Bridging Neuroscience and HPC with MPI-LiFE

Shashank Gugnani
The Ohio State University
E-mail: gugnani.2@osu.edu
http://web.cse.ohio-state.edu/~gugnani/
Neuroscience: Challenges and Opportunities

- Advancements in imaging technology
 - MRI, CAT Scan, etc.
- Higher resolution neuroimaging data
- How do we handle huge amounts of this data?
- Requirement for more efficient and faster algorithms
- *Can High Performance Computing help?*
Advanced Computational Neuroscience Network (ACNN)

- Develop a new generation of sustainable interdisciplinary Neuroscience Big Data research
- Collaboration between University of Michigan, Indiana University, Northwestern University, Ohio State University, Case Western Reserve University, and Washington University
- Funded by NSF
Our Goal

• Accelerate Neuroscience Data
 – High-Performance Computing (HPC)
 • Different Programming Models (MPI, OpenMP and PGAS)
 – Big Data
 • Hadoop, Spark
 – Deep Learning
 • Caffe, Tensorflow
Bridging HPC and Neuroscience

Convergence of HPC, Big Data, and Neuroscience!

Heavy data analysis and processing requirements

Network Based Computing Laboratory
Overview of the NeuroHPC project

• Aimed at bringing HPC to the field of Neuroscience

• **MPI-LiFE**
 – Scalable and distributed tool for statistical evaluation of brain connectomes
 – Based on LiFE method in the Encode Toolbox
 – MPI-based distributed sparse multiway matrix multiplication
 – Exploits efficient communication in MVAPICH2
 – Highly optimized for virtualized environments using Docker
 – Flexibility to run on any multi-core laptop, desktop, server, and cluster

• **MPI-LiFE 0.9 is now available for download!** (11/10/2017)

• For more information, visit http://neurohpc.cse.ohio-state.edu/
Brain-LiFE

• **Linear Fascicle Evaluation (LiFE1)**
 – an approach to predict diffusion measurements in brain connectomes
 – evaluate evidence supporting white-matter connectomes generated using MRI and computational tractography
 – show evidence for white-matter tracts and connections between brain areas
 – heavily used by computational neuroscientists

1https://github.com/francopestilli/life

Different colors show groups of white matter tracts connecting different portions of the brain
Brain-LiFE

• Originally written in MATLAB
 – Slow and inefficient
 – Convert to C to run outside MATLAB environment
 – Modularize and pipeline for distributed environment

• Based on Non-Negative Least Square (NNLS) constrained optimization
 – Uses large-scale sparse multiway matrix multiplication
 • Design, develop, and evaluate MPI-based algorithm
 • Dockerize solution
MPI-LiFE: Initial Design using MVAPICH2

- Computationally intensive tasks are the computations of sparse multiway matrix by vector products

 - \(w = M^T y \) and \(y = Mw \)

 - Have been parallelized using MPI and OpenMP by dividing the task among multiple MPI processes

- Implementation uses MVAPICH2, from OSU team

 - Exploits efficient communication primitives to drastically improve performance

 - Uses high-performance networks to reduce communication latency

S. Gugnani, X. Lu, F. Pestilli, C.F. Caiafa, and D. K. Panda, MPI-LiFE: Designing High-Performance Linear Fascicle Evaluation of Brain Connectome with MPI, HiPC’17
MPI-based multiway matrix multiplication

- $w = M^T y$
 - Distribution of data using MPI_Bcast, MPI_Scatter
 - Gathering of results using MPI_Gather
 - Use of OpenMP to parallelize computation within an MPI process

\[
\begin{align*}
N_a & = D^T \\
N_\theta & = Y
\end{align*}
\]

$w = w_1 + w_2$

Computation of $w = M^T y$ using 2 MPI processes
MPI-based multiway matrix multiplication

- \(y = Mw \)
 - Distribution of data using MPI_Bcast, MPI_Scatter
 - Gathering of results using MPI_Reduce
 - Use of OpenMP to parallelize computation within an MPI process

\[
Y = Y_1 + Y_2
\]

\[
\begin{array}{c}
N_0 \\
Y_1 \\
Y_2 \\
Y = Y_1 + Y_2
\end{array}
\]

\[
\begin{array}{c}
N_0 \\
D \\
S_0 \times W^T
\end{array}
\]

These diagrams represent the computation of \(y = Mw \) using 2 MPI processes.
Evaluation with MVAPICH2: Single Xeon Node

- Evaluation on
 - **OSU RI2** (Intel Broadwell CPUs, 28 cores, 128 GB memory per node)
 - **TACC Stampede** (Intel Sandy Bridge CPUs, 32 cores, 1 TB memory per node)
- Speed up of up to 4.2x on RI2 and up to 4.5x on Stampede
Evaluation with MVAPICH2: Single Xeon Node

- Evaluation on
 - OSU RI2 (Intel Broadwell CPUs, 28 cores, 128 GB memory per node)
 - TACC Stampede (Intel Sandy Bridge CPUs, 32 cores, 1 TB memory per node)
- Speed up of up to 4.2x on RI2 and up to 4.5x on Stampede
Evaluation with MVAPICH2: Single KNL Node

- Evaluation on **TACC Stampede KNL** (Intel Xeon Phi KNL CPUs, 68 cores, 96 GB memory per node)
- Up to **8.7x** speed up
Evaluation with MVAPICH2: Multi-Node

- Evaluation on OSU RI2 (Intel Broadwell CPUs, 28 cores, 128 GB memory per node)
- Up to $8.1x$ speed up on RI2
MPI-LiFE: Continuing Work

• Maximum parallelization is currently being achieved with MPI for the current LiFE algorithm

• Exploiting enhanced and optimized designs for scale-up and scale-out
 – MPI + OpenMP
 – PGAS Models (OpenSHMEM)
 – GPGPUs

• The sequential algorithm may need to be re-designed
 – May lead to better parallelization
Thanks!

gugnani.2@osu.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High Performance Neuroscience Project (NeuroHPC)
http://neurohpc.cse.ohio-state.edu/