

# Case Studies of MVAPICH2 Optimization on HPC Cloud Systems

Presenter: Shulei Xu

xu.2452@osu.edu

**Network Based Computing Laboratory (NBCL)** 

**The Ohio State University** 

- Introduction
- MPI Optimization
- Performance Evaluation
  - Micro-benchmark level Performance
  - Application level Performance
- Conclusion

## **Amazon Elastic Fabric Adapter (EFA)**

- Enhanced version of Elastic Network Adapter (ENA)
- Allows OS bypass, up to 100 Gbps bandwidth
- Network aware multi-path routing
- Exposed through libibverbs and libfabric interfaces
- Introduces new Queue-Pair (QP) type
  - Scalable Reliable Datagram (SRD)
  - Also supports Unreliable Datagram (UP)
  - No support for Reliable Connect

CC1: C3: ~100us 10 Gbpslatency C1:

~50 us latency

C4: EBS

optimized

C5n: EFA

C5: ENA <sub>100 Gbps</sub>

25 Gbps ~15 us latency

C6gn: Arm-

based HPC

instance

1 Gbps

Evolution of networking on AWS

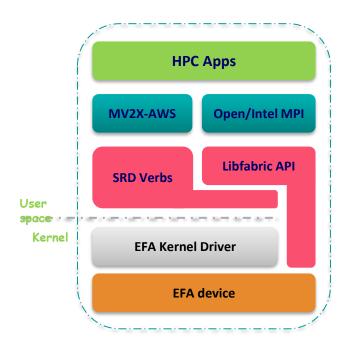
Deep Dive on OpenMPI and Elastic Fabric
Adapter (EFA) - AWS Online Tech Talks,
Linda Hedges
Network Based Computing Laboratory

#### Scalable Reliable Datagrams (SRD): Features & Limitations

| Feature                   | UD  | SRD |
|---------------------------|-----|-----|
| Send/Recv                 | ✓   | ✓   |
| Send w/ Immediate         | ×   | ×   |
| RDMA<br>Read/Write/Atomic | ×   | ×   |
| Scatter Gather Lists      | ✓   | ✓   |
| Shared Receive Queue      | ×   | ×   |
| Reliable Delivery         | ×   | ✓   |
| Ordering                  | ×   | ×   |
| Inline Sends              | ×   | ×   |
| Global Routing Header     | ✓   | ×   |
| Max Message Size          | 4KB | 8KB |

- Similar to IB Reliable Datagram
  - No limit on number of outstanding messages per context
- Out of order delivery
  - No head-of-line blocking
  - Bad fit for MPI, can suit other workloads
- Packet spraying over multiple ECMP paths
  - No hotspots
  - Fast and transparent recovery from network failures
- Congestion control designed for large scale
  - Minimize jitter and tail latency

Amazon Elastic Fabric Adapter: Anatomy, Capabilities, and the Road Ahead, Raghu Raja, OpenFabrics Workshop 2019


## **Recent updates in AWS EC2 Instances for HPC Workloads**

#### Various hardware selection

- Support both x86 (Intel/AMD) & Arm based CPU types
- Support multiple hardware configuration choices including vCPUs count, storage and network bandwidth
- Recent supported Arm-based HPC instances
  - Custom-built by AWS using 64-bit Arm Neoverse cores to enable the best price performance for workloads running in Amazon EC2
  - Support up to 100 Gbps networking bandwidth, 38 Gbps Elastic Block Store (EBS) bandwidth
- Quickly deploy HPC environments with AWS Parallelcluster
  - Support multiple instance types and job schedulers like Slurm
  - Support OS type Amazon Linux2, CentOS 7, Ubuntu 18.04 and 20.04

## **Mpl libraries on AWS EC2 HPC instances**

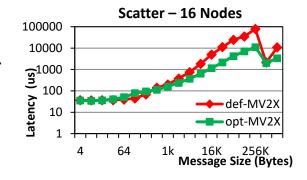
- Supports MPI libraries on instances with EFA support
- OpenMPI & IntelMPI are based on Libfabric API
  - Libfabric Bypass the OS kernel and can communicate directly with EFA device
- MVAPICH2-X-AWS is based directly on SRD verbs API
  - Different to Open MPI and IntelMPI, directly invokes SRD verbs API to implement MPI level communication
  - Detail design is included in this paper:
    - Designing Scalable and High-performance MPI Libraries on Amazon Elastic Fabric Adapter, S.
       Chakraborty, S. Xu, H. Subramoni, DK Panda, Hotl 19, Aug 2019

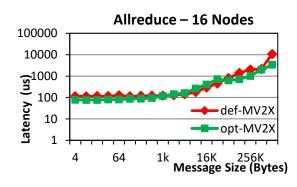


Get started with EFA and MPI, https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

- Introduction
- MPI Optimization
- Performance Evaluation
  - Micro-benchmark level Performance
  - Application level Performance
- Conclusion

## Overview of the mvapich2 project


- High Performance open-source MPI Library
- Support for multiple interconnects
  - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, Rockport Networks, and Slingshot
- Support for multiple platforms
  - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC '02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
  - MVAPICH2-X (Advanced MPI + PGAS), since 2011
  - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
  - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
  - MVAPICH2-Virt with virtualization support, since 2015
  - MVAPICH2-EA with support for Energy-Awareness, since 2015
  - MVAPICH2-Azure for Azure HPC IB instances, since 2019
  - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
  - OSU MPI Micro-Benchmarks (OMB), since 2003
  - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015




- Used by more than 3,200 organizations in 89 countries
- More than 1.57 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov '21 ranking)
  - 4<sup>th</sup>, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
  - 13<sup>th</sup>, 448, 448 cores (Frontera) at TACC
  - 26<sup>th</sup>, 288,288 cores (Lassen) at LLNL
  - 38<sup>th</sup>, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 13<sup>th</sup> ranked TACC Frontera system
- Empowering Top500 systems for more than 16 years

## **Mpi Optimization**

- Collective algorithm tuning
  - Systematically iterate through different MVAPICH2 collective algorithms for all *number\_of\_nodes* x *ppn* combinations, and determine algorithms with best performance for each scenario.
- XPMEM kernel module optimization
  - User-level API for multiple processes share address space
  - Automatically detect XPMEM module in OS, and apply optimization if it is loaded.
    - Using dlopen to open libxpmem on runtime
  - Improve point-to-point & collective intra-node large message communication performance.
- Examples of collective performance difference are shown on the right





- Introduction
- MPI Optimization
- Performance Evaluation
  - Experimental Setups
  - Micro-benchmark level Performance
  - Application level Performance
- Conclusion

## **Experimental setup**

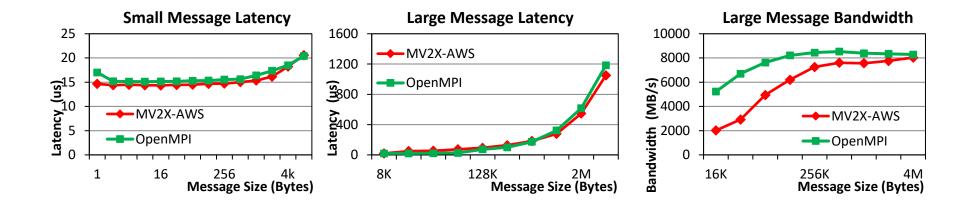
Experiment System Specification

Instance Type: c6gn.16xlarge

- RAM (DDR4): 128 GB

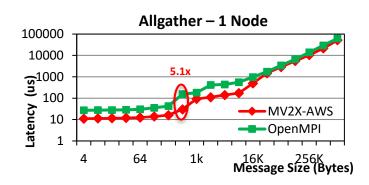
Libfabric version: 1.13.2

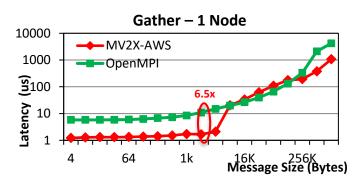
Parallel cluster: 3.0.2

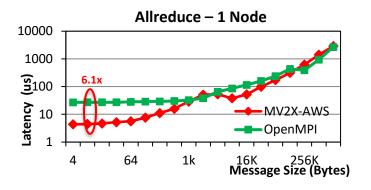

MPI libraries & benchmark Specification:

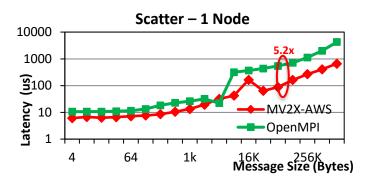
– MVAPICH2: Latest Mvapich2-X-AWS

OpenMPI: 4.1.0 (Parallelcluster built-in)

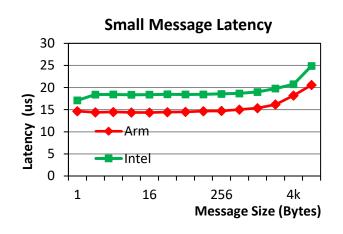

OSU Micro-benchmarks: 5.8

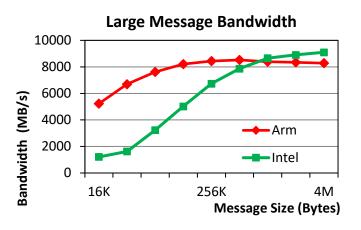

#### **Performance Evaluation**





Point-to-point communication performance

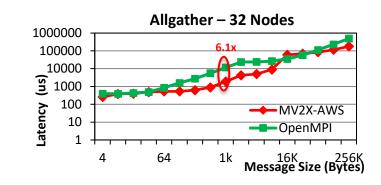
## **Single Node Collective Performance**

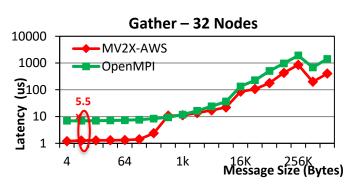


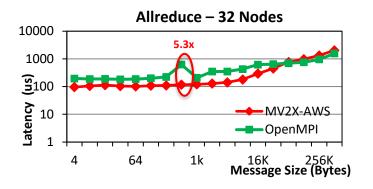



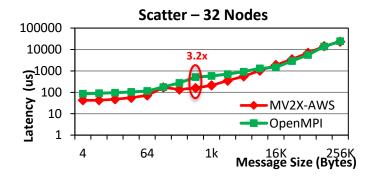






### **MVAPICH2-x-AWS Cross Architecture Comparison**

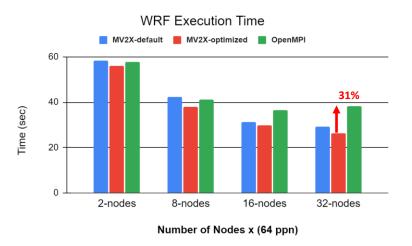


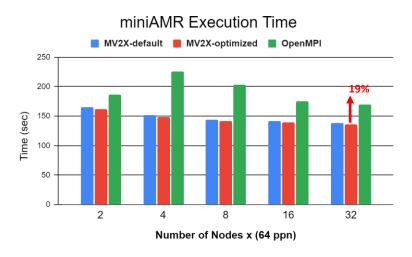





- Comparing basic MPI point-to-point performance on AWS Arm (c6gn.16xlarge) vs. x86 (c5n.18xlarge)
- AWS Arm system has similar point-to-point latency performance trend, there is a small gap which is due to different resource allocation
- MVAPICH2-X-AWS has higher point-to-point bandwidth in medium message sizes on Arm systems, and higher large message bandwidth with large message sizes (>= 1MB)

#### **32 Nodes Collective Performance**








## **Application Performance**

- Application level performance comparison:
  - WRF with strong scaling input dataset from 12km resolution case over the Continental
     U.S. domain
  - miniAMR using default benchmarking input mesh size





- Introduction
- MPI Optimization
- Performance Evaluation
  - Experimental Setups
  - Micro-benchmark level Performance
  - Application level Performance
- Conclusion & Future Plans

#### **Conclusion and Future Plans**

Arm-based Cloud Systems has become a competitive option for HPC application users with compute-intensive workloads

 Performance optimization for MPI libraries leads to significant improvements as well as traditional HPC systems with x86 CPU

- Future Plans:
  - Further performance optimization on coming Graviton Gen3 System on AWS
  - Similar performance optimization for MVAPICH2 on other HPC cloud systems
  - Performance optimization for Arm-based GPU systems on AWS or other cloud systems

# Q&A



## **Thank You!**



Network-Based Computing Laboratory <a href="http://nowlab.cse.ohio-state.edu/">http://nowlab.cse.ohio-state.edu/</a>



The High-Performance MPI/PGAS Project <a href="http://mvapich.cse.ohio-state.edu/">http://mvapich.cse.ohio-state.edu/</a>



The High-Performance Big Data Project <a href="http://hibd.cse.ohio-state.edu/">http://hibd.cse.ohio-state.edu/</a>



The High-Performance Deep Learning Project <a href="http://hidl.cse.ohio-state.edu/">http://hidl.cse.ohio-state.edu/</a>