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High-End Computing (HEC): PetaFlop to ExaFlop

Expected to have an ExaFlop system in 2020-2021!

100 PFlops in 
2017

1 EFlops in 
2020-2021?

149
PFlops 
in 2018
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big 
Data, and Deep Learning!

Increasing Need to Run these 
applications on the Cloud!!
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Can We Run HPC, Big Data and Deep Learning Jobs on 
Existing HPC Infrastructure?

Physical Compute
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Can We Run HPC, Big Data and Deep Learning Jobs on 
Existing HPC Infrastructure?
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Can We Run HPC, Big Data and Deep Learning Jobs on 
Existing HPC Infrastructure?
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Can We Run HPC, Big Data and Deep Learning Jobs on 
Existing HPC Infrastructure?

Spark Job

Hadoop Job Deep Learning
Job
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• MVAPICH Project
– MPI and PGAS Library with CUDA-Awareness

• HiBD Project
– High-Performance Big Data Analytics Library

• HiDL Project
– High-Performance Deep Learning

• Public Cloud Deployment
– Microsoft-Azure and Amazon-AWS

• Conclusions

Presentation Overview
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,050 organizations in 89 countries

– More than 614,000 (> 0.6 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 5th, 448, 448 cores (Frontera) at TACC

• 8th, 391,680 cores (ABCI) in Japan

• 15th, 570,020 cores (Neurion) in South Korea and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
Partner in the TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point 

Primitives

Collectives 
Algorithms

Energy-

Awareness

Remote 
Memory 
Access

I/O and

File Systems

Fault

Tolerance
Virtualization Active 

Messages
Job Startup

Introspection 
& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC SRD UD DC UMR ODP
SR-
IOV

Multi 
Rail

Transport Mechanisms
Shared 

Memory
CMA IVSHMEM

Modern Features

Optane* NVLink CAPI*

* Upcoming

XPMEM
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MVAPICH2 Software Family 

Requirements Library

MPI with IB, iWARP, Omni-Path, and RoCE MVAPICH2

Advanced MPI Features/Support, OSU INAM, PGAS and MPI+PGAS 
with IB, Omni-Path, and RoCE

MVAPICH2-X

MPI with IB, RoCE & GPU and Support for Deep Learning MVAPICH2-GDR

HPC Cloud with MPI & IB MVAPICH2-Virt

Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Convergent Software Stacks for HPC, Big Data and Deep Learning
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• Message Passing Interface (MPI) is the common programming model in scientific computing

• Has 100’s of APIs and Primitives (Point-to-point, RMA, Collectives, Datatypes, …)

• Multiple challenges for MPI developers, users, managers of HPC centers
• How to optimize the designs of these APIs on various hardware platforms and configurations?

• Designers and developers

• Comparing performance of an MPI library (at the API-level) across various platforms and configurations?
• Designers, developers and users

• How to compare the performance of multiple MPI libraries (at the API-level) on a given platform and across 
platforms?

• Procurement decision by managers

• How to correlate the performance from the micro-benchmark level to the overall application level?
• Application developers and users, also beneficial for co-deigns

Need for Micro-Benchmarks to Design and Evaluate 
Programming Models
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• Available since 2004 (https://mvapich.cse.ohio-state.edu/benchmarks) 

• Suite of microbenchmarks to study communication performance of various programming models

• Benchmarks available for the following programming models
– Message Passing Interface (MPI)

– Partitioned Global Address Space (PGAS)

• Unified Parallel C (UPC)

• Unified Parallel C++ (UPC++)

• OpenSHMEM

• Benchmarks available for multiple accelerator based architectures
– Compute Unified Device Architecture (CUDA)

– OpenACC Application Program Interface

• Part of various national resource procurement suites like NERSC-8 / Trinity Benchmarks

• Continuing to add support for newer primitives and features

OSU Micro-Benchmarks (OMB)

https://mvapich.cse.ohio-state.edu/benchmarks
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• Host-Based
– Point-to-point

– Collectives
• Blocking and Non-Blocking

• Job-startup

• GPU-Based
– CUDA-aware 

• Point-to-point: Device-to-Device (DD), Device-to-Host (DH), Host-to-Device (HD)

• Collectives

– Managed Memory
• Point-to-point: Managed-Device-to-Managed-Device (MD-MD)

OSU Micro-Benchmarks (MPI): Examples and Capabilities
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One-way Latency: MPI over IB with MVAPICH2
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Bandwidth: MPI over IB with MVAPICH2
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• Host-Based
– Point-to-point

– Collectives
• Blocking and Non-Blocking

• Job-startup

• GPU-Based
– CUDA-aware 

• Point-to-point: Device-to-Device (DD), Device-to-Host (DH), Host-to-Device (HD)

• Collectives

– Managed Memory
• Point-to-point: Managed-Device-to-Managed-Device (MD-MD)

OSU Micro-Benchmarks (MPI): Examples and Capabilities
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MPI_Allreduce on KNL + Omni-Path (10,240 Processes)
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• For MPI_Allreduce latency with 32K bytes, MVAPICH2-OPT can reduce the latency by 2.4X
M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based 
Multi-Leader Design, SuperComputing '17. Available since MVAPICH2-X 2.3b
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Shared Address Space (XPMEM)-based Collectives Design
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• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce
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16.8

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction 
Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Available since MVAPICH2-X 2.3rc1
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• Host-Based
– Point-to-point

– Collectives
• Blocking and Non-Blocking

• Job-startup

• GPU-Based
– CUDA-aware 

• Point-to-point: Device-to-Device (DD), Device-to-Host (DH), Host-to-Device (HD)

– Managed Memory
• Point-to-point: Managed-Device-to-Managed-Device (MD-MD)

OSU Micro-Benchmarks (MPI): Examples and Capabilities



26Network Based Computing Laboratory Bench ‘19

Startup Performance on TACC Frontera

• MPI_Init takes 3.9 seconds on 57,344 processes on 1,024 nodes
• MPI_Init takes 195 seconds on 229376 processes on 4096 nodes while MVAPICH2 takes 31 seconds
• All numbers reported with 56 processes per node

4.5s
3.9s

New designs available in MVAPICH2-2.3.2
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Intel MPI  2019

MVAPICH2 2.3.2
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• Host-Based
– Point-to-point

– Collectives
• Blocking and Non-Blocking

• Job-startup

• GPU-Based
– CUDA-aware 

• Point-to-point: Device-to-Device (DD), Device-to-Host (DH) and Host-to-Device (HD)

• Collectives

– Managed Memory
• Point-to-point: Managed-Device-to-Managed-Device (MD-MD)

OSU Micro-Benchmarks (MPI): Examples and Capabilities
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CPU CPU
QPI

G
PU

PC
Ie

G
PU

G
PU

CPU

G
PU

IB

Node 0 Node 1
1. Intra-GPU
2. Intra-Socket GPU-GPU
3. Inter-Socket GPU-GPU
4. Inter-Node GPU-GPU
5. Intra-Socket GPU-Host

7. Inter-Node GPU-Host
6. Inter-Socket GPU-Host

Memory buffers

8. Inter-Node GPU-GPU with IB adapter  on remote socket
and more . . .

• For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline …
• Critical for runtimes to optimize data movement while hiding the complexity

• Connected as PCIe devices – Flexibility but Complexity

Optimizing MPI Data Movement on GPU Clusters
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At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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Optimized MVAPICH2-GDR Design (D-D) 

1.85us
11X

Presenter
Presentation Notes
This one can be updated with the latest version of GDR
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D-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect 

Intra-node Bandwidth: 62.79 GB/sec for 4MB 
(via NVLINK2)

Intra-node Latency: 0.90 us (with GDRCopy)

Inter-node Latency: 2.04 us (with GDRCopy) Inter-node Bandwidth: 12.03 GB/sec (2 port EDR)Available since MVAPICH2-GDR 2.3.2 
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D-to-H & H-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect 

Intra-node D-H Bandwidth: 16.70 GB/sec for 
2MB (via NVLINK2)

Intra-node D-H Latency: 0.49 us (with GDRCopy)

Intra-node H-D Latency: 0.49 us (with GDRCopy)
Intra-node H-D Bandwidth: 26.09 GB/sec 
for 2MB (via NVLINK2)Available since MVAPICH2-GDR 2.3a 
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MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale
• Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs
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• Host-Based
– Point-to-point

– Collectives
• Blocking and Non-Blocking

• Job-startup

• GPU-Based
– CUDA-aware 

• Point-to-point: Device-to-Device (DD), Device-to-Host (DH) and Host-to-Device (HD)

• Collectives

– Managed Memory
• Point-to-point: Managed-Device-to-Managed-Device (MD-MD)

OSU Micro-Benchmarks (MPI): Examples and Capabilities
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Managed Memory Performance (Inter-node x86) with MVAPICH2-GDR

Latency MD MD Bandwidth MD MD

Bi-Bandwidth MD MD
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Managed Memory Performance (OpenPOWER Intra-node)

Latency MD MD Bandwidth MD MD

Bi-Bandwidth MD MD
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• MVAPICH Project
– MPI and PGAS Library with CUDA-Awareness

• HiBD Project
– High-Performance Big Data Analytics Library

• HiDL Project
– High-Performance Deep Learning

• Public Cloud Deployment
– Microsoft-Azure and Amazon-AWS

• Conclusions

Presentation Overview
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• Substantial impact on designing and utilizing data management and processing systems in multiple tiers

– Front-end data accessing and serving (Online)
• Memcached + DB (e.g. MySQL), HBase

– Back-end data analytics (Offline)
• HDFS, MapReduce, Spark

Data Management and Processing on Modern Datacenters
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Convergent Software Stacks for HPC, Big Data and Deep Learning
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 3.x (RDMA-Hadoop-3.x)

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)

– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache Kafka

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 315 organizations from 35 countries

• More than 31,600 downloads from the project site

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCE
Also run on Ethernet

Available for x86 and OpenPOWER

Support for Singularity and Docker

http://hibd.cse.ohio-state.edu/
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• Hadoop Benchmarks
– DFSIO, Terasort, Teragen, HiBench, …

• PUMA

• YCSB

• Spark Benchmarks

• GroupBy, PageRank, K-means, …

• BigData Bench

Current set of Benchmarks for Big Data
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• The current benchmarks provide some performance behavior

• However, do not provide any information to the designer/developer on:
– What is happening at the lower-layer?

– Where the benefits are coming from?

– Which design is leading to benefits or bottlenecks?

– Which component in the design needs to be changed and what will be its impact?

– Can performance gain/loss at the lower-layer be correlated to the performance 
gain/loss observed at the upper layer?   

Are the Current Benchmarks Sufficient for Big Data?
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Big Data Middleware
(HDFS, MapReduce, HBase, Spark and Memcached)

Networking Technologies
(InfiniBand, 1/10/40/100 GigE 

and Intelligent NICs)

Storage Technologies
(HDD, SSD, NVM, and NVMe-SSD)

Programming Models
(Sockets)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core 
architectures and accelerators)

Other Protocols?

Communication and I/O Library

Point-to-Point
Communication

QoS & Fault Tolerance

Threaded Models
and Synchronization

Performance TuningI/O and File Systems

Virtualization (SR-IOV)

Benchmarks

RDMA Protocols

Challenges in Benchmarking of Optimized Designs

Current 
Benchmarks

No Benchmarks

Correlation?
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Big Data Middleware
(HDFS, MapReduce, HBase, Spark and Memcached)

Networking Technologies
(InfiniBand, 1/10/40/100 GigE 

and Intelligent NICs)

Storage Technologies
(HDD, SSD, NVM, and NVMe-SSD)

Programming Models
(Sockets)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core 
architectures and accelerators)

Other Protocols?

Communication and I/O Library

Point-to-Point
Communication

QoS & Fault Tolerance

Threaded Models
and Synchronization

Performance TuningI/O and File Systems

Virtualization (SR-IOV)

Benchmarks

RDMA Protocols

Iterative Process – Requires Deeper Investigation and Design for 
Benchmarking Next Generation Big Data Systems and Applications 

Applications-Level 
Benchmarks

Micro-
Benchmarks
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• Evaluate the performance of standalone HDFS 

• Five different benchmarks
– Sequential Write Latency (SWL)

– Sequential or Random Read Latency (SRL or RRL)

– Sequential Write Throughput (SWT)

– Sequential Read Throughput (SRT)

– Sequential Read-Write Throughput (SRWT)

OSU HiBD Micro-Benchmark (OHB) Suite - HDFS

Benchmark File 
Name

File Size HDFS
Parameter

Readers Writers Random/
Sequential 

Read

Seek 
Interval

SWL √ √ √

SRL/RRL √ √ √ √ √ (RRL)

SWT √ √ √

SRT √ √ √

SRWT √ √ √ √

N. S. Islam, X. Lu, M. W. Rahman, J. Jose, and D. 
K. Panda, A Micro-benchmark Suite for 
Evaluating HDFS Operations on Modern 
Clusters, Int'l Workshop on Big Data 
Benchmarking (WBDB '12), December 2012
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• Evaluate the performance of stand-alone MapReduce

• Does not require or involve HDFS or any other distributed file system

• Models shuffle data patterns in real-workload Hadoop application workloads

• Considers various factors that influence the data shuffling phase
– underlying network configuration, number of map and reduce tasks, intermediate shuffle data 

pattern, shuffle data size etc.

• Two different micro-benchmarks based on generic intermediate shuffle patterns
– MR-AVG: intermediate data is evenly distributed (or approx. equal) among reduce tasks

• MR-RR  i.e., round-robin distribution and MR-RAND i.e., pseudo-random distribution

– MR-SKEW: intermediate data is unevenly distributed among reduce tasks
• Total number of shuffle key/value pairs, max% per reducer, min% per reducer to configure skew

OSU HiBD Micro-Benchmark (OHB) Suite - MapReduce

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, A Micro-Benchmark Suite for Evaluating Hadoop MapReduce on High-
Performance Networks, BPOE-5 (2014)

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, Characterizing and benchmarking stand-alone Hadoop MapReduce on modern 
HPC clusters, The Journal of Supercomputing (2016)

Presenter
Presentation Notes
MR-RR: In this micro-benchmark, the map output key/value pairs are distributed among the reducers in a round-robin fashion, making sure that each reducer gets the same number of intermediate key/value pairs. 
MR-RAND: In this micro-benchmark, we randomly distribute the intermediate key/value pairs among the reduce tasks.

MR-SKEW: In this micro-benchmark, we distribute the intermediate key/value pairs unevenly among the reducers, to represent the SKEW pattern, referred to as MR-SKEW. We employ two user-defined skew distribution parameters: (1) max%, which is the maximum percentage, and (2) min%, which is the minimum percentage, of the total number of key/value pairs to be distributed to a given reducer, at each map task. The key/value pairs are distributed among the reducers such that min% ≤ pairs_per_reducer ≤max%.
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• Two different micro-benchmarks to evaluate the performance of standalone Hadoop RPC
– Latency: Single Server, Single Client

– Throughput: Single Server, Multiple Clients

• A simple script framework for job launching and resource monitoring

• Calculates statistics like Min, Max, Average

• Network configuration, Tunable parameters, DataType, CPU Utilization

OSU HiBD Micro-Benchmark (OHB) Suite - RPC

Component Network 
Address

Port Data Type Min Msg Size Max Msg Size No. of Iterations Handlers Verbose

lat_client √ √ √ √ √ √ √

lat_server √ √ √ √

Component Network 
Address

Port Data Type Min Msg Size Max Msg Size No. of Iterations No. of Clients Handlers Verbose

thr_client √ √ √ √ √ √ √

thr_server √ √ √ √ √ √

X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, A Micro-Benchmark Suite for Evaluating Hadoop RPC on High-
Performance Networks, Int'l Workshop on Big Data Benchmarking (WBDB '13), July 2013
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• Evaluates the performance of stand-alone Memcached in different modes

• Default API Latency benchmarks for Memcached in-memory mode
– SET Micro-benchmark: Micro-benchmark for memcached set operations

– GET Micro-benchmark: Micro-benchmark for memcached get operations

– MIX Micro-benchmark: Micro-benchmark for a mix of memcached set/get operations 
(Read:Write ratio is 90:10)

• Latency benchmarks for Memcached hybrid-memory mode 

• Non-Blocking API Latency Benchmark for Memcached (both in-memory and hybrid-
memory mode)

• Calculates average latency of Memcached operations in different modes

OSU HiBD Micro-Benchmark (OHB) Suite - Memcached

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, Benchmarking Key-Value Stores on High-Performance Storage and 
Interconnects for Web-Scale Workloads, IEEE International Conference on Big Data (IEEE BigData ‘15), Oct 2015
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• HHH: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to have better fault-tolerance as well 
as performance. This mode is enabled by default in the package. 

• HHH-M: A high-performance in-memory based setup has been introduced in this package that can be utilized to perform all I/O operations in-
memory and obtain as much performance benefit as possible. 

• HHH-L: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.

• HHH-L-BB: This mode deploys a Memcached-based burst buffer system to reduce the bandwidth bottleneck of shared file system access. The burst 
buffer design is hosted by Memcached servers, each of which has a local SSD.

• MapReduce over Lustre, with/without local disks: Besides, HDFS based solutions, this package also provides support to run MapReduce jobs on top 
of Lustre alone. Here, two different modes are introduced: with local disks and without local disks.

• Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different running modes (HHH, HHH-M, HHH-
L, and MapReduce over Lustre).

Different Modes of RDMA for Apache Hadoop 2.x
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Using HiBD Packages for Big Data Processing on Existing HPC 
Infrastructure
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• High-Performance Design of Spark  over RDMA-enabled Interconnects

– High performance RDMA-enhanced design with native InfiniBand and RoCE support at the verbs-level for Spark

– RDMA-based data shuffle and SEDA-based shuffle architecture

– Non-blocking and chunk-based data transfer

– Off-JVM-heap buffer management

– Support for OpenPOWER

– Easily configurable for different protocols (native InfiniBand, RoCE, and IPoIB)

• Current release: 0.9.5

– Based on Apache Spark  2.1.0

– Tested with
• Mellanox InfiniBand adapters (DDR, QDR, FDR, and EDR)

• RoCE support with Mellanox adapters

• Various multi-core platforms (x86, POWER)

• RAM disks, SSDs, and HDD

– http://hibd.cse.ohio-state.edu

RDMA for Apache Spark Distribution

http://hadoop-rdma.cse.ohio-state.edu/
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Using HiBD Packages for Big Data Processing on Existing HPC 
Infrastructure
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• MVAPICH Project
– MPI and PGAS Library with CUDA-Awareness

• HiBD Project
– High-Performance Big Data Analytics Library

• HiDL Project
– High-Performance Deep Learning

• Public Cloud Deployment
– Microsoft-Azure and Amazon-AWS

• Conclusions

Presentation Overview
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• Deep Learning frameworks are a different game 
altogether

– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• Existing State-of-the-art
– cuDNN, cuBLAS, NCCL --> scale-up performance

– NCCL2, CUDA-Aware MPI -->  scale-out performance
• For small and medium message sizes only!

• Proposed: Can we co-design the MPI runtime (MVAPICH2-
GDR) and the DL framework (Caffe) to achieve both?

– Efficient Overlap of Computation and Communication

– Efficient Large-Message Communication (Reductions)

– What application co-designs are needed to exploit 
communication-runtime co-designs?

Deep Learning: New Challenges for MPI Runtimes

Sc
al

e-
up

 P
er

fo
rm

an
ce

Scale-out Performance
A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

cuDNN

gRPC

Hadoop

MPI

MKL-DNN

Desired
NCCL2
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Convergent Software Stacks for HPC, Big Data and Deep Learning
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• CPU-based Deep Learning
– Using MVAPICH2-X

• GPU-based Deep Learning
– Using MVAPICH2-GDR

High-Performance Deep Learning
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Large-Scale Benchmarking of DL Frameworks on Frontera
• TensorFlow, PyTorch, and MXNet are widely used Deep Learning Frameworks

• Optimized by Intel using Math Kernel Library for DNN (MKL-DNN) for Intel 
processors

• Single Node performance can be improved by running Multiple MPI processes 

Impact of Batch Size on Performance for ResNet-50 Performance Improvement using Multiple MPI processes

*Jain et al., “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep Learning on Frontera”, DLS ’19 (in conjunction with SC ’19). 
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ResNet-50 using various DL benchmarks on Frontera

• Observed 260K images per sec for ResNet-50 on 2,048 Nodes

• Scaled MVAPICH2-X on 2,048 nodes on Frontera for Distributed Training using 
TensorFlow

• ResNet-50 can be trained in 7 minutes on 2048 nodes (114,688 cores)

*Jain et al., “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep Learning on Frontera”, DLS ’19 (in conjunction with SC ’19). 



59Network Based Computing Laboratory Bench ‘19

Benchmarking TensorFlow (TF) and PyTorch
PyTorch

TensorFlow

• Comprehensive and systematic 
performance benchmarking

– tf_cnn_becchmarks (TF)

– Horovod benchmark (PyTorch)

• TensorFlow is up to 2.5X faster
than PyTorch for 128 Nodes.

• TensorFlow: up to 125X speedup 
for ResNet-152 on 128 nodes

• PyTorch: Scales well but overall 
lower performance than 
TensorFlow

*Jain et al., “Performance Characterization of DNN Training using TensorFlow and PyTorch on Modern Clusters”, IEEE Cluster ’19. 
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• CPU based Hybrid-Parallel (Data 
Parallelism and Model 
Parallelism) training on 
Stampede2

• Benchmark developed for various 
configuration

– Batch sizes

– No. of model partitions

– No. of model replicas

• Evaluation on a very deep model
– ResNet-1000 (a 1,000-layer 

model)

Benchmarking HyPar-Flow on Stampede

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

110x speedup on 128 Intel Xeon Skylake nodes (TACC Stampede2 Cluster)

https://arxiv.org/pdf/1911.05146.pdf
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• CPU-based Deep Learning
– Using MVAPICH2-X

• GPU-based Deep Learning
– Using MVAPICH2-GDR

High-Performance Deep Learning
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Distributed Training with TensorFlow and MVAPICH2-GDR
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3.6 seconds

• Total Time (90 epochs)        
= 3.6 x 90 = 332 seconds = 
5.5 minutes!
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Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

*We observed errors for NCCL2 beyond 96 GPUs 

MVAPICH2-GDR reaching ~0.35 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images

Presenter
Presentation Notes
Time is calculated based on the images/second performance. It might be different when actual training happens. 
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• Near-linear scaling may be achieved by tuning Horovod/MPI
• Optimizing MPI/Horovod towards large message sizes for high-resolution images

• Develop a generic Image Segmentation benchmark
• Tuned DeepLabV3+ model using the benchmark and Horovod – up to 1.3X better than default

New Benchmark for Image Segmentation on Summit

*Anthony et al., “Scaling Semantic Image Segmentation using Tensorflow and MVAPICH2-GDR on HPC Systems” (Submission under review)
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Using HiDL Packages for Deep Learning on Existing HPC 
Infrastructure

Hadoop Job
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• MVAPICH Project
– MPI and PGAS Library with CUDA-Awareness

• HiBD Project
– High-Performance Big Data Analytics Library

• HiDL Project
– High-Performance Deep Learning

• Public Cloud Deployment
– Microsoft-Azure and Amazon-AWS

• Conclusions

Presentation Overview
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• Released on 08/16/2019

• Major Features and Enhancements

– Based on MVAPICH2-2.3.2

– Enhanced tuning for point-to-point and collective operations

– Targeted for Azure HB & HC virtual machine instances

– Flexibility for 'one-click' deployment
– Tested with Azure HB & HC VM instances

MVAPICH2-Azure 2.3.2
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• Released on 08/12/2019

• Major Features and Enhancements

– Based on MVAPICH2-X 2.3

– New design based on Amazon EFA adapter's Scalable Reliable Datagram (SRD) transport protocol

– Support for XPMEM based intra-node communication for point-to-point and collectives

– Enhanced tuning for point-to-point and collective operations

– Targeted for AWS instances with Amazon Linux 2 AMI and EFA support

– Tested with c5n.18xlarge instance

MVAPICH2-X-AWS 2.3
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• Upcoming Exascale systems need to be designed with a holistic view of HPC, 
Big Data, Deep Learning, and Cloud 

• Presented an overview of designing convergent software stacks 

• Presented benchmarks and middleware to enable HPC, Big Data, and Deep 
Learning communities to take advantage of current and next-generation 
systems

Concluding Remarks
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• Supported through X-ScaleSolutions (http://x-scalesolutions.com)
• Benefits:

– Help and guidance with installation of the library

– Platform-specific optimizations and tuning

– Timely support for operational issues encountered with the library

– Web portal interface to submit issues and tracking their progress

– Advanced debugging techniques

– Application-specific optimizations and tuning

– Obtaining guidelines on best practices

– Periodic information on major fixes and updates

– Information on major releases

– Help with upgrading to the latest release

– Flexible Service Level Agreements 
• Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years

Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

http://x-scalesolutions.com/
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• Has joined the OpenPOWER Consortium as a silver ISV member
• Provides flexibility:

– To have MVAPICH2, HiDL and HiBD libraries getting integrated into the 
OpenPOWER software stack

– A part of the OpenPOWER ecosystem

– Can participate with different vendors for bidding, installation and deployment 
process

• Introduced two new integrated products with support for OpenPOWER systems 
(Presented at the OpenPOWER North America Summit) 

– X-ScaleHPC

– X-ScaleAI

– Send an e-mail to contactus@x-scalesolutions.com for free trial!!

Silver ISV Member for the OpenPOWER Consortium + Products

mailto:contactus@x-scalesolutions.com
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• Presentations at OSU and X-Scale Booth (#2094)
– Members of the MVAPICH, HiBD and HiDL members

– External speakers

• Presentations at SC main program (Tutorials and Workshops)

• Presentation at many other booths and satellite events

• Complete details available at 
http://mvapich.cse.ohio-state.edu/conference/752/talks/

Multiple Events at SC ‘19

http://mvapich.cse.ohio-state.edu/conference/752/talks/
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
https://twitter.com/mvapich
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