C X .
MVAPICH , Follow us on HIBD
MPI, PGAS and Hybrid MPI+PGAS Library

High-Performance
Big Data

https://twitter.com/mvapich

Accelerating Spark and Dask using MVAPICH2

Talk at OSU Booth SC’22

Aamir Shafi
Network Based Computing Laboratory
The Ohio State University
Shafi.16@osu.edu

https://twitter.com/mvapich
mailto:Shafi.16@osu.edu

Presentation Outline

e The Landscape of Big Data Frameworks

e Overview of the Apache Spark Project

e Overview of the Dask Project

e MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
e MPIl4Dask: Using MVAPICH2 to Optimize Dask

e Summary

Network Based Computing Laboratory OSU Booth - SC 22

Overview of Big Data Framework 17/ DASK SErE o3 RAY

Some of the popular Big Data processing frameworks include Apache Spark, Dask, Ray

Apache Spark is an in-memory data processing framework that is written in Scala and Java:

— Has support for Python using PySpark

Dask is a task-based distributed computing framework that scales Python applications
from laptops to high-end systems

Motivation of this work:

— The support for efficient execution on high-speed interconnects is lagging:
e Vanilla Spark has no support (still relies on TCP/IP based sockets via Netty)
e Dask provides two communication devices: TCP/IP and UCX
The main goal of this work is to utilize the MVAPICH2 library for optimizing communication
in Spark and Dask:

— This allows exploiting supported high-speed interconnects — like InfiniBand, Omni Path, Slingshot, and
others — in Big Data ecosystems

Network Based Computing Laboratory OSU Booth - SC 22

Presentation Outline

e Overview of the Apache Spark Project

e Overview of the Dask Project

e MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
e MPIl4Dask: Using MVAPICH2 to Optimize Dask

e Summary

Network Based Computing Laboratory OSU Booth - SC 22

The Apache Spark Framework _worke
p p /

e Anin-memory data-processing framework

— lterative machine learning jobs

— Interactive data analytics Jp- .
— Scala based Implementation . DO

v
Driver
e A unified engine to support Batch, L

Streaming, SQL, Graph, ML/DL workloads
Master
e Scalable and communication intensive
inkDB

— Wide dependencies between Resilient
Distributed Datasets (RDDs)

— Standalone, YARN, Mesos

Spark MLIib Cafte,

: : TensorFlow, [
Streaming (Machine . ’
Spark t : BigDL, etc.
SpQL (S Learning) N peep Learning)

Spark
Standalone Apache Mesos
Network Based Computing Laboratory OSU Booth - SC 22

— MapReduce-like shuffle operations to
repartition RDDs

— Sockets based communication

http://spark.apache.org

http://spark.apache.org/

RDD Programming Model in Spark

e Key idea: Resilient Distributed Datasets (RDDs)

— Immutable distributed collections of objects that can be cached in memory across cluster

nodes
— Created by transforming data in stable storage using data flow operators (map, filter,
groupBy, ...)
— Manipulated through various parallel operators
— Automatically rebuilt on failure
e rebuilt if a partition is lost
e |nterface
— Clean language-integrated APl in Scala (Python & Java)

— Can be used interactively from Scala console

Network Based Computing Laboratory OSU Booth - SC 22

RDD Operations

Transformations Actions

(define a new RDD) (return a result to driver)
map reduce
filter collect
sample count
union first
groupByKey Take
reduceByKey countByKey
sortByKey saveAsTextFile
join saveAsSequenceFile

More Information:
» https://spark.apache.org/docs/latest/programming-guide.html#transformations
* https://spark.apache.org/docs/latest/programming-guide.html#actions

Network Based Computing Laboratory OSU Booth - SC 22

https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#actions

Presentation Outline

e Overview of the Dask Project
e MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
e MPIl4Dask: Using MVAPICH2 to Optimize Dask

e Summary

Network Based Computing Laboratory OSU Booth - SC 22

Introduction to Dask

e Dask is a popular task-based distributed computing framework:
— Scales Python applications from laptops to high-end systems [f DASK
— Builds a task-graph that is executed lazily on parallel hardware |

— Natively extends popular data processing libraries like numPy, Pandas

e Dask Distributed library supports parallel and distributed execution:

— Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent
operations called coroutines:

e These are defined using async and invoked using await

— Dask Distributed library originally has two communication backends:
e TCP: Tornado-based
e UCX: Built using a Cython wrapper called UCX-Py

Network Based Computing Laboratory OSU Booth - SC 22

Dask Distributed Execution Model

e Key characteristics:

1. Scalability Client
2 Elasticity 0

3. Support for coroutines T ——— S EEEE T EEEEEEEE S
4 Serialization/De-serialization to data Scheduler

to/from GPU memory

A 4

Worker p------ » Worker ----- » Worker

__

Network Based Computing Laboratory OSU Booth - SC 22

Dask Architecture

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future
Task Graph
A A A A
) 4 L 4 b 4
Dask-MPI Dask-CUDA Dask-Jobqueue
A A
v v I
Distributed
Scheduler Worker Client
Comm Layer tcp.py ucx.py
A A
UCX-Py
(Cython wrappers)
A
b 4 L 4
TCP UCX
A A
Lapt‘EJps/ . .
e High Performance Computing Hardware

Network Based Computing Laboratory

OSU Booth - SC 22

Running Dask Programs

Dask way: Using Cluster Objects MPI way: Using dask-mpi
e (lusters are pre-defined utility e Using dask-mpi, start an MPI job
classes to help with bootstrapping where:
Dask on different environments: — Scheduler (rank 0)
— Dask-CUDA provides Local CUDACluster, — Client (rank 1)
DGX — Workers (>= 2) Client @
— Dask-Jobgueue provides PBSCluster,
SLURMCluster, LSFCluster, KubeCluster, / ____________________

ECSCluster, YARNCluster

Cluster
Scheduler@

e Steps

— Step 1: Start the Cluster

— Step 2: Start client

— Step 3: Submit work to workers through

client
Network Based Computing Laboratory OSU Booth - SC 22

Presentation Outline

e MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
e MPIl4Dask: Using MVAPICH2 to Optimize Dask

e Summary

Network Based Computing Laboratory OSU Booth - SC 22

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

e The main motivation of this work is to utilize the

Apache Spark Application/Benchmark/Libraries/Frameworks J

communication functionality provided by

!

MVAPICH2 in the Apache Spark framework

e MPI4Spark relies on Java bindings of the
MVAPICH2 library

e Spark’s default ShuffleManager relies on Netty for

Spark Core [|| Task

Tungsten-Sort
{optional)

BlockTransferService

__

| Netty Netty+MPI Netty Netty+MPI | !
| Trsanspo rt Transport Tr?::'f'-"p:” Transport | i

erver 1en A 1
i (dafalt] Server (defautt) Client]
~ F 9 3 ’

communication:

Java Sockets Interface MPI Java Bindings

— Netty is a Java New I/O (NIO) client/server

)

framework for event-based networking applications

Native MPlI Comm. Library

— The key idea is to utilize MPIl-based point-to-point [

J

communication inside Netty

Network Based Computing Laboratory OSU Booth - SC 22

MPIl4Spark: Optimizing the Communication (Shuffle) Phase

e Dataflow for two executors Reduce Remote
task Executor
— One of the executors performs a reduce task that —
. . 1 h
requires fetching of remote blocks s N o N

" 4 y " 4 4 ShuffleManager Shuffle Map Outputs

1. The reduce task starts with reading records
[ShuffleReader] ShuffleManager

inside of ShuffleReader 5 [chuffleBlockResolver

2. ShuffleBlockFetcherlterator is used to fetch data SIS e TRl o ! S

/

Y
blocks locally or remotely [i J[oo } [Stream |._| Block |
LocalBlocks RemoteBlocks ' | Manager Manager

N

\ 4 F 3 _/ \ Yrsoc—soosooesoc=so=ss . scoosso=o "' /
3. When remote fetches take place, the P 2 . 4
ShuffleBlockFetcherlterator will send requests to Block || remmme BlockTransferService (BTS)
. . ' NettyBTS : NettyBTS 1
Manager , !
the underlying NettyBlockTransferService 6 ' TransportClient | ,\ TransportServer ,’

e T

4. MPI-based Netty will then be used to

a . \
communicate the remote data block using the MPI-based Netty Client . / MPI-based Netty Server
: Selector l :r Pt2pt comms. ' Selector l i Pt2pt comms. :
ShuffleBlockResolver STomnoomomnt memmmmemm e L LI ITIooo g
" Support for MessageTypes ‘; < ;' Support for MessageTypes H
(StreamRequest, RpcRequest, (StreamResponse, RpcResponse,

i‘ OneWayMessage etc.) ,5 L OneWayMessage etc.))
= — /N Z

Network Based Computing Laboratory OSU Booth - SC 22

MPI4Spark Release

e MPI4Spark 0.1 release adds support for high-performance MPI communication to Spark:

— Can be downloaded from: http://hibd.cse.ohio-state.edu

e Features:

 (NEW) Based on Apache Spark 3.3.0

(NEW) Compliant with user-level Apache Spark APIs and packages

(NEW) High performance design that utilizes MPI-based communication

e Utilizes MPI point-to-point operations

* Relies on MPI Dynamic Process Management (DPM) features for launching executor processes
(NEW) Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries
(NEW) Tested with

e OSU HiBD-Benchmarks, GroupBy and SortBy

* Intel HiBench Suite, Micro Benchmarks, Machine Learning and Graph Workloads
* Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)
e HPC systems with Intel OPA interconnects

e Various multi-core platforms

Network Based Computing Laboratory OSU Booth - SC 22

http://hibd.cse.ohio-state.edu/

Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)

OHB GroupByTest OHB SortByTest
250 250
Job0-ResultStage Job1-ShufflleMapStage m Job1-ResultStage Job(-ResultStage m Job1-ResultStage Job2-ShuffleMapStage mJob2-ResultStage

200 : o T ~ 200
0 = 3.8x
3 4.1x 3
= @
o] o
@ o
@ 5
[l =
8100 2.2x 3 100
é ° Lﬁ ‘ 1 . 5x
o} —
n 3
T 50 - < 50 .
2 | - — |

0 0
IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI
112GB (448 cores/8 workers) | 224GB (896 cores/16 workers) | 448GB (1792 cores/32 workers) 112GB (448 cores/8 workers) | 224GB (896 cores/16 workers) | 448GB (1792 cores/32 workers)

* The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system

* Speed-ups for the overall total execution time for 448GB with GroupByTest is 4.1x and 2.2x compared to IPolB and RDMA, and for
SortByTest the speed-ups are 3.8x and 1.5x, respectively

Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPolB and 5.6x compared to RDMA, while for
SortByTest the speed-ups are 12.8x and 3.2x, respectively

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

Network Based Computing Laboratory OSU Booth - SC 22

Strong Scaling Evaluation with OSU HiBD Benchmarks (OHB)

350

N
4]
o

"]
o
=]

—
o
o

Total Execution Breakdown (s)
o
<

1%
o

OHB GroupByTest

JobO-ResultStage Job1-ShuffleMapStage m Job1-ResultStage

3.7x

2.1x

IPolB RDMA MPI
224GB (448 cores/8 workers)

IPolB RDMA
224GB (896 cores/16 workers)

IPolB RDMA
224GB (1792 cores/32 workers)

350

-
9]
]

—_
o
[

Total Execution Breakdown (s)

w
[«

OHB SortByTest

JobhO-ResuliStage ® Job1-ResultStage Job2-ShuffleMapStage ®Job2-ResultStage

3.5x

‘1.4x
i'n

IPolB RDMA MPI
224GB (448 cores/8 workers)

IPolB RDMA
224GB (896 cares/16 workers)

IPcIB RDMA MPI
224GB (1792 cores/32 workers)

The above are strong-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) also executed on the

TACC Frontera System

Speed-ups for the overall total execution time for 8 workers with GroupByTest is 3.7x and 2.1x compared to |IPolB and RDMA,

and for SortByTest the speed-ups are 3.5x and 1.4x, respectively

Speed-ups for the shuffle read stage for 8 workers GroupByTest between MPI4Spark and IPolB is 7.6x and between MPI4Spark

and RDMA is 4x, while for SortByTest the speed-ups are 7.3x and 1.8x, respectively

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

Network Based Computing Laboratory

OSU Booth - SC ‘22

Performance Evaluation with Intel HiBench Workloads

1.4x on average than RDMA-Spark 1.4x on average than Vanilla Spark 1.5x on average than Vanilla Spark
250 Intel HiBench ML Workloads - Frontera Intel HiBench Micro/Graph Workloads - Frontera Intel HiBench Micro/ML Workloads - Stampede2
; 300
aVanilaSpark (PoB) | o [= Vanilla Spark (IPolB) _ |
%o | B “RDMA-Spark 0 = RDMA-Spark ... mvenilaSpark |
2 = MPI4Spark o200 | M sMPldSpark AMPUSpark
P — =
2 o L O o o
3 E |
R . Q
3 L% 100 B [e oo
C_U —_—
£ 50 |- oo e 8
2 o 50 |- - P - ---------- R - -, -
0 o L—M W =@ BB 0 0 0 BB 0 0
SVM LDA GMM Nweight Terasort Repartition LR Repartition GMM SVM

* This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems

* This illustrates the portability of MPI4Spark on different interconnects

 We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x

e Speed-ups for the LDA machine learning workload on Frontera are 1.7x and 1.66x compared with
IPolB and RDMA, respectively

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

Network Based Computing Laboratory OSU Booth - SC 22

MPI4Spark: Relative Speedups to Vanilla Spark and RDMA-

Spark on Three HPC Systems

System Name Nodes Used Processor Cores Used Sockets Cores/socket RAM Interconnect
TACC Frontera 34 Xeon Platinum 1792 2 28 192 GB HDR (100G)
RI2 (OSU System) 14 Xeon Broadwell 336 2 14 128 GB EDR (100G)
MRI (OSU System) 12 AMD EPYC 7713 1280 2 64 264 GB 200 Gb/sec (4X HDR)
OHB GroupByTest A OHB SortByTest

3.65x u Up to 32 workers (1792 cores)

m Up to 10 workers (1280 cores)
Up to 12 workers (336 cores)
1.88x I
0 I I

Vanilla RDMA Vanilla RDMA Vanilla RDMA
Spark Spark Spark Spark Spark Spark

TACC Frontera MRI (OSU System) RI2 (OSU System)

Avg. Speedup
N w

—

Network Based Computing Laboratory

3 52X. Up to 32 workers (1792 cores)
® Up to 10 workers (1280 cores)
Up to 12 workers (336 cores)

w

1.86x

Avg. Speedup
V)

Vanilla RDMA Vanilla RDMA Vanilla RDMA
Spark Spark Spark Spark Spark Spark

TACC Frontera MRI (OSU System) RI2 (OSU System)

OSU Booth - SC ‘22

Presentation Outline

e MPI4Dask: Using MVAPICH2 to Optimize Dask

e Summary

Network Based Computing Laboratory OSU Booth - SC 22

MPI4Dask: MPI backend for Dask

e Dask Distributed library historically had two communication backends:

— TCP: Tornado-based
— UCX: Built using a GPU-aware Cython wrapper called UCX-Py

e Designed and implemented MPI4Dask communication device:
— MPI-based backend for Dask
— Implemented using mpi4py (Cython wrappers) and MVAPICH2-GDR
— Uses Dask-MPI to bootstrap execution of Dask programs
— Implements communication coroutines for point-to-point MPI functions

— Provides mapping of process endpoints to MPI ranks

Network Based Computing Laboratory OSU Booth - SC 22

MPIl4Dask in the Dask Architecture

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future
Task Graph
A A A A
) 4 L 4 b 4
Dask-MPI Dask-CUDA Dask-Jobqueue
A A
v v I
Distributed
Scheduler Worker Client
tcp.py ucx.py MPI14Dask

Comm Layer Y X 7y

UCX-Py :
mpi4d

(Cython wrappers) PPy
A A
\ 4 \ 4 A\ 4
TCP UCX MVAPICH2-GDR
A A A
Lapt‘EJps/ . .
e High Performance Computing Hardware

Network Based Computing Laboratory OSU Booth - SC 22

MPIl4Dask Release

e MPI4Dask 0.2 release adds support for high-performance MPlI communication to Dask:

— Can be downloaded from: http://hibd.cse.ohio-state.edu

e Features:
— Based on Dask Distributed 2021.01.0
— Compliant with user-level Dask APIs and packages
— Support for MPI-based communication in Dask for cluster of GPUs
— Implements point-to-point communication co-routines
— Efficient chunking mechanism implemented for large messages
— (NEW) Built on top of mpi4py over the MVAPICH2, MVAPICH2-X, and MVAPICH2-GDR libraries
— (NEW) Support for MPI-based communication for CPU-based Dask applications
— Supports starting execution of Dask programs using Dask-MPI

— Tested with
e (NEW) CPU-based Dask applications using numPy and Pandas data frames
e (NEW) GPU-based Dask applications using cuPy and cuDF
¢ Mellanox InfiniBand adapters (FDR and EDR)
e Various multi-core platforms

e NVIDIA V100 and Quadro RTX 5000 GPUs

e MPI4Dask 0.3 release (upcoming)

Network Based Computing Laboratory OSU Booth - SC 22

http://hibd.cse.ohio-state.edu/

Benchmark #1: Sum of cuPy Array and its Transpose
(TACC Frontera GPU Subsystem)

1.71x better on average

20
18 B m|PolB oUCX mMPl4Dask |

@

D 16 [ol

i§14 R I e

c12 - B T e — -

o

Total Executi
oM BB O EJL
]
]
]

1 2 4 8 16 24 32
Number of Dask Workers (GPUs)

A. Shafi, J. Hashmi, H. Subramoni , and D. K. Panda, Efficient MPIl-based MPIl4Dask 0.2 release

Communication for GPU-Accelerated Dask Applications, CCGrid ‘21 . .
https://arxiv.org/abs/2101.08878 (http://hibd.cse.ohio-state.edu)

Network Based Computing Laboratory OSU Booth - SC 22

Benchmark #2: cuDF Merge (TACC Frontera GPU Subsystem)

2.91x better on average 2.90x better on average

12
mIPolB oUCX mMPIl4Dask —10 -m|PolB_oUCX w=mMPl4Dask |
O [0 S W— E— 0
® Ss &0
E 9 |- | —
= 8 3
c i - 6 e B D
2 6 el R L R e S
= @)
Q =
4 WL RS | T B e el
w ()]
© Nl b B BN N N . .
ol W Bl B B8 BB
S —
0 0

1 2 4 8
Number of Dask Workers (GPUs)

16 24 32

A. Shafi, J. Hashmi , H. Subramoni, and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21
https://arxiv.org/abs/2101.08878

Network Based Computing Laboratory

1 2 4 8
Number of Dask Workers (GPUSs)

16 24 32

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)

OSU Booth - SC ‘22

Benchmark #2: cuDF Merge Operation (Wilkes-3 System)

« GPU-based Operation: ddf1.merge(ddf2), using persist Wilke3 GPU System:
- 80 nodes

- 2x AMD EPYC 7763 64-core
= Compute() will gather the data from all worker nodes to the client node, processors

= Merge two GPU data frames, each with length of 32*1e8

and make a copy on the host memory. - 1000 GiB RAM
= Persist() will leave the data on its current nodes without any gathering - Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB
Execution Time Merge Throughput
EBTCP OUCX mMPI EBTCP oUCX mMPI
140 < e In the persist mode, MPI4Dask is:
- - 4.94x faster than UCX -
» 120 ---- - 26.85x faster than TCP 3
[} L
E 100 ---- >
80 ---- 2
0 - Q
8 60 ---- o=
S 20 E
0 e =, L el
Compute Persist Compute Persist
32 Dask Workers (1 on each A100 GPU) 32 Dask Workers (1 on each A100 GPU)

MPI4Dask 0.3* (soon to be released), Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-GDR 2.3.7, UCX v1.13.1, UCX-py 0.27.00
Network Based Computing Laboratory OSU Booth - SC 22

Benchmark #3: Matrix Dot Operation (Wilkes-3 System)

« GPU-based Operation: a.dot(b), using persist() Wilke3 GPU System:
- 80 nodes

- 2x AMD EPYC 7763 64-core
= Compute() will gather the data from all worker nodes to the client node, processors

= Dot multiply two matrices, each with size of 4GB

and make a copy on the host memory. - 1000 GiB RAM
= Persist() will leave the data on its current nodes without any gathering - Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB
Execution Time Multiplication Throughput
EBTCP OUCX mMPI - ETCP OUCX mMPI
On average, MPI4Dask is: E_
m 50 - 4.24x faster than UCX -E, 60000 -------oooomomsms oo oo o oo
D 40 - - 10.02x faster than TCP g __ 50000 ----- .1.{{3.". ___
= el
RO I £ g 40000
%, © < 30000 - [T
S 20 T e © 20000 —{ [[P
585 b =l la
= 10000 -----{ (-] [t _|—I ---------
© <
z 0 0o = —
2 4 8 16 2 4 8 16
Number of Dask Workers Number of Dask Workers

MPI4Dask 0.3* (soon to be released), Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-GDR 2.3.7, UCX v1.13.1, UCX-py 0.27.00
Network Based Computing Laboratory OSU Booth - SC 22

Presentation Outline

e Summary

Network Based Computing Laboratory OSU Booth - SC 22

Related Publications

e Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI
K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda IEEE Cluster '22, Sep 2022.

e Efficient MPl-based Communication for GPU-Accelerated Dask Applications A. Shafi, J. Hashmi,
H. Subramoni, D. Panda The 21st IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing, May 2021. https://arxiv.org/abs/2101.08878

e Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python
Applications A. Shafi, J. Hashmi, H. Subramoni, D. Panda 27t |IEEE International Conference on
High Performance Computing, Data, and Analytics, Dec 2020.

Network Based Computing Laboratory OSU Booth - SC 22

https://arxiv.org/abs/2101.08878

Summary

e This talk presented MPI4Spark and MPI4Dask

— These are optimized versions of Spark and Dask, respectively, that exploit high-performance
communication provided by the MVAPICH2 library

e Both software stacks can execute on all MVAPICH2 support low-latency and
high-bandwidth interconnects including InfiniBand, Omni Path, Slingshot, etc.

e Performance evaluation of MPl4Spark and MPI4Dask showed that these designs
outperform the state-of-the-art communication devices in Spark and Dask

framework

e MPI4Spark and MPI4Dask are available for download from the HiBD project
website:
— http://hibd.cse.ohio-state.edu

Network Based Computing Laboratory OSU Booth - SC 22

http://hibd.cse.ohio-state.edu/

Thank You!

shafi.16@cse.ohio-state.edu

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

L X : [
iy ®
=~ MVAPICH oe*HIBD AIDL
t an ri + ibrar . .
~/ MPI, PGAS and Hybrid MPI+PGAS Library H|gh-Performar1ce H{gh—PerfOI’mance
Big Data Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

Network Based Computing Laboratory OSU Booth - SC 22

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu

MPI4Dask: Bootstrapping and Dynamic Connectivity

e Several ways to start Dask programs:

— Manual

— Utility classes:

i Cluster

e LocalCUDACIuster, SLURMCluster, SGECluster, PBCCluster, and others Scheduler

e MPI4Dask uses the Dask-MPI to bootstrap execution of Dask

programs (2 3
Worker «--+ Worker «-- Worker

e Dynamic connectivity is established using the asyncio L A
package in MPI4Dask:

— Scheduler and workers listen for incoming connections by calling

asyncio.start_server()

— Workers and client connect using asyncio.open_connection()

MPI.COMM_WORLD

Network Based Computing Laboratory OSU Booth - SC 22

MPI4Dask: Point-to-point Communication
Coroutines

e |mplements communication coroutines for point-to-point MPI functions:
— Using mpidpy (Cython wrappers) and MVAPICH2-GDR

e mpidpy provides two flavors of point-to-point communication functions:
— Send()/Recv() — for exchanging data in buffers (faster and used in MPl4Dask)
— send()/recv() —for communicating Python objects (pickle/unpickle)

— GPU buffers implement the __cuda_array_interface
e Implemented chunking mechanism for large messages

e The send and receive communication coroutines are as follows:

1| request = comm.Isend([buf, size], dest, tag) I| request = comm.Irecv([buf, size], src, taqg)
2| status = request.Test () 2| status = request.Test ()

3 3

4slwhile status is False: 4slwhile status is False:

5 await asyncio.sleep(0) 5 await asyncio.sleep(0)

6 status = request.Test () 6 status = request.Test ()

Network Based Computing Laboratory OSU Booth - SC 22

Latency/Throughput Comparison (UCX-Py vs. MPl4Dask)

160 100
MVAPICH2-GDR

90 p—

140 =¢=|\1Pl4Dask
=0-UCX 80
120 =tr=JCX-Py (Polling Mode) 70
n 4x better
100 >y 60
3 S ~#-MVAPICH2-GDR
> 80 a2 50 =4=MPl4Dask
S S
c 5 40 ~8-UCX
60 = == CX-Py (Polling Mode)
30
40 6x better for 1 byte 20
20 10
0 0
N & © &x © N A R - QR R R W
Message Size (Bytes) Message Size (Bytes)

Network Based Computing Laboratory OSU Booth - SC 22

CPU-to-CPU Communication Comparison

100 100.00
~#=MVAPICH2
90
=¢=\Pl4Dask 90.00
80
~e-UCX £0.00
70 _ .
== CX-Py a
O
7 60 O 70.00
3 50 é‘
S S 50.00 2.3x better / —s-mvapPiCH2 —=MPI4Dask
+— - .
© (@)
= 40 c
l_
30 50.00 —o-UCX ==UCX-Py
20 40.00
I 4.6x better for 1 byte
10 =
30.00
: SHRCINCCRE R
N
S R N O S N NS S S F P
% N qjo
Message Size (Bytes) Message Size (Bytes)

UCX: v1.8.0, CUDA: 10.2, UCX-Py: v0.17, MPI4Dask: 0.2, and MVAPICH2: 2.3.5

Network Based Computing Laboratory OSU Booth - SC 22

Benchmark #1: Sum of cuPy Array and its Transpose
(RI12)

3.47x better on average 6.92x better on average

10 2.0
mIPoIB OUCX m MPl4Dask mIPoIB OUCX m MPl4Dask

Q 1.8 -

o R o R e D 16
/(,? N
7 'R 14
£ =
% 6 - - - |- -§ 1.2 (-8
= 5 -0 |- [B B G 10 -8B B W B
x5 A e ke s et s E 08 -8 - - - -
© 3 - - - | L |- o 06 -0 [18 | @ |
2

2 -3 - -3 |- mm---E - 04 ' -8 |- -8B |- |-----

1t 0.2 - .- (.-

0

3
Number of Dask Workers

4

3
Number of Dask Workers

4

A. Shafi, J. Hashmi, H. Subramoni, and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, The 21st IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing, May ‘21.

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)

Network Based Computing Laboratory

OSU Booth - SC ‘22

Benchmark #2: cuDF Merge Operation

3.11x better on average

3.22x better on average

16 8
=1PolB OuUCX ® MPl4Dask = 1PolB OuUCX ® MPI4Dask
R B T | EETEEEUUCRR, 7 -
= 0
E 12 fo— B B R S e e o a
= =
S c
S 10 - e S 5 (-l o e
3 i
G 8 P é 4 O
g =
F o6 -3 S 3B
4 -3 - |- |- 2 - R
2 - - L e 1 - - - - -
0 0
2 3 4 5 6 2 3 4 5 6

A. Shafi, J. Hashmi, H. Subramoni, and D. K. Panda, Efficient MPl-based Communication for GPU-

Number of Dask Workers

Number of Dask Workers
MPIl4Dask 0.2 release

Accelerated Dask Applications, 215t IEEE/ACM CCGrid, May 21, https://arxiv.org/abs/2101.08878 (http://hibd.cse.ohio-state.edu)

Network Based Computing Laboratory

OSU Booth - SC ‘22 38

Benchmark #4: Sum of numPy Array and its Transpose (RI2)

1.16x better on average

QO f-omrm e B
mIPolB OUCX mMPl4Dask
B35 o
Q
£
|_
CSO __
{e)
5
(&
25 - B
i
e
= Jl B I I
15

1 2 3 4 5 6

Number of Dask Workers (CPU Nodes) MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

Network Based Computing Laboratory OSU Booth - SC 22

Introduction to Big Data Analytics and Trends

e Big Data has changed the way people understand
and harness the power of data, both in the business

and research domains

e Big Data has become one of the most important
elements in business analytics

e Big Data and High Performance Computing (HPC)
are converging to meet large scale data processing
challenges

* Running High Performance Data Analysis (HPDA)
workloads in the cloud is gaining popularity

* According to the latest OpenStack survey, 27% of cloud
deployments are running HPDA workloads

i S O m eti m e S a I S O Ca | | e d D a t a S C i e n C e) http://www.climatecentral.org/news/white-house-brings-together-big-

data-and-climate-change-17194

Network Based Computing Laboratory OSU Booth - SC 22

MPI4Spark: Performance of MPI-based Netty

* These figures represent the latency numbers for small and large message sizes
* The performance was analyzed using a ping pong Netty benchmark

* For small messages, we see a speed-up of 25x at 4K

* For large messages, we see a speed-up of 9x at 4MB

500 80K
L
: 0 Y o
400 | ®VanllaNetty o f 50K <Vanilla Netty
— Netty+MPI B | BOK e s S
@ 350 PR A1 —— ~ +Netty+MPI
e, O e . 50K
10 O ——— W 40K
@©
T 200 oo 30K
S
< 150 ““)ZOK
L0 :
g | S——————o— Y. 10K
S D S T T Y M R R4
1 2 4 8 16 32 64 128 256 512 1K 2K 4K T & P &P ‘fp@ BRSSO SN

Message Size (Bytes) M Size (Bytes)
essage Size (Bytes

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.
Network Based Computing Laboratory OSU Booth - SC 22

