP on a chip  

High Performance Interconnects - InfiniBand 
<1usec latency, >100Gbps Bandwidth   

Tianhe – 2 Titan Stampede Tianhe – 1A 

Multi-core Processors 
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• 235 IB Clusters (47%) in the Nov’ 2015 Top500 list   

      (http://www.top500.org) 

• Installations in the Top 50 (21 systems): 

Large-scale InfiniBand Installations 

462,462 cores (Stampede) at TACC (10th) 76,032 cores (Tsubame 2.5) at Japan/GSIC (25th) 

185,344 cores (Pleiades) at NASA/Ames (13th) 194,616 cores (Cascade) at PNNL (27th) 

72,800 cores Cray CS-Storm in US (15th) 76,032 cores (Makman-2) at Saudi Aramco (32nd) 

72,800 cores Cray CS-Storm in US (16th) 110,400 cores (Pangea) in France (33rd) 

265,440 cores SGI ICE at Tulip Trading Australia (17th) 37,120 cores (Lomonosov-2) at Russia/MSU (35th) 

124,200 cores (Topaz) SGI ICE at ERDC DSRC in US  (18th) 57,600 cores (SwiftLucy) in US (37th) 

72,000 cores (HPC2) in Italy (19th) 55,728 cores (Prometheus) at Poland/Cyfronet (38th) 

152,692 cores (Thunder) at AFRL/USA (21st ) 50,544 cores (Occigen) at France/GENCI-CINES (43rd) 

147,456 cores (SuperMUC) in  Germany (22nd) 76,896 cores (Salomon) SGI ICE in Czech Republic (47th) 

86,016 cores (SuperMUC Phase 2) in  Germany (24th) and many more! 

http://www.top500.org/
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• Introduced in Oct 2000 
• High Performance Point-to-point Data Transfer 

– Interprocessor communication and I/O 
– Low latency (<1.0 microsec), High bandwidth (up to 12.5 GigaBytes/sec -> 100Gbps), and 

low CPU utilization (5-10%) 
• Multiple Features 

– Offloaded Send/Recv 
– RDMA Read/Write 
– Atomic Operations 
– Hardware Multicast support through Unreliable Datagram (UD) 

• A message sent from a single source (host memory) can reach all destinations (host memory) in 
a single pass over the network through switch-based replication 

• Restricted to one MTU 
• Large messages need to be sent in a chunked manner 
• Unreliable, Reliability needs to be addressed 

• Leading to big changes in designing HPC clusters, file systems, cloud computing 
systems, grid computing systems, ….  

InfiniBand Networking Technology 
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InfiniBand Hardware Multicast Example 
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Multicast-aware CPU-Based MPI_Bcast on Stampede using MVAPICH2  
(6K nodes with 102K cores) 
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GPU 
Memory 

• Before CUDA 4: Additional copies  
• Low performance and low productivity  

• After CUDA 4: Host-based pipeline  
• Unified Virtual Address 

• Pipeline CUDA copies with IB transfers  

• High performance and high productivity 

•  After CUDA 5.5: GPUDirect-RDMA support  
• GPU to GPU direct transfer  

• Bypass the host memory  

• Hybrid design to avoid PCI bottlenecks  
InfiniBand 

GPU 

CPU 

Chip 
set 

GPUDirect RDMA (GDR) and CUDA-Aware MPI  
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MVAPICH2-GDR-2.2b 
Intel Ivy Bridge (E5-2680 v2) node - 20 cores 

NVIDIA Tesla K40c GPU 
Mellanox Connect-IB Dual-FDR HCA 

CUDA 7 
Mellanox OFED 2.4 with GPU-Direct-RDMA 

10x 
2X 

11x 

2x 

Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)  
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More details in 2:30pm session today 

mailto:panda@cse.ohio-state.edu
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• Traditional short message broadcast 
operation between GPU buffers involves a 
Host-Staged Multicast (HSM) 
• Data copied from GPU buffers to host 

memory 
• Using InfiniBand Unreliable Datagram(UD)-

based hardware multicast 
 

 
• Sub-optimal use of near-scale invariant 

UD-multicast performance  
• PCIe resources wasted and benefits of 

multicast nullified 
• GPUDirect RDMA capabilities unused 

Broadcasting Data from One GPU Memory to Other GPU 
Memory: Shortcomings 
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• Can we design a new GPU broadcast scheme that can deliver low latency for 
streaming applications? 

• Can we combine GDR and IB MCAST features to 
• Achieve the best performance  
• Free the Host-Device PCIe bandwidth for application needs  

• Can such design be extended to support heterogeneous configurations? 
• Host-to-Device  

• Camera connected to host and devices used for computation 

• Device-to-device 
• Device-to-Host 

• How to support such a design on systems with multiple GPUs/node? 
• How much performance benefits can be achieved with the new designs? 

 

Problem Statement 
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• Copy user GPU data to host buffers 
• Perform Multicast and copy back 

GPU 

HCA 

 
Host 
Vbuf 

user 
NW 

• CudaMemcpy dictates 
performance 

• Requires PCIe Host-Device 
resources  

CUDAMEMCPY 

MCAST 

Existing Protocol for GPU Multicast 
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• Can we substitute the cudaMemcpy with a better design?  

 

Host Memory 

GPU Memory 

Host Buf 

GPU Buf 

HCA PCI-E 

Alternative Approaches  

• CudaMemcpy: Default Scheme 

• Big overhead for small message  

• Loopback-based design:  Uses GDR feature 

• Process establishes self-connection 

• Copy H-D ⇒ RDMA write (H, D) 

• Copy D-H ⇒ RDMA write (D, H) 

• P2P bottleneck ⇒ good for small and medium 
sizes 

• GDRCOPY-based design: New module for fast copies 

• Involves GPU PCIe BAR1 mapping  

• CPU performing the copy ⇒ block until completion 

• Very good performance for H-D for small and medium sizes  

• Very good performance for D-H only for very small sizes   

 



GTC 2016 15 Network Based Computing Laboratory 

• Copy user GPU data to host buffers 
• Perform Multicast and copy back 

GPU 

HCA 

 
Host 
Vbuf 

user 
NW 

• D-H operation limits  
performance 

• Can we avoid GDRCOPY for  
   D-H copies? 

GDRCOPY 

MCAST 

GDRCOPY-based design 
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• Copy user GPU data to host buffers using 
loopback scheme 

• Perform Multicast  
• Copy back the data to GPU using 

GDRCOPY scheme 

GPU 

HCA 

 
Host 
Vbuf 

user 
NW •   Good performance for both 

      H-D and D-H copies  
• Expected performance only for 

small message 
• Still using the PCIe H-D resources   

GDRCOPY 
MCAST 

(GDRCOPY + Loopback)-based design 

LoopBack 
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• Experiments were run on Wilkes @ University of Cambridge 
– 12-core IvyBridge Intel(R) Xeon(R) E5-2630 @ 2.60 GHz with 64 GB RAM 
– FDR ConnectX2 HCAs + NVIDIA K20c GPUs 
– Mellanox OFED version MLNX OFED LINUX-2.1-1.0.6 which supports GPUDirect RDMA 

(GDR) required 
– Use only one GPU and one HCA per node (same socket) configuration 

 
• Based on latest MVAPICH2-GDR 2.1 release  
           (http://mvapich.cse.ohio-state.edu/downloads) 

 
• Use OSU MicroBenchmark test suit  

– osu_bcast benchmark  
– A modified version mimicking back-to-back broadcasts    

Experimental Setup and Details of Benchmarks  

http://mvapich.cse.ohio-state.edu/downloads
http://mvapich.cse.ohio-state.edu/downloads
http://mvapich.cse.ohio-state.edu/downloads
http://mvapich.cse.ohio-state.edu/downloads
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Performance of Naive (CudaMemcpy-based) scheme 

Big overhead, 
20 µs for 1 Byte  

Reasonably good 
for large 

• Big overhead for small messages due the the overhead of the copies 

• Good scalability with small messages as it is true MCAST based 
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Performance of GDRCOPY-based scheme 

Very good 
performance  

Limited D-H 
performance 

• Achieves  3 µs for small message broadcast  

• GDRCOPY D-H operation has big overhead for large message  
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Performance of LoopBack-based scheme 

Acceptable/Good 
performance 

• Achieves less than 6 µs for small message broadcast  

• Uses IB LoopBack path for both D-H and H-D copies  

• Sender and receiver might share the same network bandwidth 
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Performance of Hybrid (GDRCOPY+Loopback+Naïve) scheme 

Switch to 
loopback design  

• Takes advantage of the best of each scheme: Loopback for D-H and GDRCOPY 
for H-D 

• Good scalability up to 64 GPU system 
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Comparing Different Schemes  

• Up to 3X  performance improvement    

• Good scalability  

• However, all these schemes still use Host-based staging ⇒ Use PCIe  

       Host-Device resources  

3X 
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• Can we have enhanced designs that: 
 

• Delivers good performance (low latency for throughput broadcast operations) 
 

• Frees PCIe host-device resources  
 

• Provides good support for all message sizes (small and large)  

Can we do better?  
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• How to handle control messages and data which belong to 

two different memories (control on Host, data on GPU)?  
 
• How to efficiently handle multi-GPU configurations 
 
• How to handle reliability as MCAST is UD-based transport? ⇒ 

Can we provide MPI_Bcast semantic support?  

Challenges in Combining GDR and MCAST Features  
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• MCAST two separate addresses (control on the host + data on GPU) in one IB 

message  
 

• Direct IB read/write from/to GPU using GDR feature for low latency ⇒ Zerocopy 
based schemes   
 

• MCAST feature to provide scalability ⇒ Switch based message duplication  
 

• No extra copy between Host and GPU ⇒ frees-up PCIe resource for application 
needs       
 

 

Combining GDR and MCAST Features:  Scatter-Gather List 
(SGL) Approach   

 A. Venkatesh, H. Subramoni, K. Hamidouche and D. K. Panda, A High Performance Broadcast Design with Hardware Multicast and  
GPUDirect RDMA  for Streaming Applications on InfiniBand Clusters IEEE International Conference on High Performance Computing 
(HiPC'2014) 

mailto:panda@cse.ohio-state.edu
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• One time registration of window of 
persistent buffers in streaming apps 

 

GPU 

HCA 

 
Host 
control 

user 
NW 

G
at

he
r 

Scatter 
Scatter 

• Gather control and user data at 
the source and scatter them at 
the destinations using Scatter-
Gather-List abstraction 

MCAST 

 

• Scheme lends itself for 
pipelined phases abundant in 
Streaming Applications and 
avoids stressing PCIe 

Overview of the envisioned SGL-based approach  
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SGL-based design  Evaluation 
 

• SGL-based design is able to deliver:  
• Low latency and high scalability (less than 4us)  
• Free PCIe resource for applications  
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• HSM (Host Staged), GSM (GPU Staged)=SGL 
 

• Based on a synthetic benchmark that mimics 
broadcast patterns in Streaming Applications 
 

• Long window of persistent m-byte buffers 
with 1,000 back-to-back multicast operations 
issued 

 
• Execution time reduces by 3x-4x 

 

Benefits of SGL-based design  with Streaming Benchmark 
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• Limit the support to only Device to Device 
broadcast  

• Requires the copy from the host to device 
at the source  

• Big overhead of the copy 
• Breaks the pipeline view of the streaming 

application  
 

 
• Not scalable for multi-GPUs nodes  

• Flat design with one-to-one MCAST 
connection for each GPU 

 
 
 

Limits of SGL-based Broadcast Designs 

(Host) 

IB Network  

GPU GPU GPU GPU 

GPU GPU 

GPU 

Explicit Copy 

      H-D 



GTC 2016 30 Network Based Computing Laboratory 

• Can MCAST+GDR be combined for heterogeneous configurations?  

-  Source on the Host and destination on Device  

-  Heterogeneity: Control+Data are contiguous on one side and non-contiguous on other side 

-  Combine MCAST and GDR => No use of PCIe resources (free for application usage)  

• How about multi-GPU nodes? Can intra-node topology-awareness help?  

-  Hierarchical and complex PCIe interconnects  

-  How to maximize the resource utilization of both PCIe and IB interconnects? 

• Looking forward: Solution should benefits current generation 
systems and maximal benefits for next-generation systems 

On-going Work 
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• IB MCAST feature provides high scalability and low latency  
• GDR feature provides a direct access between IB and GPUs  
• MVAPICH2-GDR provides several schemes to efficiently broadcast from/to GPU 

memories using host staged techniques  
• Naïve design + Host-based MCAST  
• GDRCOPY + Host-based MCAST  
• GDRCOPY + Loopback + Host-based MCAST  

• Presented a set of designs to couple GDR and IB MCAST features 
• Results are promising 
• Designs need to be extended to support heterogeneity and multi-GPU support  
• New designs will be available in future MVAPICH2-GDR library 

 

 

Conclusions  
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Two Additional Talks  

• S6411 - MVAPICH2-GDR: Pushing the Frontier of Designing MPI Libraries Enabling 
GPUDirect Technologies 

– Day: Wednesday, 04/06 

– Time: 14:30 - 14:55 

– Location: Room 211A 

 

• S6418 - Bringing NVIDIA GPUs to the PGAS/OpenSHMEM World: Challenges and Solutions 
– Day: Wednesday, 04/06 

– Time: 16:30 - 16:55 

– Location: Room 211A 
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panda@cse.ohio-state.edu  

Thank You! 

Network-Based Computing Laboratory 
http://nowlab.cse.ohio-state.edu/ 

The MVAPICH2 Project 
http://mvapich.cse.ohio-state.edu/ 

mailto:panda@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
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