Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Ching-Hsiang Chu

chu.368@osu.edu

Department of Computer Science and Engineering
The Ohio State University
Outline

• Introduction

• Advanced Designs in MVAPICH2-GDR
 – CUDA-Aware MPI_Bcast
 – CUDA-Aware MPI_Allreduce / MPI_Reduce

• Concluding Remarks
Drivers of Modern HPC Cluster Architectures - Hardware

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), NVM, Parallel Filesystems, Object Storage Clusters
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Multi-/Many-core Processors

High Performance Interconnects – InfiniBand (with SR-IOV)
<1usec latency, 200Gbps Bandwidth>

Accelerators / Coprocessors
high compute density, high performance/watt
>1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

Sierra@LLNL

Stampede2@TACC

Comet@SDSC
Architectures for Deep Learning (DL)

- **Multi-core CPUs within a node**
 - Multi-core CPUs + Multi-GPU within a node
 - (E.g., Sierra/Summit)

- **Multi-core CPUs across nodes**
 - Multi-core CPUs + Multi-GPU across nodes

- **Multi-core CPUs + Single GPU across nodes**

Networks

IB Networks
Streaming-like Applications

- Streaming-like applications on HPC systems

1. Communication (MPI)
 - Broadcast
 - Allreduce/Reduce

2. Computation (CUDA)
 - Multiple GPU nodes as workers
High-performance Deep Learning

• Computation using **GPU**

• Communication using **MPI**
 – Exchanging partial gradients after each minibatch
 – All-to-all (Multi-Source) communications
 - E.g., MPI_Bcast, MPI_Allreduce

• Challenges
 – High computation-communication **overlap**
 – Good **scalability** for upcoming large-scale GPU clusters
 – No application-level modification
Outline

• Introduction

• Advanced Designs in MVAPICH2-GDR
 – CUDA-Aware MPI_Bcast
 – CUDA-Aware MPI_Allreduce / MPI_Reduce

• Concluding Remarks
Hardware Multicast-based Broadcast

- For GPU-resident data, using
 - GPUDirect RDMA (GDR)
 - InfiniBand Hardware Multicast (IB-MCAST)

- Overhead
 - IB UD limit
 - GDR limit

Hardware Multicast-based Broadcast (con’t)

- Heterogeneous Broadcast for streaming applications
 - Free-up PCIe resources

Multicast steps
IB SL step

Optimized Broadcast Send

• Preparing Intermediate buffer \((im_buf)\)
 – Page-locked (pinned) host buffer
 ➢ Fast Device-Host data movement
 – Allocated at initialization phase
 ➢ Low overhead, one time effort

• Streaming data through host
 – Fine-tuned chunked data
 – Asynchronous copy operations
 ➢ Three-stage fine-tuned pipeline

Optimized Broadcast Receive

- Zero-copy broadcast receive
 - Pre-posted user buffer \((d_{in})\)
 - Avoids additional data movement
 - Leverages IB Scatter and GDR features
 - Low-latency
 - Free-up PCIe resources for applications

\[
\text{MPI_Bcast}(d_{in},...)\]

Broadcast on Multi-GPU systems

- Proposed Intra-node Topology-Aware Broadcast
 - CUDA InterProcess Communication (IPC)

Benchmark Evaluation

- @ RI2 cluster, 16 GPUs, 1 GPU/node

- Provide near-constant latency over the system sizes
- Reduces up to 65% of latency for large messages

Lower is better

Streaming Workload @ RI2 (16 GPUs) & CSCS (88 GPUs)

- IB-MCAST + GDR + IPC-based MPI_Bcast schemes
 - Stable high throughput compared to existing schemes

Performance Benefits with CNTK Deep Learning Framework @ RI2 cluster, 16 GPUs

- CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK) without modification

CA-CNTK - Image Classification

<table>
<thead>
<tr>
<th>Model</th>
<th>CA-CNTK</th>
<th>Knomial-GDR</th>
<th>Ring-GDR-Pipeling</th>
<th>Zcpy-MCAST-GDR-Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>0.88</td>
<td>0.5</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>VGG</td>
<td>0.9</td>
<td>0.45</td>
<td>1.15</td>
<td>0.95</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>0.88</td>
<td>0.45</td>
<td>1.15</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Speedup vs Scale (Number of GPU nodes)

- Reduces up to 24%, 15%, 18% of latency for AlexNet, VGG, and ResNet-50 models
- Higher improvement is expected for larger system sizes

CUDA-Aware MPI_Allreduce

• **Existing designs**
 1. Explicit copy the data from GPU to host memory
 2. Host-to-Host communication to remote processes
 3. Perform computation on CPU
 4. Explicit copy the data from host to GPU memory

• **Proposed designs**
 1. GPU-to-GPU communication
 - **NVIDIA GPUDirect RDMA (GDR)**
 - Pipeline through host for large msg
 2. Perform computation on GPU
 - Efficient CUDA kernels

![Diagram showing network-based computing with CUDA-Aware MPI_Allreduce](network.png)

- **Expensive!**
- **Fast**
- **Good for small data**
- **Relative slow for large data**
Benchmark Evaluation @ RI2 cluster, 16 GPUs

Outline

• Introduction

• Advanced Designs in MVAPICH2-GDR
 – CUDA-Aware MPI_Bcast
 – CUDA-Aware MPI_Allreduce / MPI_Reduce

• Concluding Remarks
Concluding Remarks

• High-performance broadcast schemes to leverage GDR and IB-MCAST features for streaming and deep learning applications
 – Optimized streaming design for large messages transfers
 – High-performance reliability support for IB-MCAST

• High-performance CUDA-Aware Allreduce for deep learning
 – Efficient reduction kernel on GPUs

➤ These features are included in MVAPICHER2-GDR 2.3
 ➢ http://mvapich.cse.ohio-state.edu/
 ➢ http://mvapich.cse.ohio-state.edu/userguide/gdr/2.3/
Thank You!

- Join us for more tech talks from MVAPICH2 team
 - http://mvapich.cse.ohio-state.edu/talks/