Scalable and Reliable Broadcast using InfiniBand and NVIDIA GPUDirect Technology in MVAPICH2-GDR

Ching-Hsiang Chu

chu.368@osu.edu

Ph.D. Candidate
Department of Computer Science and Engineering
The Ohio State University
Outline

• Introduction

• Advanced Broadcast Designs in MVAPICH2-GDR

• Concluding Remarks
Trends in Modern HPC Architecture: Heterogeneous

- Multi-core/many-core technologies
- High Performance Interconnects
- High Performance Storage and Compute devices
- Variety of programming models (MPI, PGAS, MPI+X)

Multi/Many-core Processes

High Performance Interconnects
- InfiniBand, Omni-Path, EFA
- <1usec latency, 200Gbps+ Bandwidth

Accelerators/Coprocessors
- high compute density, high performance/watt

SSD, NVMe-SSD, NVRAM
- Node local storage

#1 Summit (27,648 GPUs)
#2 Sierra (17,280 GPUs)
#10 Lassen (2,664 GPUs)
#8 ABCI (4,352 GPUs)
#22 DGX SuperPOD (1,536 GPUs)
Architectures: Past, Current, and Future

- **Multi-core CPUs within a node**
- **Multi-core CPUs + Multi-GPU within a node** (E.g., Sierra/Summit, Frontier)
- **Multi-core CPUs across nodes**
- **Multi-core CPUs + Single GPU across nodes**
- **Multi-core CPUs + Multi-GPU across nodes**

IB Networks
Streaming-like Applications

- Streaming-like applications on HPC systems
 1. Communication (MPI)
 - Broadcast
 - Allreduce/Reduce
 2. Computation (CUDA)
 - Multiple GPU nodes as workers

Data Source

Real-time streaming

Data streaming-like broadcast operations

HPC resources for real-time analytics

Sender

Worker
- CPU
- GPU

Worker
- CPU
- GPU
High-performance Deep Learning

• Computation using GPU

• Communication using MPI
 – Exchanging partial gradients after each minibatch
 – All-to-all (Multi-Source) communications
 ➢ E.g., MPI_Bcast, MPI_Allreduce

• Challenges
 – High computation-communication overlap
 – Good scalability for upcoming large-scale GPU clusters
 – No application-level modification
Outline

• Introduction
• Advanced Broadcast Designs in MVAPICH2-GDR
• Concluding Remarks
Hardware Multicast-based Broadcast

- For GPU-resident data, using
 - GPUDirect RDMA (GDR)
 - InfiniBand Hardware Multicast (IB-MCAST)

- Overhead
 - IB UD limit
 - GDR limit

• Heterogeneous Broadcast for streaming applications

- Free-up PCIe resources

Source

C
Data
CPU

GPU

IB HCA

1

IB Switch

Node 1

IB HCA

C
Data

CPU

GPU

Node N

IB HCA

C
Data

CPU

GPU

Multicast steps

IB SL step

Optimized Broadcast Send

• Preparing Intermediate buffer (*im_buf*)
 – Page-locked (pinned) host buffer
 ➢ Fast Device-Host data movement
 – Allocated at initialization phase
 ➢ Low overhead, one time effort

• Streaming data through host
 – Fine-tuned chunked data
 – Asynchronous copy operations
 ➢ Three-stage fine-tuned pipeline

Optimized Broadcast Receive

- **Zero-copy broadcast receive**
 - Pre-posted user buffer \(d_{in}\)
 - Avoids additional data movement
 - Leverages IB Scatter and GDR features
 - Low-latency
 - Free-up PCIe resources for applications

Efficient Reliability Support for IB-MCAST

- When a receiver experiences timeout (lost MCAST packet)
 - Performs the RMA Get operation to the sender’s backup buffer to retrieve lost MCAST packets
 - Sender is not interrupted

Broadcast on Multi-GPU systems

- Proposed Intra-node Topology-Aware Broadcast
 - CUDA InterProcess Communication (IPC)

Benchmark Evaluation

- @ RI2 cluster, 16 GPUs, 1 GPU/node

- Provide near-constant latency over the system sizes
- Reduces up to 65% of latency for large messages

Streaming Workload @ RI2 (16 GPUs) & CSCS (88 GPUs)

![Graph showing throughput comparison between different schemes](image)

- **IB-MCAST + GDR + IPC-based MPI_Bcast schemes**
 - Stable high throughput compared to existing schemes

Performance Benefits with CNTK Deep Learning Framework @ RI2 cluster, 16 GPUs

- CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK) without modification

CA-CNTK - Image Classification

<table>
<thead>
<tr>
<th>Speedup</th>
<th>Scale (Number of GPU nodes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AlexNet</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

- Reduces up to 24%, 15%, 18% of latency for AlexNet, VGG, and ResNet-50 models
- Higher improvement is expected for larger system sizes

Outline

- Introduction
- Advanced Broadcast Designs in MVAPICH2-GDR
- Concluding Remarks
Concluding Remarks

• High-performance broadcast schemes to leverage GDR and IB-MCAST features for streaming and deep learning applications
 – Optimized streaming design for large messages transfers
 – High-performance reliability support for IB-MCAST

➢ These features are included since MVAPICH2-GDR 2.3
 ➢ http://mvapich.cse.ohio-state.edu/
 ➢ http://mvapich.cse.ohio-state.edu/userguide/gdr/
Thank You!

• Join us for more tech talks from MVAPICH2 team
 – http://mvapich.cse.ohio-state.edu/talks/

MVAPICH
The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/