
Accelerating Spark and Dask using MVAPICH2

Talk at OSU Booth SC ’22

by

Follow us on

https://twitter.com/mvapich

Aamir Shafi

Network Based Computing Laboratory

The Ohio State University

Shafi.16@osu.edu

https://twitter.com/mvapich
mailto:Shafi.16@osu.edu

OSU Booth - SC ‘22 2Network Based Computing Laboratory

• The Landscape of Big Data Frameworks

• Overview of the Apache Spark Project

• Overview of the Dask Project

• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary

Presentation Outline

OSU Booth - SC ‘22 3Network Based Computing Laboratory

• Some of the popular Big Data processing frameworks include Apache Spark, Dask, Ray

• Apache Spark is an in-memory data processing framework that is written in Scala and Java:

– Has support for Python using PySpark

• Dask is a task-based distributed computing framework that scales Python applications

from laptops to high-end systems

• Motivation of this work:

– The support for efficient execution on high-speed interconnects is lagging:

• Vanilla Spark has no support (still relies on TCP/IP based sockets via Netty)

• Dask provides two communication devices: TCP/IP and UCX

• The main goal of this work is to utilize the MVAPICH2 library for optimizing communication

in Spark and Dask:

– This allows exploiting supported high-speed interconnects – like InfiniBand, Omni Path, Slingshot, and

others – in Big Data ecosystems

Overview of Big Data Framework

OSU Booth - SC ‘22 4Network Based Computing Laboratory

• The Landscape of Big Data Frameworks

• Overview of the Apache Spark Project

• Overview of the Dask Project

• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary

Presentation Outline

OSU Booth - SC ‘22 5Network Based Computing Laboratory

Worker

Worker

Worker

Worker

Master

HDFS

Driver

Zookeeper

Worker

SparkContext

• An in-memory data-processing framework

– Iterative machine learning jobs

– Interactive data analytics

– Scala based Implementation

– Standalone, YARN, Mesos

• A unified engine to support Batch,
Streaming, SQL, Graph, ML/DL workloads

• Scalable and communication intensive

– Wide dependencies between Resilient
Distributed Datasets (RDDs)

– MapReduce-like shuffle operations to
repartition RDDs

– Sockets based communication

The Apache Spark Framework

http://spark.apache.org

Spark

Spark

Streaming
(real-time)

GraphX
(graph)

…

Spark

SQL

MLlib
(Machine

Learning)

BlinkDB

Standalone Apache Mesos YARN

Caffe,

TensorFlow,

BigDL, etc.
(Deep Learning)

http://spark.apache.org/

OSU Booth - SC ‘22 6Network Based Computing Laboratory

• Key idea: Resilient Distributed Datasets (RDDs)

– Immutable distributed collections of objects that can be cached in memory across cluster

nodes

– Created by transforming data in stable storage using data flow operators (map, filter,

groupBy, …)

– Manipulated through various parallel operators

– Automatically rebuilt on failure

• rebuilt if a partition is lost

• Interface

– Clean language-integrated API in Scala (Python & Java)

– Can be used interactively from Scala console

RDD Programming Model in Spark

OSU Booth - SC ‘22 7Network Based Computing Laboratory

RDD Operations

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
sortByKey
join
…

Actions
(return a result to driver)

reduce
collect
count
first
Take
countByKey
saveAsTextFile
saveAsSequenceFile
…

More Information:
• https://spark.apache.org/docs/latest/programming-guide.html#transformations
• https://spark.apache.org/docs/latest/programming-guide.html#actions

https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#actions

OSU Booth - SC ‘22 8Network Based Computing Laboratory

• The Landscape of Big Data Frameworks

• Overview of the Apache Spark Project

• Overview of the Dask Project

• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary

Presentation Outline

OSU Booth - SC ‘22 9Network Based Computing Laboratory

• Dask is a popular task-based distributed computing framework:

– Scales Python applications from laptops to high-end systems

– Builds a task-graph that is executed lazily on parallel hardware

– Natively extends popular data processing libraries like numPy, Pandas

• Dask Distributed library supports parallel and distributed execution:

– Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent

operations called coroutines:

• These are defined using async and invoked using await

– Dask Distributed library originally has two communication backends:

• TCP: Tornado-based

• UCX: Built using a Cython wrapper called UCX-Py

Introduction to Dask

OSU Booth - SC ‘22 10Network Based Computing Laboratory

• Key characteristics:

1. Scalability

2. Elasticity

3. Support for coroutines

4. Serialization/De-serialization to data

to/from GPU memory

Dask Distributed Execution Model

Cluster

Client

Scheduler

Worker Worker Worker

OSU Booth - SC ‘22 11Network Based Computing Laboratory

Dask Architecture

Distributed

Scheduler Worker Client

Comm Layer tcp.py ucx.py

Laptops/
Desktops

Dask-MPI Dask-CUDA Dask-Jobqueue

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future

Task Graph

High Performance Computing Hardware

UCX-Py
(Cython wrappers)

TCP UCX

OSU Booth - SC ‘22 12Network Based Computing Laboratory

Running Dask Programs
Dask way: Using Cluster Objects

• Clusters are pre-defined utility

classes to help with bootstrapping

Dask on different environments:

– Dask-CUDA provides LocalCUDACluster,

DGX

– Dask-Jobqueue provides PBSCluster,

SLURMCluster, LSFCluster, KubeCluster,

ECSCluster, YARNCluster

• Steps

– Step 1: Start the Cluster

– Step 2: Start client

– Step 3: Submit work to workers through

client

MPI way: Using dask-mpi

• Using dask-mpi, start an MPI job

where:

– Scheduler (rank 0)

– Client (rank 1)

– Workers (>= 2)

Cluster

Client

Scheduler

Worker Worker Worker

0

1

2 3 4

OSU Booth - SC ‘22 13Network Based Computing Laboratory

• The Landscape of Big Data Frameworks

• Overview of the Apache Spark Project

• Overview of the Dask Project

• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary

Presentation Outline

OSU Booth - SC ‘22 14Network Based Computing Laboratory

• The main motivation of this work is to utilize the

communication functionality provided by

MVAPICH2 in the Apache Spark framework

• MPI4Spark relies on Java bindings of the

MVAPICH2 library

• Spark’s default ShuffleManager relies on Netty for

communication:

– Netty is a Java New I/O (NIO) client/server

framework for event-based networking applications

– The key idea is to utilize MPI-based point-to-point

communication inside Netty

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

OSU Booth - SC ‘22 15Network Based Computing Laboratory

MPI4Spark: Optimizing the Communication (Shuffle) Phase

• Dataflow for two executors

– One of the executors performs a reduce task that

requires fetching of remote blocks

1. The reduce task starts with reading records

inside of ShuffleReader

2. ShuffleBlockFetcherIterator is used to fetch data

blocks locally or remotely

3. When remote fetches take place, the

ShuffleBlockFetcherIterator will send requests to

the underlying NettyBlockTransferService

4. MPI-based Netty will then be used to

communicate the remote data block using the

ShuffleBlockResolver

OSU Booth - SC ‘22 16Network Based Computing Laboratory

• MPI4Spark 0.1 release adds support for high-performance MPI communication to Spark:

– Can be downloaded from: http://hibd.cse.ohio-state.edu

• Features:

• (NEW) Based on Apache Spark 3.3.0

• (NEW) Compliant with user-level Apache Spark APIs and packages

• (NEW) High performance design that utilizes MPI-based communication

• Utilizes MPI point-to-point operations

• Relies on MPI Dynamic Process Management (DPM) features for launching executor processes

• (NEW) Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries

• (NEW) Tested with

• OSU HiBD-Benchmarks, GroupBy and SortBy

• Intel HiBench Suite, Micro Benchmarks, Machine Learning and Graph Workloads

• Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)

• HPC systems with Intel OPA interconnects

• Various multi-core platforms

MPI4Spark Release

http://hibd.cse.ohio-state.edu/

OSU Booth - SC ‘22 17Network Based Computing Laboratory

Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)
OHB GroupByTest OHB SortByTest

• The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system

• Speed-ups for the overall total execution time for 448GB with GroupByTest is 4.1x and 2.2x compared to IPoIB and RDMA, and for

SortByTest the speed-ups are 3.8x and 1.5x, respectively

• Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPoIB and 5.6x compared to RDMA, while for

SortByTest the speed-ups are 12.8x and 3.2x, respectively

2.2x

4.1x

1.5x

3.8x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark

using MPI, IEEE Cluster '22, Sep 2022.

OSU Booth - SC ‘22 18Network Based Computing Laboratory

Strong Scaling Evaluation with OSU HiBD Benchmarks (OHB)
OHB GroupByTest OHB SortByTest

• The above are strong-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) also executed on the

TACC Frontera System

• Speed-ups for the overall total execution time for 8 workers with GroupByTest is 3.7x and 2.1x compared to IPoIB and RDMA,

and for SortByTest the speed-ups are 3.5x and 1.4x, respectively

• Speed-ups for the shuffle read stage for 8 workers GroupByTest between MPI4Spark and IPoIB is 7.6x and between MPI4Spark

and RDMA is 4x, while for SortByTest the speed-ups are 7.3x and 1.8x, respectively

2.1x

3.7x

1.4x

3.5x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark

using MPI, IEEE Cluster '22, Sep 2022.

OSU Booth - SC ‘22 19Network Based Computing Laboratory

Performance Evaluation with Intel HiBench Workloads

Intel HiBench ML Workloads - Frontera Intel HiBench Micro/Graph Workloads - Frontera Intel HiBench Micro/ML Workloads - Stampede2

• This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems

• This illustrates the portability of MPI4Spark on different interconnects

• We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x

• Speed-ups for the LDA machine learning workload on Frontera are 1.7x and 1.66x compared with

IPoIB and RDMA, respectively

1.4x on average than RDMA-Spark

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark

using MPI, IEEE Cluster '22, Sep 2022.

1.5x on average than Vanilla Spark1.4x on average than Vanilla Spark 1.5x on average than Vanilla Spark

OSU Booth - SC ‘22 20Network Based Computing Laboratory

MPI4Spark: Relative Speedups to Vanilla Spark and RDMA-
Spark on Three HPC Systems

System Name Nodes Used Processor Cores Used Sockets Cores/socket RAM Interconnect

TACC Frontera 34 Xeon Platinum 1792 2 28 192 GB HDR (100G)

RI2 (OSU System) 14 Xeon Broadwell 336 2 14 128 GB EDR (100G)

MRI (OSU System) 12 AMD EPYC 7713 1280 2 64 264 GB 200 Gb/sec (4X HDR)

OHB GroupByTest OHB SortByTest
3.65x

1.88x

3.52x

1.86x

OSU Booth - SC ‘22 21Network Based Computing Laboratory

• The Landscape of Big Data Frameworks

• Overview of the Apache Spark Project

• Overview of the Dask Project

• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary

Presentation Outline

OSU Booth - SC ‘22 22Network Based Computing Laboratory

• Dask Distributed library historically had two communication backends:

– TCP: Tornado-based

– UCX: Built using a GPU-aware Cython wrapper called UCX-Py

• Designed and implemented MPI4Dask communication device:

– MPI-based backend for Dask

– Implemented using mpi4py (Cython wrappers) and MVAPICH2-GDR

– Uses Dask-MPI to bootstrap execution of Dask programs

– Implements communication coroutines for point-to-point MPI functions

– Provides mapping of process endpoints to MPI ranks

MPI4Dask: MPI backend for Dask

OSU Booth - SC ‘22 23Network Based Computing Laboratory

MPI4Dask in the Dask Architecture

Distributed

Scheduler Worker Client

Comm Layer
tcp.py ucx.py

Laptops/
Desktops

Dask-MPI Dask-CUDA Dask-Jobqueue

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future

Task Graph

High Performance Computing Hardware

UCX-Py
(Cython wrappers)

TCP UCX

MPI4Dask

mpi4py

MVAPICH2-GDR

OSU Booth - SC ‘22 24Network Based Computing Laboratory

• MPI4Dask 0.2 release adds support for high-performance MPI communication to Dask:

– Can be downloaded from: http://hibd.cse.ohio-state.edu

• Features:

– Based on Dask Distributed 2021.01.0​

– Compliant with user-level Dask APIs and packages​

– Support for MPI-based communication in Dask for cluster of GPUs​

– Implements point-to-point communication co-routines​

– Efficient chunking mechanism implemented for large messages​

– (NEW) Built on top of mpi4py over the MVAPICH2, MVAPICH2-X, and MVAPICH2-GDR libraries​

– (NEW) Support for MPI-based communication for CPU-based Dask applications​

– Supports starting execution of Dask programs using Dask-MPI​

– Tested with​

• (NEW) CPU-based Dask applications using numPy and Pandas data frames

• (NEW) GPU-based Dask applications using cuPy and cuDF​

• Mellanox InfiniBand adapters (FDR and EDR)​

• Various multi-core platforms​

• NVIDIA V100 and Quadro RTX 5000 GPUs​

• MPI4Dask 0.3 release (upcoming)

MPI4Dask Release

http://hibd.cse.ohio-state.edu/

OSU Booth - SC ‘22 25Network Based Computing Laboratory

Benchmark #1: Sum of cuPy Array and its Transpose
(TACC Frontera GPU Subsystem)

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21
https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

1.71x better on average

OSU Booth - SC ‘22 26Network Based Computing Laboratory

Benchmark #2: cuDF Merge (TACC Frontera GPU Subsystem)

2.91x better on average 2.90x better on average

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21
https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

OSU Booth - SC ‘22 27Network Based Computing Laboratory

• GPU-based Operation: 𝑑𝑑𝑓1.𝑚𝑒𝑟𝑔𝑒(𝑑𝑑𝑓2), using persist

▪ Merge two GPU data frames, each with length of 32*1e8

▪ Compute() will gather the data from all worker nodes to the client node,

and make a copy on the host memory.

▪ Persist() will leave the data on its current nodes without any gathering

Benchmark #2: cuDF Merge Operation (Wilkes-3 System)

Wilke3 GPU System:
- 80 nodes
- 2x AMD EPYC 7763 64-core

Processors
- 1000 GiB RAM
- Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB

32 Dask Workers (1 on each A100 GPU) 32 Dask Workers (1 on each A100 GPU)

Execution Time Merge Throughput

MPI4Dask 0.3* (soon to be released), Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-GDR 2.3.7, UCX v1.13.1, UCX-py 0.27.00

In the persist mode, MPI4Dask is:
- 4.94x faster than UCX
- 26.85x faster than TCP 3.92x 1.92x

OSU Booth - SC ‘22 28Network Based Computing Laboratory

• GPU-based Operation: 𝑎. 𝑑𝑜𝑡(𝑏), using persist()

▪ Dot multiply two matrices, each with size of 4GB

▪ Compute() will gather the data from all worker nodes to the client node,

and make a copy on the host memory.

▪ Persist() will leave the data on its current nodes without any gathering

Benchmark #3: Matrix Dot Operation (Wilkes-3 System)

Wilke3 GPU System:
- 80 nodes
- 2x AMD EPYC 7763 64-core

Processors
- 1000 GiB RAM
- Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB

Execution Time Multiplication Throughput

MPI4Dask 0.3* (soon to be released), Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-GDR 2.3.7, UCX v1.13.1, UCX-py 0.27.00

On average, MPI4Dask is:
- 4.24x faster than UCX
- 10.02x faster than TCP 1.38x

1.13x
1.29x

1.45x

OSU Booth - SC ‘22 29Network Based Computing Laboratory

• The Landscape of Big Data Frameworks

• Overview of the Apache Spark Project

• Overview of the Dask Project

• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary

Presentation Outline

OSU Booth - SC ‘22 30Network Based Computing Laboratory

• Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda IEEE Cluster '22, Sep 2022.

• Efficient MPI-based Communication for GPU-Accelerated Dask Applications A. Shafi, J. Hashmi,

H. Subramoni, D. Panda The 21st IEEE/ACM International Symposium on Cluster, Cloud and

Internet Computing, May 2021. https://arxiv.org/abs/2101.08878

• Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python

Applications A. Shafi, J. Hashmi, H. Subramoni, D. Panda 27th IEEE International Conference on

High Performance Computing, Data, and Analytics, Dec 2020.

Related Publications

https://arxiv.org/abs/2101.08878

OSU Booth - SC ‘22 31Network Based Computing Laboratory

• This talk presented MPI4Spark and MPI4Dask

– These are optimized versions of Spark and Dask, respectively, that exploit high-performance

communication provided by the MVAPICH2 library

• Both software stacks can execute on all MVAPICH2 support low-latency and

high-bandwidth interconnects including InfiniBand, Omni Path, Slingshot, etc.

• Performance evaluation of MPI4Spark and MPI4Dask showed that these designs

outperform the state-of-the-art communication devices in Spark and Dask

framework

• MPI4Spark and MPI4Dask are available for download from the HiBD project

website:

– http://hibd.cse.ohio-state.edu

Summary

http://hibd.cse.ohio-state.edu/

OSU Booth - SC ‘22 32Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

shafi.16@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu

OSU Booth - SC ‘22 33Network Based Computing Laboratory

0 1

2 3

MPI.COMM_WORLD

MPI4Dask: Bootstrapping and Dynamic Connectivity

Cluster

Client

Scheduler

Worker Worker Worker

1

0

2 3 4

• Several ways to start Dask programs:

– Manual

– Utility classes:

• LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others

• MPI4Dask uses the Dask-MPI to bootstrap execution of Dask

programs

• Dynamic connectivity is established using the asyncio

package in MPI4Dask:

– Scheduler and workers listen for incoming connections by calling

asyncio.start_server()

– Workers and client connect using asyncio.open_connection()

OSU Booth - SC ‘22 34Network Based Computing Laboratory

• Implements communication coroutines for point-to-point MPI functions:

– Using mpi4py (Cython wrappers) and MVAPICH2-GDR

• mpi4py provides two flavors of point-to-point communication functions:

– Send()/Recv() – for exchanging data in buffers (faster and used in MPI4Dask)

– send()/recv() – for communicating Python objects (pickle/unpickle)

– GPU buffers implement the __cuda_array_interface__

• Implemented chunking mechanism for large messages

• The send and receive communication coroutines are as follows:

MPI4Dask: Point-to-point Communication
Coroutines

OSU Booth - SC ‘22 35Network Based Computing Laboratory

Latency/Throughput Comparison (UCX-Py vs. MPI4Dask)

0

20

40

60

80

100

120

140

160

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2-GDR

MPI4Dask

UCX

UCX-Py (Polling Mode)

0

10

20

30

40

50

60

70

80

90

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Message Size (Bytes)

MVAPICH2-GDR

MPI4Dask

UCX

UCX-Py (Polling Mode)

6x better for 1 byte

4x better

OSU Booth - SC ‘22 36Network Based Computing Laboratory

0

10

20

30

40

50

60

70

80

90

100

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2

MPI4Dask

UCX

UCX-Py

CPU-to-CPU Communication Comparison

4.6x better for 1 byte

UCX: v1.8.0, CUDA: 10.2, UCX-Py: v0.17, MPI4Dask: 0.2, and MVAPICH2: 2.3.5

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Message Size (Bytes)

MVAPICH2 MPI4Dask

UCX UCX-Py

2.3x better

OSU Booth - SC ‘22 37Network Based Computing Laboratory

Benchmark #1: Sum of cuPy Array and its Transpose
(RI2)

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Number of Dask Workers

IPoIB UCX MPI4Dask

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2 3 4 5 6

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 (
s
)

Number of Dask Workers

IPoIB UCX MPI4Dask

3.47x better on average 6.92x better on average

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, The 21st IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing, May ‘21.

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

OSU Booth - SC ‘22 38Network Based Computing Laboratory

Benchmark #2: cuDF Merge Operation

0

2

4

6

8

10

12

14

16

2 3 4 5 6

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Number of Dask Workers

IPoIB UCX MPI4Dask

0

1

2

3

4

5

6

7

8

2 3 4 5 6

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 (
s
)

Number of Dask Workers

IPoIB UCX MPI4Dask

3.11x better on average 3.22x better on average

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)
A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based Communication for GPU-
Accelerated Dask Applications, 21st IEEE/ACM CCGrid, May 21, https://arxiv.org/abs/2101.08878

OSU Booth - SC ‘22 39Network Based Computing Laboratory

Benchmark #4: Sum of numPy Array and its Transpose (RI2)

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

15

20

25

30

35

40

1 2 3 4 5 6

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Dask Workers (CPU Nodes)

IPoIB UCX MPI4Dask

1.16x better on average

OSU Booth - SC ‘22 40Network Based Computing Laboratory

• Big Data has changed the way people understand

and harness the power of data, both in the business

and research domains

• Big Data has become one of the most important

elements in business analytics

• Big Data and High Performance Computing (HPC)

are converging to meet large scale data processing

challenges

• Running High Performance Data Analysis (HPDA)
workloads in the cloud is gaining popularity
• According to the latest OpenStack survey, 27% of cloud

deployments are running HPDA workloads

• Sometimes also called Data Science

Introduction to Big Data Analytics and Trends

http://www.coolinfographics.com/blog/tag/data?currentPage=3

http://www.climatecentral.org/news/white-house-brings-together-big-
data-and-climate-change-17194

OSU Booth - SC ‘22 41Network Based Computing Laboratory

MPI4Spark: Performance of MPI-based Netty
• These figures represent the latency numbers for small and large message sizes

• The performance was analyzed using a ping pong Netty benchmark

• For small messages, we see a speed-up of 25x at 4K

• For large messages, we see a speed-up of 9x at 4MB

9x

25x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark

using MPI, IEEE Cluster '22, Sep 2022.

