
Performance Engineering using MVAPICH and TAU

Sameer Shende, Srinivasan Ramesh, Allen D. Malony, Wyatt Spear, Kevin Huck
University of Oregon

SC19 OSU Booth
Tuesday, November 19, 2019, 4pm – 4:30pm

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

2

Acknowledgments

• The MVAPICH2 team The Ohio State University
• http://mvapich.cse.ohio-state.edu

• TAU team at the University of Oregon
• http://tau.uoregon.edu

3

TAU Performance System®

• Tuning and Analysis Utilities (25+ year project)
• Comprehensive performance profiling and tracing

• Integrated, scalable, flexible, portable
• Targets all parallel programming/execution paradigms

• Integrated performance toolkit
• Instrumentation, measurement, analysis, visualization
• Widely-ported performance profiling / tracing system
• Performance data management and data mining
• Open source (BSD-style license)
• Uses performance and control variables to interface with MVAPICH2

• Integrates with application frameworks
• http://tau.uoregon.edu

4

Understanding Application Performance using TAU

• How much time is spent in each application routine and outer loops? Within loops, what is
the contribution of each statement?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken?

• What is the memory usage of the code? When and where is memory allocated/de-
allocated? Are there any memory leaks?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of
individual calls, total volume?

• What is the contribution of each phase of the program? What is the time wasted/spent
waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime breakdown of performance
across different core counts?

• How can I tune MPI for better performance? What performance and control does
MVAPICH2 export to observe and control its performance?

5

TAU Performance System®

Parallel performance framework and toolkit
• Supports all HPC platforms, compilers, runtime system
• Provides portable instrumentation, measurement, analysis

6

TAU Instrumentation Approach

Supports both direct and indirect performance observation
• Direct instrumentation of program (system) code (probes)
• Instrumentation invokes performance measurement
• Event measurement: performance data, meta-data, context
• Indirect mode supports sampling based on periodic timer or hardware performance counter

overflow based interrupts

Support for user-defined events
• Interval (Start/Stop) events to measure exclusive & inclusive duration
• Atomic events (Trigger at a single point with data, e.g., heap memory)

• Measures total, samples, min/max/mean/std. deviation statistics

• Context events (are atomic events with executing context)
• Measures above statistics for a given calling path

7

Direct Observation: Events

Event types
• Interval events (begin/end events)

• Measures exclusive & inclusive durations between events
• Metrics monotonically increase

• Atomic events (trigger with data value)
• Used to capture performance data state
• Shows extent of variation of triggered values (min/max/mean)

Code events
• Routines, classes, templates
• Statement-level blocks, loops

8

inclusive
duration

exclusive
duration

int foo()
{

int a;
a =a + 1;

bar();

a =a + 1;
return a;

}

Inclusive and Exclusive Profiles

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

9

How much data do you want?

Limited
Profile

Flat
Profile

Loop
Profile

Callsite
Profile

Callpath
Profile

Trace

O(KB) O(TB)

10

Types of Performance Profiles

Flat profiles
• Metric (e.g., time) spent in an event
• Exclusive/inclusive, # of calls, child calls, …

Callpath profiles
• Time spent along a calling path (edges in callgraph)
• “main=> f1 => f2 => MPI_Send”
• Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

Callsite profiles
• Time spent along in an event at a given source location
• Set the TAU_CALLSITE environment variable

Phase profiles
• Flat profiles under a phase (nested phases allowed)
• Default “main” phase
• Supports static or dynamic (e.g. per-iteration) phases

11

Instrumentation

Source instrumentation using a preprocessor
• Add timer start/stop calls in a copy of the source code.
• Use Program Database Toolkit (PDT) for parsing source code.
• Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
• Selective instrumentation (filter file) can reduce runtime overhead and narrow

instrumentation focus.
Compiler-based instrumentation

• Use system compiler to add a special flag to insert hooks at routine entry/exit.
• Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

Runtime preloading of TAU’s Dynamic Shared Object (DSO)
• No need to recompile code! Use mpirun tau_exec ./app with options.
• Requires dynamic executable (link using –dynamic on Cray systems).

Add hooks in the code to perform measurements

12

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

13

Overview of the MVAPICH2 Project
High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

• MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

• MVAPICH2-X (MPI + PGAS), Available since 2011

• Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014Support for GPGPUs (MVAPICH2-GDR) and

• Support for Virtualization (MVAPICH2-Virt), Available since 2015

• Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

• Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

• Used by more than 3,025 organizations in 89 countries

• More than 562,000 (> 0.5 million) downloads from the OSU site directly

• Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

• 5th, 448,448 cores (Frontera) at TACC

• 8th, 391,680 cores (ABCI) in Japan

• 15th, 570,020 cores (Neurion) in S. Korea and many others

• Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

• http://mvapich.cse.ohio-state.edu

Empowering Top500 systems for over a decade Partner in TACC Frontera System

http://mvapich.cse.ohio-state.edu/
http://cse.ohio-state.edu

MVAPICH2 and TAU

● TAU and MVAPICH2 are enhanced with the ability to generate recommendations and
engineering performance report

● MPI libraries like MVAPICH2 are now “reconfigurable” at runtime
● TAU and MVAPICH2 communicate using the MPI-T interface

15

Why PMPI is not good enough?

• Takes a “black box” view of the MPI library
16

MPI_T usage semantics

Initialize MPI-T

Get #variables

Query Metadata

Allocate Session

Allocate Handle

Read/Write/Reset
Start/Stop var

Free Handle

Finalize MPI-T

Free Session

Allocate Handle

Read/Write var

Free Handle

Performance
Variables

Control
Variables

int MPI_T_init_thread(int required, int *provided);int MPI_T_cvar_get_num(int *num_cvar);
int MPI_T_cvar_get_info(int cvar_index, char *name, int *name_len, int *verbosity,

MPI_Datatype *datatype, MPI_T_enum *enumtype,
char *desc, int *desc_len, int *bind, int *scope);

int MPI_T_pvar_session_create(MPI_T_pvar_session *session);int MPI_T_pvar_handle_alloc(MPI_T_pvar_session session, int pvar_index,
void *obj_handle, MPI_T_pvar_handle *handle, int *count);

int MPI_T_pvar_start(MPI_T_pvar_session session, MPI_T_pvar_handle handle);
int MPI_T_pvar_read(MPI_T_pvar_session session, MPI_T_pvar_handle handle, void* buf);
int MPI_T_pvar_reset(MPI_T_pvar_session session, MPI_T_pvar_handle handle);

int MPI_T_pvar_handle_free(MPI_T_pvar_session session, MPI_T_pvar_handle *handle);int MPI_T_pvar_session_free(MPI_T_pvar_session *session);int MPI_T_finalize(void);

17

MPI_T support with MVAPICH2

Memory Usage:
- current level

- maximum watermark

Registration cache:
- hits

- misses

Pt-to-pt messages:
- unexpected queue length

- unexp. match attempts
- recvq. length

Shared-memory:
- limic/ CMA

- buffer pool size & usage

Collective ops:
- comm. creation

- #algorithm invocations
[Bcast – 8; Gather – 10]

…

InfiniBand N/W:
- #control packets

- #out-of-order packets

• Support performance variables (PVAR)

• Variables to track different components within the MPI library

• Initial support for Control Variables (CVAR)

• Variables to modify the behavior of MPI Library

18

MPI_T_init_thread(..)
MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)
if (msg_size < MV2_EAGER_THRESHOLD + 1KB)

MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024)
MPI_Send(..)
MPI_T_finalize(..)

Co-designing Applications to use MPI-T

Example Pseudo-code: Optimizing the eager limit dynamically:

19

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

20

Integrating TAU with MVAPICH2 through MPI_T Interface

● Enhance existing support for MPI_T in
MVAPICH2 to expose a richer set of
performance and control variables

● Get and display MPI Performance
Variables (PVARs) made available by
the runtime in TAU

● Control the runtime’s behavior via MPI
Control Variables (CVARs)

● Add support to MVAPICH2 and TAU for
interactive performance engineering
sessions

21

Three Scenarios for Integration

22

Scenario 1: Non-interactive mode

Scenario 3: Policy driven mode

Scenario 2: User-interactive mode

TAU Performance Measurement Model

enter/exit events
are “interval” events (in shared memory)

application-wide
performance data

TAU Plugin Architecture
Extend TAU event interface for plugins

• Events: interval, atomic
• Specialized on event ID
• Synchronous operation

Create TAU interface for trigger plugins
• Named trigger
• Pass application data
• Synchronous
• Asynchronous using agent plugin

TAU Plugin Architecture
• Both event and trigger plugins are synchronous

• Directly called from the application
• Execute inline with the application
• Use an application’s thread of execution

• Consider utilizing a separate thread of execution to perform performance analysis
functions
• For instance, periodic daemon to sample performace

• Design an agent plugin mechanism
• Create an execution thread to execute plugin
• Register plugin with this execution thread

TAU Plugin Architecture
• Parallel performance systems do not typically do runtime analytics when making

measurements
• Want to extend a performance system with additional analytics functionality

WITHOUT building it directly into the performance system
• Apply a plugin architecture approach

• Develop analytics plugins (common, application)
• Register (load) them with the performance system

• Plugins have access to performance data state
• Plugins can utilize the parallel execution context

Plugin-based Infrastructure for Non-Interactive Tuning

• TAU supports a fully-customizable plugin
infrastructure based on callback event handler
registration for salient states inside TAU:
• Function Registration / Entry / Exit
• Phase Entry / Exit
• Atomic Event Registration / Trigger
• Init / Finalize Profiling
• Interrupt Handler
• MPI_T

• Application can define its own “trigger” states
and associated plugins
• Pass arbitrary data to trigger state plugins

27

TAU Customization

28

• TAU states can be named or generic
• TAU distinguishes named states in a way that allows for separation of

occurrence of a state from the action associated with it
• Function entry for “foo” and “bar” represent distinguishable states in TAU

• TAU maintains an internal map of a list of plugins associated with each state

TAU Runtime Control of Plugin

29

• TAU defines a plugin API to deliver access control to the internal
plugin map

• User can specify a regular expression to control plugins executed
for a class of named states at runtime
• Access to map on a process is serialized: application is expected

to access map through main thread

TAU Phase Based Recommendations

30

• MiniAMR: Benefits from hardware offloading using SHArP
hardware offload protocol supported by MVAPICH2 for
MPI_Allreduce operation

• Recommendation Plugin:
• Registers callback for “Phase Exit” event
• Monitors message size through PMPI interface
• If message size is low and execution time inside

MPI_Allreduce is significant, a recommendation is
generated on ParaProf (TAU’s GUI) for the user to set the
CVAR enabling SHArP

TAU Per-Phase Recommendations in ParaProf

31

Enhancing MPI_T Support
● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ
■ Controls the message size up to which “inline” transmission of data is

supported by MVAPICH2
○ MPIR_CVAR_VBUF_POOL_SIZE

■ Controls the number of internal communication buffers (VBUFs)
MVAPICH2 allocates initially. Also,
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2…n])

○ MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
■ Controls the number of VBUFs MVAPICH2 allocates when there are no

more free VBUFs available
○ MPIR_CVAR_IBA_EAGER_THRESHOLD

■ Controls the message size where MVAPICH2 switches from eager to
rendezvous protocol for large messages

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive
mode for uninstrumented applications

32

MVAPICH2

● Several new MPI_T based PVARs added to MVAPICH2
○ mv2_vbuf_max_use, mv2_total_vbuf_memory etc

● Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for
uninstrumented applications
○ ParaProf, TAU’s visualization front end, enhanced with support for

displaying PVARs and CVARs
○ TAU provides tau_exec, a tool to transparently instrument MPI routines

○ Uninstrumented:
% mpirun –np 1024 ./a.out

○ Instrumented:
– % export TAU_TRACK_MPI_T_PVARS=1
– % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
– % export TAU_MPI_T_CVAR_VALUES=16
– % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

33

PVARs Exposed by MVAPICH2

34

CVARs Exposed by MVAPICH2

35

Using MVAPICH2 and TAU with Multiple CVARs

● To set CVARs or read PVARs using TAU for an uninstrumented binary:
% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],
MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000
% export PATH=/path/to/tau/x86_64/bin:$PATH
% mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out
% paraprof

36

VBUF usage without CVARs

37

VBUF usage with CVARs

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056

38

VBUF Memory Usage Without CVAR

39

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
% export TAU_MPI_T_CVAR_VALUES=16
% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

40

TAU: Extending Control Variables on a Per-Communicator Basis
• Based on named communicators (MPI_Comm_set_name) in an application,

TAU allows a user to specify triples to set MPI_T cvars for each communicator:
• Communicator name
• MPI_T CVAR name
• MPI_T CVAR value

• % ./configure –mpit –mpi –c++=mpicxx –cc=mpicc –fortran=mpif90 …
• % make install
• % export TAU_MPI_T_COMM_METRIC_VALUES=<comm, cvar, value>,…
• % mpirun –np 64 tau_exec –T mpit ./a.out
• % paraprof

41

COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM
bash-4.2$

TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM,MPIR_CVAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT,2097152,
COMB_MPI_CART_COMM,MPIR_CVAR_CUDA_IPC_THRESHOLD,16384 MV2_USE_CUDA=1 mpirun -np 8 tau_exec -ebs -T mvapich2,mpit,cuda9,cupti,communicators,gnu -cupti ./comb -comm
post_recv wait_all -comm post_send wait_all -comm wait_recv wait_all -comm wait_send wait_all 200_200_200 -divide 2_2_2 -periodic 1_1_1 -ghost 1_1_1 -vars 3 -cycles 100 -comm cutoff
250 -omp_threads 1

Started rank 0 of 8
Node lassen710
Compiler COMB_COMPILER
Cuda compiler COMB_CUDA_COMPILER
GPU 0 visible undefined
Not built with openmp, ignoring -omp_threads 1.
Cart coords 0 0 0
Message policy cutoff 250
Post Recv using wait_all method
Post Send using wait_all method
Wait Recv using wait_all method
Wait Send using wait_all method
Num cycles 100
Num vars 3
ghost_widths 1 1 1
sizes 200 200 200
divisions 2 2 2
periodic 1 1 1
division map
map 0 0 0
map 100 100 100
map 200 200 200
Starting test memcpy seq dst Host src Host
Starting test Comm mock Mesh seq Host Buffers seq Host seq Host
Starting test Comm mpi Mesh seq Host Buffers seq Host seq Host

42

Default With MPI_T CVARs

COMB Profile

43

CVARs Exposed by MVAPICH2

44

TAU‘s ParaProf 3D Browser

45

Download TAU from U. Oregon

http://tau.uoregon.edu
http://taucommander.com

http://www.hpclinux.com [OVA for VirtualBox]
https://e4s.io [Extreme-Scale Scientific Software Stack,

Containers for HPC]
for more information

Free download, open source, BSD license

http://tau.uoregon.edu
http://taucommander.com
http://www.hpclinux.com
https://e4s.io

PRL, OACISS, University of Oregon, Eugene

www.uoregon.edu

47

http://www.uoregon.edu

US Department of Energy (DOE)
• ANL
• Office of Science contracts, ECP
• SciDAC, LBL contracts
• LLNL-LANL-SNL ASC/NNSA contract
• Battelle, PNNL and ORNL contract

Department of Defense (DoD)
• PETTT, HPCMP

National Science Foundation (NSF)
• SI2-SSI, Glassbox

NASA
CEA, France
Partners:

•University of Oregon
•The Ohio State University
•ParaTools, Inc.
•University of Tennessee, Knoxville
•T.U. Dresden, GWT
•Jülich Supercomputing Center

Support Acknowledgements

Acknowledgment

“This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support

of the nation’s exascale computing imperative.”

49

