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Trends in Modern HPC Architecture

Accelerators / Coprocessors
high compute density, high

High Performance Interconnects —

Processors <1usec latency, 100Gbps Bandwidth> performance/watt SSD, NVMe-SSD, NVRAM
* Multi-core/many-core technologies * High Performance Storage and Compute devices
* High Performance Interconnects * Variety of programming models (MPI, PGAS, MPI+X)

Sierra Sunway TaihulLight

K - Computer
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Diversity in HPC Architectures

' (inte|®) inside™

OpenPOWER"

READY

‘XeonPhl

Knights Landing (KNL) OpenPower
Clock Speed Low High Very High
Core count High (64-72) medium (8-24) Low (8-20)
Hardware Threads Medium (4) Low (1-2) High (8)
Multi-Socket No Yes Yes
Max. DDR Channels 6 4 8
HBM/MCDRAM Yes No No

Dense Nodes = More Intra Node Communication



CPU Scaling Trends over Past Decades

40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotied by M. Horowitz, F. Labonte, O. Shacham, K. Olukolun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Single thread performance
increasing slowly

Frequency increase has
stopped

Number of transistors
continue to grow

Number of cores rapidly
Increasing

More compute power in
small number of nodes
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Parallel Programming Models Overview

P1 P2 P3 PI <> P2 <> P3 PI <> P2 <> P3

v oy ! y J VAR 2L .

Logical shared merhory
Shared Memory Memory Memory Memory Memory | !| Memory |! | Memory
| |
| |
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, DSM MPI (Message Passing Interface)  OpenSHMEM, UPC, UPC++, CAF ...

Programming models provide abstract machine models

Models can be mapped on different types of systems
— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

MPI is the de-facto programming model for writing parallel applications

MPI offers various communication primitives and data layouts
— Point-to-point, Collectives, Remote Memory Access

— Derived Datatypes
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Research Problems

 Emerging multi-/many-cores e.g., Xeon Phi,
OpenPOWER, etc. bringing new challenges

* High core-density Applications
* low memory available per core (HPC, Deep Learning)
* Diverse application requirements — == =
* Deep Learning (Allreduce) Communication Runtimes
» Derived datatypes (MPI, PGAS, Tasks..)
« Communication middlewares are under-

optimized

« Lack of contention-free, truly zero-copy
communication

» Overheads of MPI derived datatypes
* Lack of parallelism in communication
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Motivating Example 1 — Intra-node Point-to-point MPlI Communication

Shared MMAP Kernel
Regi ddress-space
Sender egion Sender @ P
. .
o, 1 00} pbeetTeaaa-
W,

pages é
Receiver 4 Receiver
v =
C’OQ pages

Shared Memory (POSIX) Kernel-mapping (CMA/LIMIC/KNEM)
Requires two copies System call overhead

No system call overhead Lack of Load/store access

Better for Small Messages single (a.k.a “zero”) copy

Better for Large Messages

We require over-head free, user-space, load/store based inter-process
communication mechanism, also called “Shared Address Space” communication
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Motivating Example 2 — Intra-node Collective Communication in MPI

Process 0 Process 1
A temp B
1 Fd=-=-=--4d > )
P1 P2 2 I | o 2 o 6
K A 5 3 7
4 Fa=-=-===== ->| 4 8
P3 P4 <2 Qi.E 7
* One-to-all Communication (Broadcast / Scatter) « Existing design lack zero-copy Reductions
+ Kernel-level contention « Remote data copied to temporary buffer
- Earlier designs! try to mitigate the contention before local process can perform operation

Not completely removed

[1] S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for MultiMany-core Systems, IEEE Cluster ’17, Best Paper Finalist
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Motivating Example 3 — Derived Datatypes Processing in MPI

I , N
Sender’s Timeline Receiver’s Timeline | Sender’s Memory Receiver’s Memory
~N |
I
Pack |
I
| 0x1bc3000777
> Idle : Z Packing Unpacking
1 :
] 0x1bc4000
) . Z U,
I
: Shared Memo
Single IOV -~ : 7 v
0x1bc5000
(packed) Unpack : é
Idle < 1
I
I
I
L I
I
I
I
I
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Broad Challenge

Designing High-performance, Zero-copy, Contention-free, and
packing-free MPI Designs by exploiting Shared-Address-Space
Mechanisms on Modern High Core-density Architectures
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Problem Statement

« How can communication runtimes be re-designed to tackle the challenges posed
by next-generation multi-/many-core architectures?

« Can we alleviate the bottlenecks of existing MPI intra-node designs and provide
shared address space based efficient zero-copy MPI primitives?

« What are the overheads associated with MPI derived datatype processing
designs and how can we alleviate these bottlenecks?

 How can we leverage the high core-density of modern architectures to assist MPI
communication primitives via on-loading?

« What are the application level benefits that can be achieved through the
proposed designs?

Network Based Computing Laborato
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Overview

 Detailed Designs and Results

Shared Address Space Communication Substrate
Direct Zero-copy MPI Collectives

Efficient Zero-copy MPI Datatypes

Kernel-assisted Communication On-loading

 Future Research Directions

» Broader Impact on HPC

« Expected Contributions
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Shared Address Space MPI Communication

MPI Rendezvous Communication (RGET)

Receiver Sender Sender Receiver
Address-space Address Space MPI_Send() MPI_Recv()
rbuf _
_ xpmem_make |
e xpmem_get () ¥ RTS
// xpmem_attach () sbuf
'Lp/sT- _-" ; | ’
! Copy“ o =7 emO xpmem_get
' \ ‘ x\a°“g:“e“‘ _ X
AN \ se’ --" xpmem_attach ’
~ ~ o k 4~ - | |
N Copy Remote Memepy ()
Cross-partition Memory (XPMEM) — Kernel Module Data
with user-space API that allows a process to “attach”
to the virtual memory segment of a remote process »
xpmem_detach ’
FIN -
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Quantifying the Overheads of XPMEM-based Communication

« XPMEM based one-to-all latency 100% .(:r;“dEtaci oo .zxpg'elgnlg'a‘th -

benchmark S0 % % 7%’/ ',y ?/

* Up to 65% time spent in XPMEM N 7%?? , 2 ééé . ééé

registration for short message (4K) éééé ééé géé

» Increasing PPN increases the cost of 40% A/// / /% ///

xpmem_get() operation . é%% %%% %%%

— Lock contention e /é% éé/ é%%

— Pronounced at small messages 0% o v ¥ C v v v v v o ¥

 How can we alleviate these overheads and M § M ﬁ R ﬁ I ﬁ
improve the performance of shared Relative costs of XPMEM API functions for

different PPN using one-to-all communication
benchmark on a single dual-socket Broadwell
node with 14 cores.

address-space based MPI communication?




Proposed Registration Cache for XPMEM based Communication

dreg_register() |

* AVL tree maintains remote attached pages | v

dreg_lookup(vaddr) I

dreg entry
found?

No

« Memory de-registration is delayed

return dreg_entry

— Detach pages only in MPI_Finalize() or when
capacity-miss occurs (FIFO)

|dreg_insert(tree, vaddr, Ien)l

is free slot
available?

No

« MPI calls on same buffers cause cache-hit

* Multiple calls to malloc/free on the remote
buffers lead to invalid mappings

| dreg_evict_from_cache() |

— Access to attached buffer which has been v
freed on remote rank, is considered invalid [ ach re'“ite segment
Y

— Interception of malloc/free calls to invalidate
remote mappings

Save attached info in cache End

A high-level flow of the proposed
Dynamic Registration Cache

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-’Many-cores, in
Proceedings of the 32nd IEEE Intl’ Parallel and Distributed Processing Symposium (IPDPS ’18)
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Impact of Optimized XPMEM design on MPI Performance

Latency (us)

Two process osu_latency

600 _ o~ MVAPICH2-SHM

500 MVAPICH2-CMA /

—— MVAPICH2-XPM-OPT
400

300
200
100

0

4K 16K 64K 256K 1™ 4M

Message Size (bytes)

Bandwidth

25000

20000

15000

10000

5000

1 8

Two process osu_bw

- - MVAPICH2-SHM 40%

MVAPICH2-CMA e
—eo— MVAPICH2-LIMIC / N\
—— MVAPICH2-XPM-OPT i

64 512 4K 32K 256K 2M
Message Size (bytes)

23% improved latency and 40% improved bandwidth over CMA even for two processes
Takes advantage of user-space memcpy () optimizations e.g., AVX2, AVX512 etc.
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Design Space of Existing MPI Collectives

 Send/Recv based collectives
— Rely on the implementation of MPI point-to-point primitives
— Handshake overheads for each rendezvous message transfer
* Direct Shared-memory based MPI collectives
— Communication between pairs of processes realized by copying message to a shared-memory
region (copy-in / copy-out)
* Direct Kernel-assisted MPI collective e.g., CMA, LiMIC, KNEM
— Can perform direct “read” or “write” on the user buffers with zero-copy

— Performance relies on the communication pattern of the collective

 Problems with existing approaches
— No zero-copy reductions
— Lock contention is mitigated but not removed’

[1] S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for MultiMany-core Systems, IEEE Cluster ’17, Best Paper Finalist
20
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Design Overview of XPMEM based Direct MPI Collectives

MPI collectives over shared address space
Ranks exchange buffer information
— Tuple of <vaddr, len, segid>
Ranks map remote peer's memory segments
— Load/store access is permitted
An intra-node barrier is enforced to ensure
correctness and ordering
Call our proposed XPMEM based collective
implementation routines e.g.,
— XPMEM_ bcast, XPMEM reduce, etc.

/* Share vaddr with peer ranks =/

Exchange_buffer_ addresses() ; > Step-1
/+ Create remote buffers mapping =/ ; > Step-2

foreach rem rank in SMP rank list do

if rank # local then

Dreg_entry d;

/* Find in local registration cache =/

d < AVL lookup(rem_rank, rbuf, len) ;

if found then

return d;

else

/+* create remote page mappings =/

d < XPMEM_Attach (rbuf, 1len) ;

/* Cache dreg entry in local tree =/

AVIL insert (d, avl roots[rem rank]) ;

return d ;

end

end

end

synchronize (); > Step-3
/* Call direct Load/Store based algorithm =/

MV2_ XPMEM Direct coll*x(...) ; > Step-4

High-level Overview of XPMEM base Direct
MPI Collectives Implementation




Proposed Zero-copy MPI_Allreduce

Step-1: Parallel Intra-node Partitioned Reduce

Concurrent Intra-Node Reduction by all the Processes on Data Partitions with Same Index

Network Based Computinag Laborato 22




Proposed Zero-copy MPI_Allreduce (Cont’d)

Step-2: Multi-root Inter-node Allreduce

- —
Node-1 | I
: R11 D11 “sa R D11 - :
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Node-leaders concurrently perform Allreduce on respective partition of the data
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Proposed Zero-copy MPI_Allreduce (Cont’d)

Step-3: Parallel Intra-node Partitioned Broadcast

N
¥
N\
v
R
-
N

______________________________________________________________

Concurrent Intra-Node Bcast by all the Processes on Data Partitions with Same Index

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-’Many-cores, in
Proceedings of the 32nd IEEE Intl’ Parallel and Distributed Processing Symposium (IPDPS ’18)
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Evaluation Methodology and Cluster Testbeds

Hardware Specification of Cluster Testbeds

Specification Xeon Xeon Phi OpenPOWER
Processor Family Intel Broadwell | Knights Landing | IBM POWER-8
Processor Model E5 2680v4 KNL 7250 PPC64LE
Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz

No. of Sockets 2 1 2

Cores Per Socket 14 68 10

Threads Per Core 1 4 8

RAM (DDR) 128 GB 96 GB 256 GB
Interconnect IB-EDR (100G) IB-EDR (100G) IB-EDR (100G)

*  Proposed designs, implemented on MVAPICH2, is called MVPIACH2-XPMEM
« Compared against default MVPAPICH2-2.3, Intel MP1 2017, OpenMPI v3.0.0, Spectrum MPI v10.1.0.2
«  OSU Microbenchmarks, MiniAMR kernel, and AlexNet DNN Training using CNTK
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Micro-benchmark Evaluation on Broadwell Cluster

OSU_Allreduce

OSU_Reduce

400

300

200

Latency (us)

100

Latency (us)

=& MVAPICH2-2.3rcl
Intel MP1 2017

—&— MVAPICH2-XPMEM

—_.,
-

16K

=@ MVAPICH2-2.3rcl

—&— MVAPICH2-XPMEM

32K

64K

Intel MPI1 2017

128K

15000
35%
-
10000
5000
0
256K
2.4X 15000
10000
5000
0

16K

32K

64K

128K

256K

16 nodes, 256 processes of dual-socket Broadwell system
Up to 1.8X improvement for 4MB AllReduce and 4X improvement for 4MB Reduce, over Intel MPI
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1.8X

Intel MPI 2017 ,e
e
—e— MVAPICH2-XPMEM l

512K 1M 2M 4M

—e— MVAPICH2-2.3rcl
Intel MPI 2017 ax
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Applications Evaluation on Broadwell

CNTK AlexNet Training

(B.S=default, iteration=50, ppn=28) MiniAMR (ppn=16)
800 DLWLMF&'Hz 70 mintelvPl
()
O m MVAPICH2-XPMEM _9% — 60 OMVAPICH2 13%
@ 600 20% S 50 mMVAPICH2-XPMEM
E £ 40
= ~
§ 400 5 30
3 5 27%
g 200 s 20 ol |_i |_i
5 X 10
" X ﬁ
0 0
28 56 112 224 16 32 64 128 256
No. of Processes No. of Processes

* Up to 20% benefits over IMPI for CNTK MLP model and MNIST dataset using AllReduce

 Up to 27% benefits over IMPI and up to 13% improvement over MVAPICHZ2 for MiniAMR
application kernel




Contention-free Designs for Non-reduction Collectives (MPIl_Bcast)

Broadwell KNL (Cache-mode)
10000 —% 'gte' I\|\//I|F:|230381 100000 -~ Intel MPI 2018
pen .0. 4
—e- MV2X (CMA Coll) 79 10000 OpenMPI3.0.1 .o ¥
1000 VX (P S > 4 —&- MV2X (CMA Coll) 5
- . (Proposed) ~¥ m —8— MV2X (Proposed) :
2 6Xover = 1000 a7 gt gsW .
> 100 OpenMPI &  __e T
c S 100 0
Q Q 30% over IMPI
©T 10 S 23% over CMA-coll
-
10 9X over Open MPI
1 1
DRI > B A I R DR > S-S A B I S
— (@] [Tp] i N [Tp]
Message Size (bytes) Message Size (bytes)

«  Shown for Bcast only but designs are also available for Scatter, Gather, Allgather, Alltoall
 Upto 30%, 23%, and 9X benefits over IMPI, direct CMA collectives, and Open MPI, respectively, on KNL

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Design and Characterization of Shared Address Space MPI Collectives on Modern Architectures,
accepted to the 19th IEEE/ACM Intl Symposium on Cluster, Cloud, and Grid Computing (CCGrid ’19)
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MPI Derived Datatypes Overview

MPI_Type_ contiguous

MPI_Type_vector

Nested Type Example

B

Contig Contig

Vegtor Indexed Struct
\
Y
Vector of Types

Network Based Computinag Laborato

Halo Exchange Example

> B.y

Y

B.x

MPI_Type_contiguous (count=B.x, MPI_DOUBLE, ...)
MPI_Type_vector (count=B.y, blocklen=1, stride=B.x+2, ...)

Courtesy: https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf
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https://www.mcs.anl.gov/%7Ethakur/sc16-mpi-tutorial/slides.pdf

Standing on the shoulders of giants

« Two broad categories of optimizations

A. Faster Pack/Unpack
 Efficient packing [Gropp et al., Thakur et al.]
» GPU Accelerated pack/unpack [Chu et al ]
B. Layout parsing optimizations
» Flattening-on-the-fly algorithm [Traff et al ]
» Automatic type generation [Kjolstad et al ]

 This work asks fundamental question:
— “What if (A) and (B) are not required?”

Layout Parsing Cost

 Fundamentally re-think design space

— No layout parsing overheads Packing / Unpacking Cost

— No packing/unpacking required
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Limitations of Existing Pack/Unpack based Designs

« Layout Translation O Copy OLayout Translation

— Flattening the layout into list of I/O vectors 100%
elements 80%

— Significant overhead for nested (hierarchical)
datatypes 60%

— Applications can use any layout

_ _ 40%
« Pack/Unpack requires two copies
— 2X overhead for large messages!! 20%
 Proposed Design 0%
— FALCON — FAst and Low-overhead Zero- WRF MILC NAS MG

copy MPI datatype processing
COmmunication eNgine

Cost breakdown of existing
Pack/Unpack designs on Broadwell
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FALCON Designs

I
[ Sender Receiver
* Proposed four different designs :
— Basic, Pipelined, Memoization, and : \ *
Optimized Memoization I — RTS
I —
° Basic Design I L: {IOVo, IOVy, ... IOVn}
I
— Sender and receiver translate local layouts l Block 0
| Copy (IOV0)
— Sender appends IOV list to RTS :
— Receiver extracts the sender’s IOVs I Block 1
1 Copy (IOV1) |
— Directly copy each IOV from sender’s :
virtual address space (CMA/XPMEM) [ Block
| n
— XPMEM offers user-space transfers I Copy (IOVn) |
I
— Receiver sends a FIN packet I — FIN
I
I
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Limitations of Basic Zero-copy design

Layout-translation is still required

O Copy O Layout Translation

. Layout-exchange mLayout Exchange @ Address Translation
— Layouts are local to rank in MPI 180
. ! : ! s )
— Sender has to send its layout to receiver i ] ] : ! :
? 120 i P S i
« Remote address translation for XPMEM 2 : — ; : :
) - Wz L 7 — |
— XPMEM attach & o i . e i
© s ) \ / | I
« High fragmentation means large 10V lists S N N L/

— RTS can exceed actual payload 0

SHM ZCPY SHM ZCPY SHM ZCPY

Combined overheads take significant time

N MILC WRF NAS MG
— Up to 70% of total communication -

— Overheads outweigh the benefits
The time for data copy has been reduced
but at additional cost are added.
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FALCON: Memoization based Zero-copy Design

Sender Receiver

« Exploit application’s layout re-usability Comput o |
ompute

— Avoids unnecessary layout exchange |
Lookup (H, h) ’
W

|
|
|
|
|
|
— Sender memoizes translated layouts (L) I Send (h)
— Receiver memoizes exchanged layouts (L") : q
— Sender’'s Hash Table (H) stores < k,v >=< h,L > 1 Lookup (H',h)
: : , I I
« If Hash (h) is found in sender’s (H) I
— Sender only sends computed hash (h) : Blofk Y
— Receiver copies sender’s data using found (L") 1
[ Block 1
« If Hash (h) is not found I Copy Remote K
— Sender sends the hash (h) + (L) : Blocks
— Receiver adds received (h) + (L) to (H") : Block n
— Receiver copies sender’s data using (L) 1 |
|
1 FIN
|
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Benefits of Memoization based Zero-copy Design

= Copy OLayout Translation
mLayout Exchange @ Address Translation

180 e =
. Memoization-based Zero-copy
. - ] « Layout exchange overheads
3 120 77 L ayouttranslation-overheads
& ¢ S AT ] . * Address translation overhead
5., = 1200 | =
@ 60 i i H i
— ) H
0 O o O O O O
S © 0 0 = = 2
T & 2 E T o 2 E T © & E
nRL e Hwgtl wgtQ
MILC WRF NAS_MG

Memoization based design additionally reduced the layout translation overhead
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FALCON: Design Optimizations

1. Avoiding Remote Virtual Address Translation
— XPMEM attached segments are cached
— Future accesses re-use attached 10Vs

— No costly registration/de-registration required

2. Communication pattern as input to the Hash function
— Computing Hash on IOV list can be costly
— Request object has enough information to uniquely identify the layout

— <Datatype, Count, Destination Rank, Tag, Communicator>
3. Re-using receiver side layouts
— Layout re-use is common at applications

— Cache translated |IOVs at receiver as well

— Avoid local layout translation by receiver’'s IOV
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Impact of Optimized Memoization based Zero-copy Design

= Copy oLayout Translation
ELayout Exchange @ Address Translation
180 {— NN )
! i Optimized Memoization Design (Final)
1 1 o
1 1 15 a
_ i - i = INN \ » Layout-exchange-overheads
3 120 i i s Layout translation-overheads
> ! i ; ] —Address-translation-overheads
/ el .
o : i X —l I * No-overhead remaining
S 60 || X o b4
- BZ s T q‘ﬂ'.'ﬂ-.--.--‘
0
SeQ0o0g SL2Q82B SL28os
TS EQ TR2L2EQ Ta2EQ
HEt2F vatly K2y
S IS IS
[ (] (]
= = =
MILC WRF NAS_MG

Optimized Memoization design removed all the overheads with zero-copy benefits

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, FALCON: Efficient Designs for Zero-copy MPI Datatype Processing on Emerging Architectures,
accepted to the 32nd IEEE Intl’ Parallel and Distributed Processing Symposium (IPDPS ’19), Best Paper Nominee
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Performance Evaluation: Application Kernels

Communication Kernels

Application Kernel | Application Domain Datatype Layout
MILC su3 zd el : Nested Vectors for 4D face exchanges
Chromodynamics
WRF_y vec Atmospheric Science | Nested Vectors and Subarrays
NAS MG z Fluid Dynamics Vectors and Nested vectors for 3D face exchanges
, Stencil : L
3D-Stencil Communication 7-point stencil using Subarray datatypes

We used various application kernels e.g., MILC, WRF, and NAS from DDTBench’.

Derived datatype based communication kernels of these applications are used to measure the
communication latencies.

Evaluated on Broadwell, OpenPOWER, and KNL but only showing Broadwell here
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Application Kernels — MILC and WRF (Broadwell)

10000000 MILC 10000 WRE
=MV2X-2.3 IMPI 2018 S P 2019  mOpenPLA40 P
1000000 @=IMPI2019 m OpenMP1 4.0 ',,:I"I';\‘ = MV2X.OPT . ‘ I‘l
m - i T >
(0] / (0]
£ 10000 Ly 2
= i= 100
_ 1000 -
je) _g
8 100 § 10
()
L>LI< 10 L|>j
1 1
A B C D E A B C D
Problem Size Problem Size

MILC Params — A = (16, 16, 32, 32): B = (32, 32, 32, 32); C = (64, 64, 32, 32); D = (128, 128, 32, 32); E = (128,128,64,64)
WRF Params (ims, ime, is, ie) — A = (4, 140, 8, 136): B = (4, 268, 264, 8): C = (4, 524, 8, 520); D = (4, 1036, 8, 1032)

*+  On MILC, for Problem-B (768-KB), up to 11X over IMPI 2019
«  On Broadwell, up to 2.1X and 3X improved latency over MVAPICH2-X and Intel MPI 2019
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Application Kernels — NAS_MG and 3D-Stencil (Broadwell)

NAS_MG 3D-Stencil Scaling
R
10000 L1 ivoyo 3 P 2018 pr 100000 "MV2X23 IMP12018 Loy
2 IMPI 2019 = OpenMPI 4.0 12.7X\ 2IMPI2019 mMV2X-OPT !
) . !
7 1000 WMV2X-OPT (et /310000 b
E S 2
o o
£ 2 1000
= 100 =
S 5§ 100
5 5
O 10 3]
2 ¢ 10
i L
1 1
A B C D E 2 4 8 16 28
Problem Size No. of Cores

NAS Grid Dimensions — A = (258, 130, 130); B = (5612, 258, 258); C = (768, 258, 258); D = (1024, 258, 258); E = (2048, 258, 258)
7-point 3D-Stencil Grid Dimensions — 5123

* On NAS_MG_ 2z, up to 2.7X and 2.5X improvement over Intel MPI 2019 and MVAPICH2-X
* On 3D-Stencil using On 28-cores, up to 56X and 2X improvement over MVAPICH2-X and Intel MP| 2019
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Overview

 Detailed Designs and Results

— Kernel-assisted Communication On-loading
» Broader Impact on HPC
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Network Based Computinag Laborato




Assisted Communication on Many-cores

« Many-cores such as KNL, OpenPOWER have lots of SMT cores
— Can we dedicate some cores to derive communication?

« Intra-node MPI transfers mainly use blocking memory copies
— Can we partition large-message communication

« Broad Questions

— Can we design an efficient mechanism to effectively utilize KNL resources and bring
concurrency to the communication phases in MPI?

— Can we design a communication engine that can asynchronously derive the
communication in MPI?

* Kernel-assisted Communication on-loading Engine
— New designs to bring concurrency to communication

— Performance, portability, and programming abstraction
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Designing Kernel-assisted Communication On-loading Engine

On-load Engine
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J. Hashmi, K. Hamidouche, H. Subramoni, and D. K. Panda, Kernel-assisted Communication Engine for MPI on Emerging Manycore Processors, in Proceedings of the 24th
IEEE Intl" Conference on High Performance Computing, Data, and Analytics (HiPC ’17)
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Realizing Zero-copy Communication using On-load Engine
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Example of on-loading function
— e.g., Parallel kernel-mapped zero-copy communication
— Multiple threads perform memory-mapped zero-copy
— Map sender and receiver pages and copy the data
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Microbenchmark Evaluation on KNL (Latency)
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« OMB osu latency benchmark by allocating memory on MCDRAM and DDR using two processes

*  Four kernel threads running in assisted mode.
« Upto42% and 49% improved latency on a single KNL when using MCDRAM and DDR, respectively
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Application Evaluations on KNL
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HPCG with MPI1+OpenMP running 8 OpenMP threads per MPI process.
— Main benefits come from DDOT, MG, and DDOT Allreduce phases of HPCG
— Overall execution time is reduced by 15% over Intel MPI

CNTK Multi-level Perceptron (MLP) feed-forward neural network using MNIST dataset
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Overview of the MVAPICH2 Project

o High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
—  MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
—  MVAPICH2-X (MPI + PGAS), Available since 2011
—  Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
—  Support for Virtualization (MVAPICH2-Virt), Available since 2015 1 W" ,
—  Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 A&%‘

\\\\\\\ 18Years &

' Counting! )

- | o | =
—  Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015 /%

hY

— Used by more than 3,000 organizations in 88 countries

)

=

7,

—  More than 540,000 (> 0.5 million) downloads from the OSU site directly ‘ ( l
—  Empowering many TOP500 clusters (Nov ‘18 ranking) 2007_20’]9
e 3 ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

S

e 14 556,104 cores (Oakforest-PACS) in Japan
e 17%, 367,024 cores (Stampede2) at TACC
e 27t 241,108-core (Pleiades) at NASA and many others

— Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

— http://mvapich.cse.ohio-state.edu Partner in the upcoming TACC Frontera System

e  Empowering Top500 systems for over a decade
Network Based Computing Laborato
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http://mvapich.cse.ohio-state.edu/

MVAPICH2 Releases

«  MVAPICH2-X 2.3rc2 (04/02/2019)
— XPMEM-based contention-free MPI collectives (Broadcast, Gather, Scatter, Allgather)
— Extended support for XPMEM based reduction collectives on PSM channel
«  MVAPICH2-X 2.3rc1 (09/21/2018)
— Support for XPMEM-based point-to-point operations
— Efficient registration cache for XPMEM communication
— Efficient truly zero-copy reductions (MPI_Reduce and MPI_Allreduce)
 Upcoming*
— FALCON: Efficient Zero-copy MPI Derived Datatypes

— Assisted communication runtimes
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Impact on HPC Community

« Fundamental designs geared towards next-generation HPC systems
— High core-density architectures

« Designs made available to the HPC community via MVAPICH2-X releases
— Used by wider HPC and DL community

«  Other communication runtimes beginning to adopt the core ideas

— Shared address space communication

— Efficient Datatype processing

« The designs as part of the MVAPICH2-X software stack

* Proposed designs are empowering several of Top500 supercomputers
— TACC Stampede?2, Frontera
— OSC Owens, Pitzer
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Conclusion

« High core-density architectures are building next-generation ultra-scale systems
— Communication middlewares need to be re-designed to meet the diversity
» This thesis optimizes MPI communication for emerging multi-’'many-cores
— Point-to-point, Collectives, Datatype processing
* Presents novel Shared Address Space communication mechanism
— Direct load/store communication
— Efficient caching mechanisms
* Fundamentally re-think and propose new MPI datatype designs
— Efficient zero-copy datatype processing
 Proposed and designed an on-load engine abstraction with concurrency, portability,
and programmability for modern many-core architectures
« Significant impact on the community in transition to next-generation multi-/many-cores

» Broader outreach through MVAPICH2/MVAPICH2-X public releases
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Thank You!

Questions?

Network Based Computing Laborato 54




	Designing Next-Generation Communication Middlewares for Many-Core Architectures
	Overview
	Trends in Modern HPC Architecture
	Slide Number 4
	CPU Scaling Trends over Past Decades
	Parallel Programming Models Overview
	Research Problems
	Motivating Example 1 – Intra-node Point-to-point MPI Communication 
	Motivating Example 2 – Intra-node Collective Communication in MPI
	Motivating Example 3 – Derived Datatypes Processing in MPI
	Broad Challenge
	Overview
	Problem Statement
	Overview
	Shared Address Space MPI Communication
	Quantifying the Overheads of XPMEM-based Communication
	Proposed Registration Cache for XPMEM based Communication
	Impact of Optimized XPMEM design on MPI Performance
	Overview
	Design Space of Existing MPI Collectives
	Design Overview of XPMEM based Direct MPI Collectives
	Proposed Zero-copy MPI_Allreduce
	Proposed Zero-copy MPI_Allreduce (Cont’d)
	Proposed Zero-copy MPI_Allreduce (Cont’d)
	Evaluation Methodology and Cluster Testbeds
	Micro-benchmark Evaluation on Broadwell Cluster
	Applications Evaluation on Broadwell
	Contention-free Designs for Non-reduction Collectives (MPI_Bcast)
	Overview
	MPI Derived Datatypes Overview 
	Standing on the shoulders of giants
	Limitations of Existing Pack/Unpack based Designs
	FALCON Designs
	Limitations of Basic Zero-copy design
	FALCON: Memoization based Zero-copy Design
	Benefits of Memoization based Zero-copy Design
	FALCON: Design Optimizations
	Impact of Optimized Memoization based Zero-copy Design
	Performance Evaluation: Application Kernels
	Application Kernels – MILC and WRF (Broadwell)
	Application Kernels – NAS_MG and 3D-Stencil (Broadwell)
	Overview
	Assisted Communication on Many-cores
	Designing Kernel-assisted Communication On-loading Engine
	Realizing Zero-copy Communication using On-load Engine
	Microbenchmark Evaluation on KNL (Latency)
	Application Evaluations on KNL 
	Overview
	Overview of the MVAPICH2 Project
	MVAPICH2 Releases
	Impact on HPC Community
	Overview
	Conclusion
	Thank You!

