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• Easily implement and experiment with Deep Neural Networks 

– Several Deep Learning (DL) frameworks have emerged

• Caffe, Microsoft Cognitive Toolkit (CNTK), TensorFlow, PyTorch, and 

counting....

– Focus on CUDA-Aware MPI based DL frameworks

• Most frameworks have been optimized for NVIDIA GPUs and the 

CUDA programming model

– However, distributed training (MPI+CUDA) is still emerging 

– Fragmentation in efforts also exists – gRPC, MPI, NCCL, Gloo, etc. 

Deep Learning Frameworks



OSU Booth - SC ‘18 4Network Based Computing Laboratory High-Performance Deep Learning

• NVIDIA GPUs - main driving force for faster training of Deep 

Neural Networks (DNNs)

• The ImageNet Challenge - (ILSVRC)

– DL models like AlexNet, ResNet, and VGG

– 90% of the ImageNet teams used GPUs in 2014*

– GPUs: A natural fit for DL –throughput-oriented (dense-compute)

– And, GPUs are growing in the HPC arena as well! – Top500 (Jun ‘18) 

Deep Learning and GPUs

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

https://www.top500.org/

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://www.top500.org/statistics/list/
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And CPUs are catching up fast

1- https://dl.acm.org/citation.cfm?id=1993516
2- http://ieeexplore.ieee.org/abstract/document/5762730/
3- https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1

• Intel CPUs are everywhere and many-core 

CPUs are emerging according to Top500.org

• Host CPUs exist even on the GPU nodes

– Many-core Xeon Phis are increasing

• Usually, we hear CPUs are 10x – 100x slower 

than GPUs? [1-3]

– But, CPU-based ML/DL is getting attention and 

performance has significantly improved now

https://www.top500.org/statistics/list/

System Count for Xeon Phi

https://dl.acm.org/citation.cfm?id=1993516
http://ieeexplore.ieee.org/abstract/document/5762730/
https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1
https://www.top500.org/statistics/list/
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• What is Message Passing Interface (MPI)? 

– a de-facto standard for expressing distributed-memory parallel programming

– used for communication between processes in multi-process applications

• MVAPICH2 is a high performance implementation of the MPI standard

• What can MPI do for Deep Learning?

– MPI has been used for large scale scientific applications

– Deep Learning can also exploit MPI to perform high-performance communication

• Why do I need communication in Deep Learning?

– If you use one GPU or one CPU, you do not need communication

– But, one GPU or CPU is not enough!

– DL wants as many compute elements as it can get!

– MPI is a great fit – Broadcast, Reduce, and Allreduce is what most DL workloads require

What to use for scale-out? (Distributed training of Neural Nets.)
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,925 organizations in 86 countries

– More than 489,000 (> 0.48 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Jul ‘18 ranking)

• 2nd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 12th, 556,104 cores (Oakforest-PACS) in Japan

• 15th, 367,024 cores (Stampede2) at TACC

• 24th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

http://mvapich.cse.ohio-state.edu/
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• There are several Deep Learning (DL) or DNN Training frameworks

• Every (almost every) framework has been optimized for NVIDIA GPUs

– cuBLAS and cuDNN have led to significant performance gains!

• But every framework is able to execute on a CPU as well

– So why are we not using them?

– Performance has been “terrible” and several studies have reported 

significant degradation when using CPUs (see nvidia.qwiklab.com) 

• But there is hope, actually a lot of great progress here! 

– And MKL-DNN, just like cuDNN, has definitely rekindled this!!

– The landscape for CPU-based DL looks promising..

Deep Learning Frameworks – CPUs or GPUs?
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How to efficiently exploit 

heterogeneous High Performance 

Computing (HPC) resources for high-

performance and high-productivity 

Deep Learning?

The Key Question!
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1. What are the fundamental 

issues in designing DL 

frameworks?

– Memory Requirements

– Computation

Requirements

– Communication Overhead

2. Why do we need to support 

distributed training?

– To overcome the limits of 

single-node training

– To better utilize hundreds 

of existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 

brought forward by DL frameworks for 

Communication runtimes?

– Large Message Collective

Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in 

achieving Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 

level and Exploit it at the DL 

Framework level

– What performance benefits can 

be observed? 

– What needs to be fixed at the 

communication runtime layer?

5. 

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-Point
Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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Overview of the Proposed Solutions

Application Layer

OSU-Caffe
Distributed Training 

with TensorFlow
Out-of-Core 

DNN Training
DNN Training on 

CPUs/GPUs
CA-CNTK

Communication Middleware Layer (Deep Learning Aware MVAPICH2-GDR)

CUDA-Aware 
Large Msg. 

MPI_Reduce

Co-Design Layer

CUDA-Aware 
Large Msg. 

MPI_Allreduce

Co-Design OSU-Caffe and MVAPICH2-GDR

CUDA-Aware MPI_Bcast

NCCL-based
Bcast

Pure MPI
Bcast

MPI Bcast vs. 
NCCL2 Bcast

Hardware Platforms
CPU GPU InfiniBand HCA



OSU Booth - SC ‘18 15Network Based Computing Laboratory High-Performance Deep Learning

Bcast (GPU 0)

packed_comm_buff

L1

L2

..

Ln

F

L1

L2

..

Ln

L1

L2

..

Ln

L1

L2

..

Ln

Params

G
P

U
 0

Params

G
P

U
 1

Params

G
P

U
 2

Params

G
P

U
 3

Gradients

1. Data 

Propagation

2. Forward 

Backward Pass

3. Gradient 

Aggregation

B F B F B F B

packed_reduce_

buff
packed_reduce_

buff

packed_reduce_

buff

packed_reduce_

buff

ApplyUpdates

Reduce (GPU 0)

Loop {}

Caffe Architecture

http://hidl.cse.ohio-state.edu
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• Deep Learning frameworks are a different game

– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• Existing State-of-the-art

– cuDNN, cuBLAS, NCCL --> scale-up performance

– CUDA-Aware MPI -->  scale-out performance

• Proposed: Can we co-design the MPI runtime (MVAPICH2-

GDR) and the DL framework (Caffe) to achieve both?

– Efficient Overlap of Computation and Communication

– Efficient Large-Message Communication (Reductions)

– What application co-designs are needed to exploit 

communication-runtime co-designs?

OSU-Caffe: Co-design to Tackle New Challenges for MPI Runtimes
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Scale-out Performance

cuDNN

NCCL

gRPC

Hadoop

Proposed
Co-Designs

MPIcuBLAS

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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• Caffe : A flexible and layered Deep Learning 

framework.

• Benefits and Weaknesses

– Multi-GPU Training within a single node

– Performance degradation for GPUs across 

different sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 

– Enable Scale-up (within a node) and Scale-out 

(across multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 

network on CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet 

network on ImageNet dataset

OSU-Caffe 0.9: Scalable Deep Learning on GPU Clusters
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• Several Approaches to Distributed Training

– Google RPC (gRPC)

– gRPC+X (X= Verbs API, GDR, and MPI)

– No-gRPC

• No-gRPC designs use:

– MPI or 

– NCCL

• Performance is heavily influenced by

– MPI_Allreduce

Scalable Distributed DNN Training using TensorFlow and MPI

Distributed 
TensorFlow

gRPC
Accelerated 

gRPC

gRPC+X

gRPC+MPI

gRPC+Verbs

gRPC+GDR

No-gRPC

Baidu-MPI

Horovod

MPI

NCCL

A. A. Awan et al. “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs and Performance Evaluation”, 
Submitted to IPDPS-19 for peer-review, Available from: https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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Faster Allreduce in the proposed MPI-Opt

implemented in MVAPICH2-GDR

TensorFlow with CUDA-Aware MPI: NCCL vs. MVAPICH2-GDR

A. A. Awan et al. “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs and Performance Evaluation”, 
Submitted to IPDPS-19 for peer-review, Available from: https://arxiv.org/abs/1810.11112
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• NCCL has some limitations

– Only works for a single node, thus, no scale-out on 

multiple nodes

– Degradation across IOH (socket) for scale-up (within a 

node)

• We propose optimized MPI_Bcast

– Communication of very large GPU buffers (order of 

megabytes)

– Scale-out on large number of dense multi-GPU nodes

• Hierarchical Communication that efficiently exploits:

– CUDA-Aware MPI_Bcast in MV2-GDR 

– NCCL Broadcast primitive

Efficient Broadcast for MVAPICH2-GDR using NVIDIA NCCL
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Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, 
A. Awan , K. Hamidouche , A. Venkatesh , and D. K. Panda, EuroMPI 16
[Best Paper Runner-Up]
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• MPI_Bcast: Design and Performance Tuning for DL 

Workloads 

– Design ring-based algorithms for large messages

– Harness a multitude of algorithms and techniques for best 

performance across the full range of message size and 

process/GPU count

• Performance Benefits

– Performance comparable or better  than NCCL-

augmented approaches for large messages 

– Up to 10X improvement for small/medium message sizes 

with micro-benchmarks and up to 7% improvement for 

VGG training

Pure MPI Large Message Broadcast
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A. A. Awan, C-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?, EuroMPI ‘18

MPI Bcast Benchmark: 128 GPUs (8 nodes)
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• Performance depends on 

many factors

• Hardware Architectures

– GPUs

– Multi-/Many-core CPUs

– Software Libraries: cuDNN (for 

GPUs), MKL-DNN/MKL 2017 

(for CPUs)

• Hardware and Software co-

design

– Software libraries optimized 

for one platform will not help 

the other!

– cuDNN vs. MKL-DNN

Understanding the Impact of Execution Environments
DL	Applications	(Image	Recognition,	Speech	Processing,	etc.)

DL	Frameworks	(Caffe,	TensorFlow,	etc.)

BLAS	Libraries

Hardware

Many-core	GPU	
(Pascal	P100)

Generic	
Convolution	Layer

MKL	Optimized
Convolution	Layer

MKL	2017 cuDNN/cuBLAS

Multi-/Many-core	
(Xeon,	Xeon	Phi)

cuDNN Optimized
Convolution	Layer

Other	BLAS	Libraries

OpenBLASATLAS

Other	Processors

A. A. Awan, H. Subramoni, D. Panda, “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern Architectures” 
3rd Workshop on Machine Learning in High Performance Computing Environments, held in conjunction with SC17, Nov 2017.
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• We use MCDRAM as Cache for all the 

subsequent results

• On average, DDR-All is up to 1.5X slower

than MCDRAM

• MKL engine is up to 3X better than default 

Caffe engine

• Biggest gains for Intel Xeon Phi (many-

core) architecture

• Both Haswell and Broadwell architectures 

get significant speedups (up to  1.5X)

Impact of MKL engine and MC-DRAM for Intel-Caffe
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The Full Landscape for AlexNet Training on CPU/GPU
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• What if your Neural Net is bigger than the GPU memory (out-of-core)?

– Use our proposed Unified Memory solution called OC-DNN :-) 

Out-of-core DNN Training
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Forward Propagation 
(Existing)

Backward Propagation 
(Existing)

Forward Propagation 
(Proposed)

Backward Propagation 
(Proposed)

Unified Data Layer

A. A. Awan, C-H Chu, X. Lu, H. Subramoni, D.K. Panda, “OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for 
Out-of-Core DNN Training”, 25th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC) 2018. 
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A. A. Awan, C-H Chu, X. Lu, H. Subramoni, D.K. Panda, “OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for 
Out-of-Core DNN Training”, 25th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC) 2018. 
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• We exploit Unified Memory designs in CUDA 9 and hardware support in Volta GPU

– Better performance than CPU-based solutions for all state-of-the-art Image models

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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Summary

• Deep Learning is on the rise

– Rapid advances in software, hardware, and availability of large datasets

• Single node or single GPU is not enough for Deep Learning workloads

• We need to focus on distributed Deep Learning but there are many 

challenges

• MPI offers a great abstraction for communication in DL Training tasks

• A co-design of Deep Learning frameworks and communication runtimes 

will be required to make DNN Training scalable
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

awan.10@osu.edu

http://web.cse.ohio-state.edu/~awan.10  

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

