



# Scalable and Distributed Deep Learning (DL): Co-Design MPI Runtimes and DL Frameworks

### OSU Booth Talk (SC '18)

Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K. Panda

Network Based Computing Laboratory Dept. of Computer Science and Engineering The Ohio State University

## Agenda

- Introduction
  - Deep Learning Trends
  - CPUs and GPUs for Deep Learning
  - Message Passing Interface (MPI)
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

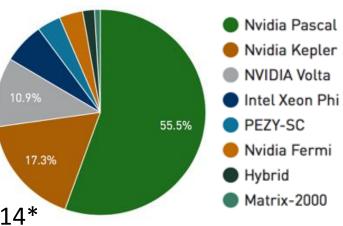
## **Deep Learning Frameworks**

- Easily implement and experiment with Deep Neural Networks
  - Several Deep Learning (DL) frameworks have emerged
- Caffe, Microsoft Cognitive Toolkit (CNTK), TensorFlow, PyTorch, and counting....
  - Focus on CUDA-Aware MPI based DL frameworks
- Most frameworks have been optimized for NVIDIA GPUs and the CUDA programming model
  - However, distributed training (MPI+CUDA) is still emerging
  - Fragmentation in efforts also exists gRPC, MPI, NCCL, Gloo, etc.

## **Deep Learning and GPUs**

NVIDIA GPUs - main driving force for faster training of Deep
Neural Networks (DNNs)

- The ImageNet Challenge (ILSVRC)
  - DL models like AlexNet, ResNet, and VGG
  - 90% of the ImageNet teams used GPUs in 2014\*
  - GPUs: A natural fit for DL -throughput-oriented (dense-compute)
  - And, GPUs are growing in the HPC arena as well! Top500 (Jun '18)



\*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

https://www.top500.org/

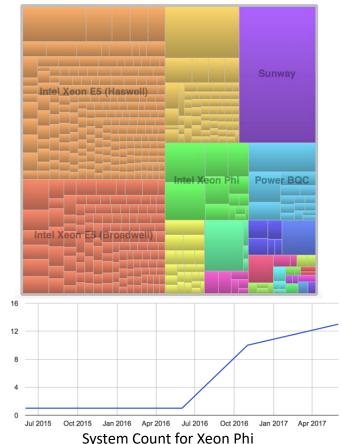
## And CPUs are catching up fast

- Intel CPUs are everywhere and many-core CPUs are emerging according to Top500.org
- Host CPUs exist even on the GPU nodes
  - Many-core Xeon Phis are increasing
- Usually, we hear CPUs are 10x 100x slower than GPUs? [1-3]
  - But, CPU-based ML/DL is getting attention and performance has significantly improved now



- 2- http://ieeexplore.ieee.org/abstract/document/5762730/
- 3- <u>https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1</u>

https://www.top500.org/statistics/list/



### What to use for scale-out? (Distributed training of Neural Nets.)

- What is Message Passing Interface (MPI)?
  - a de-facto standard for expressing distributed-memory parallel programming
  - used for communication between processes in multi-process applications
- **MVAPICH2** is a high performance implementation of the MPI standard
- What can MPI do for Deep Learning?
  - MPI has been used for large scale scientific applications
  - Deep Learning can also exploit MPI to perform high-performance communication
- Why do I need communication in Deep Learning?
  - If you use one GPU or one CPU, you do not need communication
  - But, one GPU or CPU is not enough!
  - DL wants as many compute elements as it can get!
  - MPI is a great fit Broadcast, Reduce, and Allreduce is what most DL workloads require

### **Overview of the MVAPICH2 Project**

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
  - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
  - MVAPICH2-X (MPI + PGAS), Available since 2011
  - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
  - Support for Virtualization (MVAPICH2-Virt), Available since 2015
  - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
  - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
  - Used by more than 2,925 organizations in 86 countries
  - More than 489,000 (> 0.48 million) downloads from the OSU site direct
  - Empowering many TOP500 clusters (Jul '18 ranking)
    - 2<sup>nd</sup> ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, Chir
    - 12<sup>th</sup>, 556,104 cores (Oakforest-PACS) in Japan
    - 15<sup>th</sup>, 367,024 cores (Stampede2) at TACC
    - 24<sup>th</sup>, 241,108-core (Pleiades) at NASA and many others
  - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
  - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade

#### OSU Booth - SC '18

**High-Performance Deep Learning** 

Years &

Counting!

- 7

2001-2018

## **Deep Learning Frameworks – CPUs or GPUs?**

- There are several Deep Learning (DL) or DNN Training frameworks
- Every (almost every) framework has been optimized for NVIDIA GPUs
  - cuBLAS and cuDNN have led to significant performance gains!
- But every framework is able to execute on a CPU as well
  - So why are we not using them?
  - Performance has been "terrible" and several studies have reported significant degradation when using CPUs (see nvidia.qwiklab.com)
- But there is hope, actually a lot of great progress here!
  - And MKL-DNN, just like cuDNN, has definitely rekindled this!!
  - The landscape for CPU-based DL looks promising..

### Agenda

## Introduction

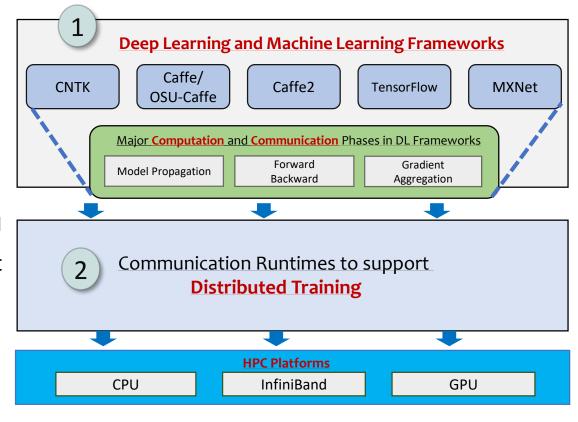
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

**The Key Question!** 

How to efficiently exploit heterogeneous High Performance Computing (HPC) resources for highperformance and high-productivity **Deep Learning?** 

## **Research Challenges to Exploit HPC Technologies**

- What are the fundamental issues in designing DL frameworks?
  - Memory Requirements
  - Computation
     Requirements
  - **Communication** Overhead
- 2. Why do we need to support distributed training?
  - To overcome the limits of single-node training
  - To better utilize hundreds of existing HPC Clusters



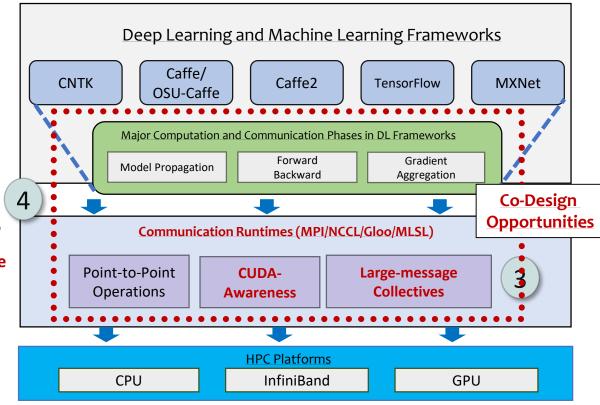
## **Research Challenges to Exploit HPC Technologies (Cont'd)**

3. What are the **new design challenges** brought forward by DL frameworks for Communication runtimes?

- Large Message Collective
   Communication and Reductions
- GPU Buffers (CUDA-Awareness)

4. Can a **Co-design** approach help in achieving Scale-up and Scale-out efficiently?

- Co-Design the support at Runtime level and Exploit it at the DL
   Framework level
- What performance benefits can be observed?
- What needs to be fixed at the communication runtime layer?



### Agenda

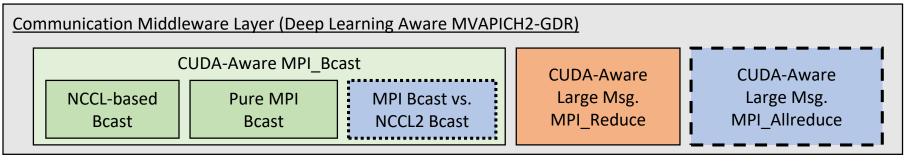
- Introduction
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

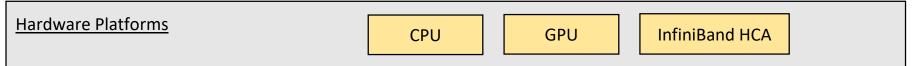
## **Overview of the Proposed Solutions**

| Application Layer |                              |                             |           |                                         |
|-------------------|------------------------------|-----------------------------|-----------|-----------------------------------------|
| CA-CNTK           | DNN Training on<br>CPUs/GPUs | Out-of-Core<br>DNN Training | OSU-Caffe | Distributed Training<br>with TensorFlow |

**Co-Design Layer** 

Co-Design OSU-Caffe and MVAPICH2-GDR



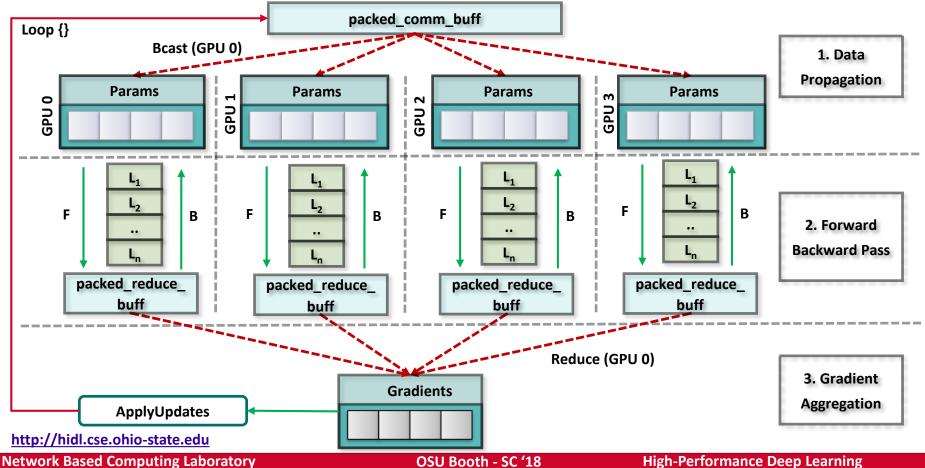


**Network Based Computing Laboratory** 

OSU Booth - SC '18

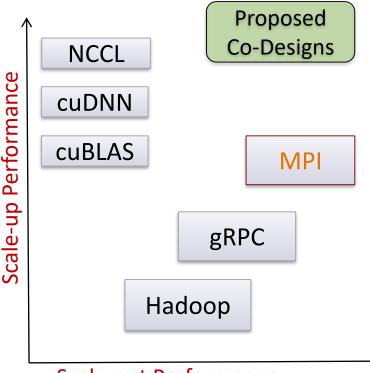
**High-Performance Deep Learning** 

### **Caffe Architecture**



### **OSU-Caffe: Co-design to Tackle New Challenges for MPI Runtimes**

- Deep Learning frameworks are a different game
  - Unusually large message sizes (order of megabytes)
  - Most communication based on GPU buffers
- Existing State-of-the-art
  - cuDNN, cuBLAS, NCCL --> scale-up performance
  - CUDA-Aware MPI --> scale-out performance
- Proposed: Can we co-design the MPI runtime (MVAPICH2-GDR) and the DL framework (Caffe) to achieve both?
  - Efficient **Overlap** of Computation and Communication
  - Efficient Large-Message Communication (Reductions)
  - What application co-designs are needed to exploit communication-runtime co-designs?



#### Scale-out Performance

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters. In *Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming* (PPoPP '17)

**Network Based Computing Laboratory** 

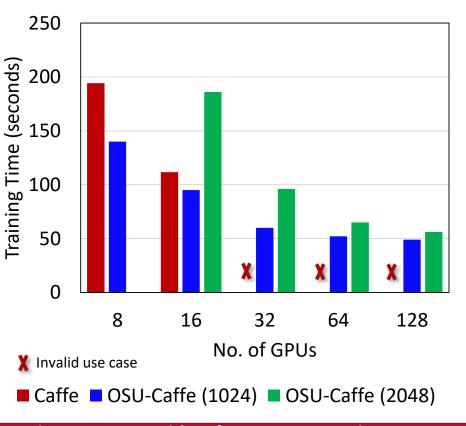
OSU Booth - SC '18

### **OSU-Caffe 0.9: Scalable Deep Learning on GPU Clusters**

- Caffe : A flexible and layered Deep Learning framework.
- Benefits and Weaknesses
  - Multi-GPU Training within a single node
  - Performance degradation for GPUs across different sockets
  - Limited Scale-out
- OSU-Caffe: MPI-based Parallel Training
  - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
  - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
  - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

#### OSU-Caffe 0.9 available from HiDL site

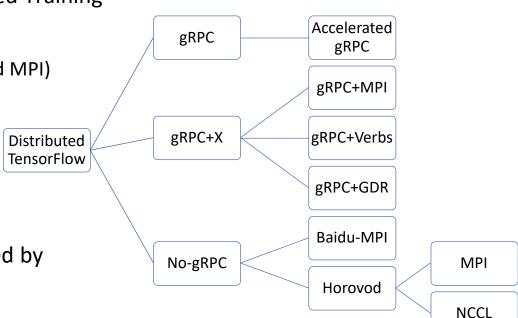
#### GoogLeNet (ImageNet) on 128 GPUs



**Network Based Computing Laboratory** 

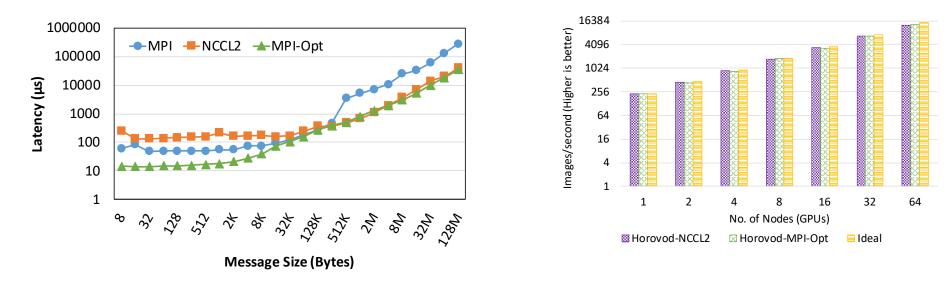
### **Scalable Distributed DNN Training using TensorFlow and MPI**

- Several Approaches to Distributed Training
  - Google RPC (gRPC)
  - gRPC+X (X= Verbs API, GDR, and MPI)
  - No-gRPC
- No-gRPC designs use:
  - MPI or
  - NCCL
- Performance is heavily influenced by
  - MPI\_Allreduce



A. A. Awan et al. "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs and Performance Evaluation", Submitted to IPDPS-19 for peer-review, Available from: <u>https://arxiv.org/abs/1810.11112</u>

### **TensorFlow with CUDA-Aware MPI: NCCL vs. MVAPICH2-GDR**



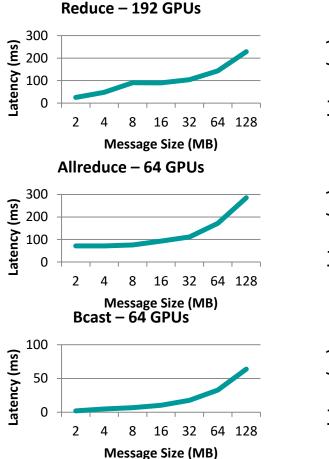
### Faster Allreduce in the proposed MPI-Opt implemented in MVAPICH2-GDR

# Faster (near-ideal) DNN Training speed-ups in TensorFlow-Horovod

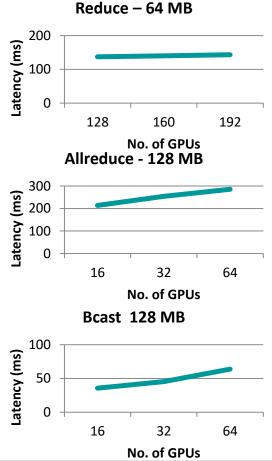
A. A. Awan et al. "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs and Performance Evaluation", Submitted to IPDPS-19 for peer-review, Available from: <u>https://arxiv.org/abs/1810.11112</u>

### Large Message Optimized Collectives for Deep Learning

- MVAPICH2-GDR provides optimized collectives for large message sizes
- Optimized Reduce, Allreduce, and Bcast
- Good scaling with large number of GPUs
- Available in MVAPICH2-GDR 2.2 and higher



OSU Booth - SC '18



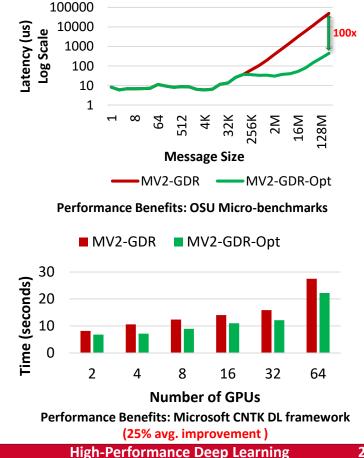
**Network Based Computing Laboratory** 

**High-Performance Deep Learning** 

### Efficient Broadcast for MVAPICH2-GDR using NVIDIA NCCL

- NCCL has some limitations
  - Only works for a single node, thus, no scale-out on multiple nodes
  - Degradation across IOH (socket) for scale-up (within a node)
- We propose optimized MPI Bcast
  - Communication of very large GPU buffers (order of megabytes)
  - Scale-out on large number of dense multi-GPU nodes
- Hierarchical Communication that efficiently exploits: ٠
  - CUDA-Aware MPI Bcast in MV2-GDR
  - NCCL Broadcast primitive

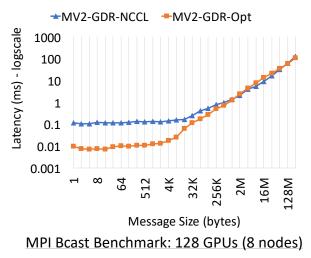
Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, EuroMPI 16 [Best Paper Runner-Up]

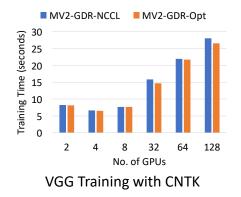


**Network Based Computing Laboratory** 

## Pure MPI Large Message Broadcast

- MPI\_Bcast: Design and Performance Tuning for DL Workloads
  - Design ring-based algorithms for large messages
  - Harness a multitude of algorithms and techniques for bes performance across the full range of message size and process/GPU count
- Performance Benefits
  - Performance comparable or better than NCCLaugmented approaches for large messages
  - Up to 10X improvement for small/medium message sizes with micro-benchmarks and up to 7% improvement for VGG training





A. A. Awan, C-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?, EuroMPI '18

## **Understanding the Impact of Execution Environments**

Generic

Convolution Laver

ATLAS

**BLAS Libraries** 

Hardware

DL Frameworks (Caffe, TensorFlow, etc.)

**Other BLAS Libraries** 

**OpenBLAS** 

- Performance depends on many factors
- Hardware Architectures
  - GPUs
  - Multi-/Many-core CPUs
  - Software Libraries: cuDNN (for GPUs), MKL-DNN/MKL 2017 (for CPUs)
- Hardware and Software codesign
  - Software libraries optimized for one platform will not help the other!
  - cuDNN vs. MKL-DNN



Other Processors

**Network Based Computing Laboratory** 

OSU Booth - SC '18

cuDNN Optimized

Convolution Layer

cuDNN/cuBLAS

Many-core GPU

(Pascal P100)

DL Applications (Image Recognition, Speech Processing, etc.)

**MKL** Optimized

**Convolution Layer** 

Multi-/Many-core

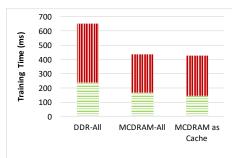
(Xeon, Xeon Phi)

MKL 2017

## Impact of MKL engine and MC-DRAM for Intel-Caffe

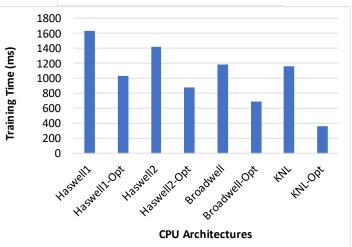
- We use *MCDRAM as Cache* for all the subsequent results
- On average, DDR-All is up to 1.5X slower than MCDRAM

- MKL engine is up to *3X better* than default Caffe engine
- **Biggest** gains for **Intel Xeon Phi** (manycore) architecture
- Both Haswell and Broadwell architectures get significant speedups (*up to 1.5X*)

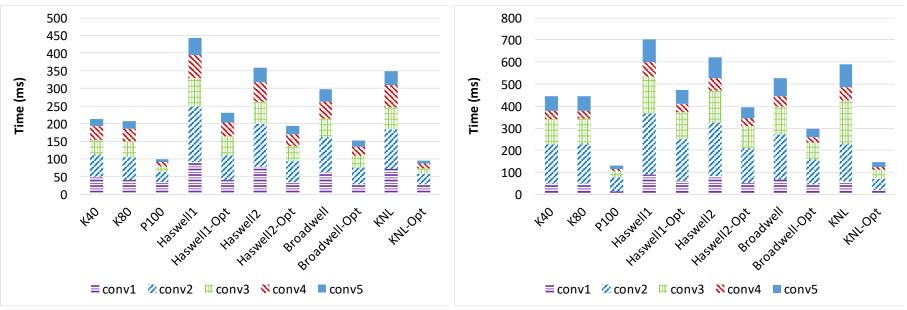








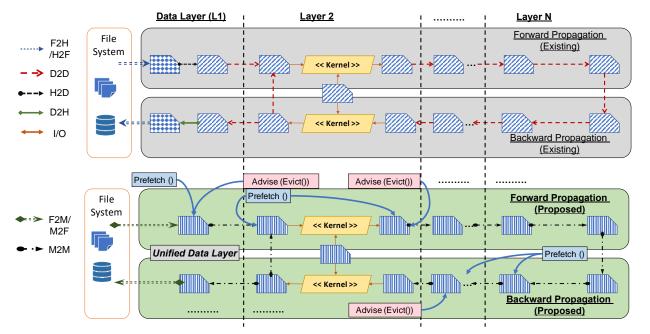
## The Full Landscape for AlexNet Training on CPU/GPU



- Convolutions in the Forward and Backward Pass
- Faster Convolutions → Faster Training
- Most performance gains are based on *conv2* and *conv3*.

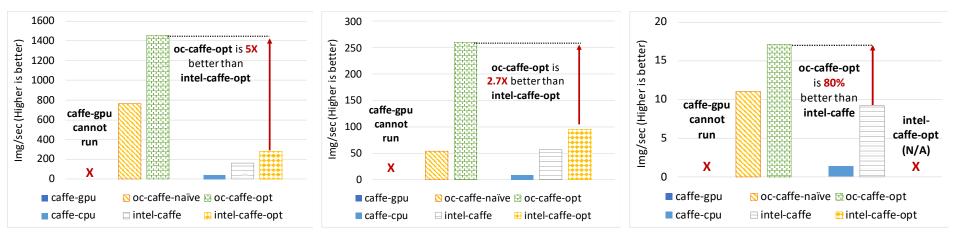
## **Out-of-core DNN Training**

- What if your Neural Net is bigger than the GPU memory (out-of-core)?
  - Use our proposed Unified Memory solution called OC-DNN :-)



A. A. Awan, C-H Chu, X. Lu, H. Subramoni, D.K. Panda, "OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training", 25<sup>th</sup> IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC) 2018.

## **Out-of-core DNN Training**



<u>AlexNet</u>

#### **GoogLeNet**

#### ResNet-50

- We exploit Unified Memory designs in CUDA 9 and hardware support in Volta GPU
  - Better performance than CPU-based solutions for all state-of-the-art Image models

A. A. Awan, C-H Chu, X. Lu, H. Subramoni, D.K. Panda, "OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training", 25<sup>th</sup> IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC) 2018.

### Agenda

- Introduction
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

### **Summary**

- Deep Learning is on the rise
  - Rapid advances in software, hardware, and availability of large datasets
- Single node or single GPU is not enough for Deep Learning workloads
- We need to focus on distributed Deep Learning but there are many challenges
- MPI offers a great abstraction for communication in DL Training tasks
- A co-design of Deep Learning frameworks and communication runtimes will be required to make DNN Training scalable

## **Thank You!**

awan.10@osu.edu

http://web.cse.ohio-state.edu/~awan.10

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning <u>http://hidl.cse.ohio-state.edu/</u>



The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/



The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

#### **Network Based Computing Laboratory**