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Understanding the Deep Learning Resurgence

Adopted from: http://www.deeplearningbook.org/contents/intro.html

• Deep Learning (DL) is a sub-set of 
Machine Learning (ML)

– Perhaps, the most revolutionary 
subset! 

– Feature extraction vs. hand-crafted 
features

• Deep Learning
– A renewed interest and a lot of hype!

– Key success: Deep Neural Networks 
(DNNs)

– Everything was there since the late 80s 
except the “computability of DNNs”

AI

Machine 
Learning

Deep 
Learning

Examples:

MLPs, DNNs,

Examples:

Logistic 
Regression

http://www.deeplearningbook.org/contents/intro.html
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


OSU Booth - SC ‘18 4Network Based Computing Laboratory High-Performance Deep Learning

• Modern and efficient hardware enabled 

– Computability of DNNs – impossible in the 
past!

– GPUs – at the core of DNN training 

– CPUs – catching up fast

• Availability of Datasets

– MNIST, CIFAR10, ImageNet, and more… 

• Excellent Accuracy for many application areas

– Vision, Machine Translation, and several 
others... 

Deep Learning in the Many-core Era

Courtesy: A. Canziani et al., “An Analysis of Deep Neural Network Models for Practical Applications”, CoRR, 2016.
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Deep Learning and HPC
• NVIDIA GPUs - main driving force for faster training of DL 

models

– The ImageNet Challenge - (ILSVRC)

– 90% of the ImageNet teams used GPUs in 2014

– DNNs like Inception, ResNet(s), NASNets, and AmoebaNets

– Natural fit for DL workloads – throughput-oriented

• In the High Performance Computing (HPC) arena

– 124/500 Top HPC systems use NVIDIA GPUs (Jun ’19)

– CUDA-Aware Message Passing Interface (MPI)

– NVIDIA Fermi, Kepler, Pascal, and Volta GPUs

– DGX-1 (Pascal) and DGX-2 (Volta) - Dedicated DL 
supercomputers

Accelerator/CP 
Performance Share 

www.top500.org

http://www.top500.org/
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And CPUs are catching up fast

1- https://dl.acm.org/citation.cfm?id=1993516
2- http://ieeexplore.ieee.org/abstract/document/5762730/
3- https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1

• Intel CPUs are everywhere and many-core 
CPUs are emerging according to Top500.org

• Host CPUs exist even on the GPU nodes
– Many-core Xeon(s) and EPYC(s) are increasing

• Usually, we hear CPUs are 10x – 100x slower 
than GPUs? [1-3]

– But, CPU-based ML/DL is getting attention and 
performance has significantly improved now

https://www.top500.org/statistics/list/

System Count for Xeon Phi

https://dl.acm.org/citation.cfm?id=1993516
http://ieeexplore.ieee.org/abstract/document/5762730/
https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1
https://www.top500.org/statistics/list/
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• There are several Deep Learning (DL) or DNN Training frameworks

• Every (almost every) framework has been optimized for NVIDIA GPUs
– cuBLAS and cuDNN have led to significant performance gains!

• But every framework is able to execute on a CPU as well
– So why are we not using them?

– Performance has been “terrible” and several studies have reported 
significant degradation when using CPUs (see nvidia.qwiklab.com) 

• But there is hope, a lot of great progress here! 
– And MKL-DNN, just like cuDNN, has definitely rekindled this!!

– The landscape for CPU-based DL looks promising..

Deep Learning Frameworks – CPUs or GPUs?



OSU Booth - SC ‘18 8Network Based Computing Laboratory High-Performance Deep Learning

• Some parallelization strategies..
– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies for DL

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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• What is Message Passing Interface (MPI)? 
– a de-facto standard for expressing distributed-memory parallel programming

– used for communication between processes in multi-process applications

• MVAPICH2 is a high-performance implementation of the MPI standard

• What can MPI do for Deep Learning?
– MPI has been used for large scale scientific applications

– Deep Learning can also exploit MPI to perform high-performance communication

• Why do I need communication in Deep Learning?
– If you use one GPU or one CPU, you do not need communication

– But, one GPU or CPU is not enough! DL needs  as many compute elements as it can get!

– MPI is a great fit – Point to Point and Collectives (Broadcast, Reduce, and Allreduce) are all you need 
for many types of parallel DNN training (data-parallel, model-parallel, and hybrid-parallel)

What to use for Deep Learning scale-out? 
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MVAPICH2: The best MPI Library for Deep Learning!
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,050 organizations in 89 countries

– More than 615,000 (> 0.6 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (June ‘19 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 8th, 391,680 cores (ABCI) in Japan

• 16th, 556,104 cores (Oakforest-PACS) in Japan

• 19th, 367,024 cores (Stampede2) at TACC

• 31st, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the 5th ranked TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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• Introduction

• Research Challenges: Exploiting HPC for 
Deep Learning

• Proposed Solutions

• Conclusion
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Research Area: Requirements and Trends
• Intersection of HPC and Deep Learning

• DL Frameworks
• Communication Runtimes
• GPUs and Multi-/Many-core CPUs
• High-Performance Interconnects

Deep 
Learning

(Caffe, TensorFlow, 
CNTK, etc.)

HPC 
(MPI, CUDA-Aware 

Communication, 
GPUDirect RDMA, 

etc.)

• Large DNNs – very-large messages, GPU buffers, and out-of-core workloads!
• HPC-oriented Communication Middleware – under-optimized for such workloads!
• DL Frameworks – mostly optimized for single-node

• Distributed/Parallel Training – an emerging trend!
• Scale-up (Intra-node) and Scale-out (Inter-node) options need to be explored
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Broad Challenge

How to efficiently Scale-up and 
Scale-out Deep Learning (DL) 

workloads by exploiting diverse 
High Performance Computing (HPC) 

technologies and co-designing
Communication Middleware like 

MPI and DL Frameworks?
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1. What are the fundamental 
issues in designing DL 
frameworks?

– Memory Requirements

– Computation
Requirements

– Communication Overhead

2. Why do we need to support 
distributed training?

– To overcome the limits of 
single-node training

– To better utilize hundreds 
of existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 
brought forward by DL frameworks for 
Communication runtimes?

– Large Message Collective
Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in 
achieving Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 
level and Exploit it at the DL 
Framework level

– What performance benefits can 
be observed? 

– What needs to be fixed at the 
communication runtime layer?

5. 

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-Point
Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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Overview of the Proposed Solutions

Distributed Training Middleware 

Communication Middleware (Deep Learning Aware MPI)

Application Layer (DNN Training)

Co-Designs

Out-of-Core

Asdasdasdasd

HPC Platforms Multi-/Many-core CPUs 
(Intel Xeon, AMD EPYC, and 

IBM POWER9)
NVIDIA GPUs

High-Performance 
Interconnects

(InfiniBand, Omni-Path)

OSU-Caffe

Large 
Message 

Reductions
CUDA-Aware 
Reductions

Data-Parallel

Horovod

Caffe

CNTK
CUDA-Aware 

Broadcast

Performance
Characterization 

and 
Design Analysis

TensorFlow

PyTorch

Hybrid Parallel

HyPar-Flow
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• Performance depends on 
many factors

• Hardware Architectures
– GPUs

– Multi-/Many-core CPUs

– Software Libraries: cuDNN (for 
GPUs), MKL-DNN/MKL 2017 

(for CPUs)

• Hardware and Software co-
design

– Software libraries optimized 
for one platform will not help 
the other!

– cuDNN vs. MKL-DNN

Understanding the Impact of Execution Environments

A. A. Awan, H. Subramoni, D. Panda, “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern Architectures” 
3rd Workshop on Machine Learning in High Performance Computing Environments, held in conjunction with SC17, Nov 2017.
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The Full Landscape for AlexNet Training on CPU/GPU

• Convolutions in the Forward and Backward Pass

• Faster Convolutions  Faster Training

• Most performance gains are based on conv2 and conv3.
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• White-box profiling is needed for complex DL frameworks

• hvprof provides multiple types of valuable metrics for
– 1) ML/DL developers and 2) Designers of MPI libraries

• Profile of Latency for Allreduce (NVLink, PCIe, IB, Omni-Path)

• Summary: Non-power of 2 is under-optimized for all libraries!

Communication Profiling of Distributed TF

CNTK

A. A. Awan et al., “Communication Profiling and Characterization of Deep Learning Workloads on Clusters with High-Performance Interconnects”, IEEE Hot Interconnects  ’19.

Inception-v4– Intel MPI ResNet-101– MVAPICH2
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• Caffe : A flexible and layered Deep Learning 
framework.

• Benefits and Weaknesses
– Multi-GPU Training within a single node

– Performance degradation for GPUs across 
different sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 
– Enable Scale-up (within a node) and Scale-out 

(across multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 
network on CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet 
network on ImageNet dataset

OSU-Caffe 0.9: Scalable Deep Learning on GPU Clusters
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• NCCL has some limitations
– Only works for a single node, thus, no scale-out on 

multiple nodes

– Degradation across IOH (socket) for scale-up (within a 
node)

• We propose optimized MPI_Bcast
– Communication of very large GPU buffers (order of 

megabytes)

– Scale-out on large number of dense multi-GPU nodes

• Hierarchical Communication that efficiently exploits:
– CUDA-Aware MPI_Bcast in MV2-GDR 

– NCCL Broadcast primitive

Efficient Broadcast for MVAPICH2-GDR using NVIDIA NCCL
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Performance Benefits: Microsoft CNTK DL framework 
(25% avg. improvement ) 

Performance Benefits: OSU Micro-benchmarks

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, 
A. Awan , K. Hamidouche , A. Venkatesh , and D. K. Panda, EuroMPI 16
[Best Paper Runner-Up]
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• Efficient Intra-node communication on PCIe-based 
dense-GPU systems

– Pipeline multiple chunks in a uni-directional ring fashion

– Take advantage of the PCIe and IB topology to utilize all bi-
directional links to saturate the maximum available 
bandwidth between GPUs

Pure MPI Large Message Bcast (w/out NCCL)

1 2

CPU

PLX

3 4

PLX

Node 0

1 2

CPU

PLX

3 4

PLX

Node 1IBIB

A. A. Awan et al., “Optimized Large-Message Broadcast for Deep Learning Workloads: MPI, MPI+NCCL, or NCCL2?”, J. Parallel Computing (2019)
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• MPI_Bcast: Design and Performance Tuning for DL 
Workloads 

– Design ring-based algorithms for large messages

– Harness a multitude of algorithms and techniques for best 
performance across the full range of message size and 
process/GPU count

• Performance Benefits
– Performance comparable or better  than NCCL-

augmented approaches for large messages 

– Up to 10X improvement for small/medium message sizes 
with micro-benchmarks and up to 7% improvement for 
VGG training

Pure MPI Large Message Bcast (w/out NCCL)

VGG Training with CNTK

MPI Bcast Benchmark: 128 GPUs (8 nodes)

A. A. Awan et al., “Optimized Large-Message Broadcast for Deep Learning Workloads: MPI, MPI+NCCL, or NCCL2?”, J. Parallel Computing (2019)
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• Need to understand several options currently available

• gRPC (official support)
– Open-source – can be enhanced by others

– Accelerated gRPC (add RDMA to gRPC)

• gRPC+X
– Use gRPC for bootstrap and rendezvous

– Actual communication is in “X”

– XMPI, Verbs, GPUDirect RDMA (GDR), etc.

• No-gRPC
– Baidu – the first one to use MPI Collectives for TF

– Horovod – Use NCCL, or MPI, or any other future library (e.g. IBM DDL recently added) 

Data Parallel Training with TensorFlow (TF)

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and 
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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Faster Allreduce in the proposed MPI-Opt
implemented in MVAPICH2-GDR

Data Parallel Training with TF: NCCL vs. MVAPICH2-GDR

Faster (near-ideal) DNN Training 
speed-ups in TensorFlow-Horovod–>

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: 
Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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Data Parallel Training with TF and MVAPICH2 on DGX-2
• ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)
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Data Parallel Training with TF and MVAPICH2 on Summit
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3.6 seconds

• Total Time (90 epochs)        
= 3.6 x 90 = 332 seconds = 
5.5 minutes!
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Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

*We observed errors for NCCL2 beyond 96 GPUs 

MVAPICH2-GDR reaching ~0.35 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Data Parallel Training with TF and MVAPICH2 on Frontera
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 and IntelMPI give similar 
performance for DNN training

• Report a peak of 260,000 images/sec on 
2048 nodes

• On 2048 nodes, ResNet-50 can be trained 
in 7 minutes! 

*Jain et al., “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep Learning on Frontera”, DLS ’19 (in conjunction with SC ’19). 
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• What if your Neural Net is bigger than the GPU memory (out-of-core)?
– Use our proposed Unified Memory solution called OC-DNN :-) 

Out-of-core DNN Training

A. A. Awan et al., “OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training”, HiPC ’18
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• Out-of-Core workloads – no good baseline to compare
– Easiest fallback is to use CPU –> A lot more CPU memory available than GPU memory

• OC-Caffe-Optimized (Opt) designs provide much better than CPU/Optimized CPU designs!
– DNN depth is the major cause for slow-downs  significantly more intra-GPU communication

Performance Benefits of OC-Caffe
Out-of-Core AlexNet Out-of-Core GoogLeNet Out-of-Core ResNet-50

A. A. Awan et al., “OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training”, HiPC ’18

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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• Why Hybrid parallelism?

– Data Parallel training has 
limits! 

• We propose HyPar-Flow

– An easy to use Hybrid 
parallel training 
framework

• Hybrid = Data + Model

– Supports Keras models 
and exploits TF 2.0 Eager 
Execution

– Exploits MPI for Point-to-
point and Collectives 

HyPar-Flow: Hybrid Parallelism for TensorFlow

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

Benchmarking large-models lead to 
better insights and ability to develop new approaches!

https://arxiv.org/pdf/1911.05146.pdf
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• HyPar-Flow: easy to use Hybrid parallel training framework
– Supports Keras models and exploits TF 2.0 Eager Execution

– Exploits MPI Pt-to-pt and Collectives for communication

HyPar-Flow: Design Overview

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
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• CPU based results
– AMD EPYC

– Intel Xeon

• Excellent speedups for 
– VGG-19

– ResNet-110

– ResNet-1000 (1k layers)

• Able to train “future” models
– E.g. ResNet-5000 (a synthetic 

5000-layer model we 
benchmarked)

HyPar-Flow (HF): Hybrid Parallelism for TensorFlow

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

110x speedup on 128 Intel Xeon Skylake nodes (TACC Stampede2 Cluster)

https://arxiv.org/pdf/1911.05146.pdf
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Conclusion

• Deep Learning on the rise

• Single node is not enough

• Focus on distributed Deep Learning - many open challenges!

• MPI offers a great abstraction for communication in DNN Training 

• A co-design of DL frameworks and communication runtimes will be 
required to make DNN Training highly scalable

• Various parallelization strategies like data, model, and hybrid to 
address diversity of DNN architectures and Hardware architectures
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

awan.10@osu.edu

http://web.cse.ohio-state.edu/~awan.10  

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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