Accelerating HPC and AI Applications with Data Processing Units (DPUs)

Donglai Dai

d.dai@x-scalesolutions.com

http://x-scalesolutions.com
Drivers of Modern HPC Cluster Architectures

- Multi-/Many-core Processors
- High Performance Interconnects – InfiniBand (DPU), Slingshot
 <1usec latency, 200-400Gbps Bandwidth>
- Accelerators
 high compute density, high performance/watt
 >9.7 TFlop DP on a chip
- SSD, NVMe-SSD, NVRAM

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, Slingshot)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (GPUs from NVIDIA, AMD, and Intel)
- Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.
Broad Challenge:

How to design high-performance and scalable middleware for HPC and AI systems while taking advantage of heterogeneous (CPU + GPU + DPU/IPU) HPC and Cloud resources?
Presentation Outline

• **Overview of X-ScaleSolutions**

• Overview of the MVAPICH Project

• Offloading Strategies and Benefits:
 • Non-blocking Collectives (communication)
 • Ialltoall and P3DFFT
 • Ibcast and HPL
 • Ialltoallv and Xcompact3D
 • Non-blocking Point-to-point (communication)
 • Applications using 3D Stencils
 • Non-blocking Point-to-point and collective (communication and computation)
 • PETSc
 • Offloading DL training (computation and I/O)

• Conclusions
Overview of X-ScaleSolutions

- Started in 2018
- Bring innovative and efficient end-to-end solutions, services, support, and training to our customers
- Commercial support and training for the state-of-the-art communication libraries
 - High-Performance and Scalable MVAPICH2 Library and its families (MVAPICH2-X, MVAPICH2-GDR, MVAPICH2-Azure, MVAPICH2-AWS, MVAPICH, MVAPICH-Plus, and OSU INAM)
 - High-Performance Deep Learning/Machine Learning Libraries (MPI4DL and MPI4cuML)
 - High-Performance Big Data Libraries (RDMA-Hadoop, RDMA-Spark, RDMA-HBase, and RDMA-Memcached, MPI4Spark and MPI4Dask)
Commercial Support Features and Benefits

• Benefits:
 • Help and guidance with installation of the library
 • Platform-specific optimizations and tuning
 • Timely support for operational issues encountered with the library
 • Flexible Service Level Agreements
 • Web portal interface to submit issues and tracking their progress
 • Advanced debugging techniques
 • Application-specific optimizations and tuning
 • Obtaining guidelines on best practices
 • Periodic information on major fixes and updates
 • Information on major releases
 • Help with upgrading to the latest release

• Support being provided to National Laboratories and International HPC centers

• Flexibility in providing such support
 • Directly to end organizations
 • Through third-party integrators
Value-Added Products

• Design and develop innovative and value-added products
• Winner of multiple U.S. DOE SBIR grants
• Market these products for HPC and AI applications with commercial support
• A Silver ISV member of the OpenPOWER Consortium
Overview of Products

- **X-ScaleHPC**: High-Performance Optimized Solution for HPC applications
- **X-ScaleAI**: High-Performance Solution with Deep Introspection for AI applications
- **MVAPICH2-DPU**: High-Performance MVAPICH2 for Accelerating Applications with NVIDIA’s DPU technology
- **X-ScaleHPL-DPU**: Accelerating HPL with DPU Offload
- **X-ScaleAI-DPU**: Accelerating DL Training with DPU Offload
Presentation Outline

• Overview of X-ScaleSolutions

• **Overview of the MVAPICH Project**

• Offloading Strategies and Benefits:
 • Non-blocking Collectives (communication)
 • `ialltoall` and P3DFFT
 • `ibcast` and HPL
 • `ialltoallv` and Xcompact3D
 • Non-blocking Point-to-point (communication)
 • Applications using 3D Stencils
 • Non-blocking Point-to-point and collective (communication and computation)
 • PETSc
 • Offloading DL training (computation and I/O)

• Conclusions
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/WARP, RDMA over Converged Ethernet (RoCE), AWS EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC ’02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
 - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015
- New Series
 - MVAPICH 3.x and MVAPICH-Plus 3.x (since 2022)

- Used by more than 3,325 organizations in 90 countries
- More than 1.73 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Jun ‘23 ranking)
 - 7th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 21st, 448, 448 cores (Frontera) at TACC
 - 36th, 288,288 cores (Lassen) at LLNL
 - 49th, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 21st ranked TACC Frontera system
- Empowering Top500 systems for more than 18 years
Presentation Outline

- Overview of X-ScaleSolutions
- Overview of the MVAPICH Project

Offloading Strategies and Benefits:
- Non-blocking Collectives (communication)
 - `ialltoall` and `P3DFFT`
 - `lbcast` and `HPL`
 - `ialltoallv` and `Xcompact3D`
- Non-blocking Point-to-point (communication)
 - Applications using 3D Stencils
- Non-blocking Point-to-point and collective (communication and computation)
 - `PETSc`
 - Offloading DL training (computation and I/O)

- Conclusions
Accelerating Applications with BlueField-3 DPU

- InfiniBand network adapter with up to 400Gbps speed
- System-on-chip containing 16 64-bit ARMv8.2 A78 cores with 2.75 GHz each
- 32 GB of memory for the ARM cores
Problems with Blocking Collective Operations

- Communication time cannot be used for compute
 - No overlap of computation and communication
 - Inefficient
• Application processes schedule collective operation
• Check periodically if operation is complete
• **Overlap of computation and communication => Better Performance**
• **Catch: Who will progress communication**
MVAPICH2-DPU Library 2023.10 Release

- Supports all features available with the MVAPICH2 2.3.7 release (http://mvapich.cse.ohio-state.edu)
- Novel framework to offload non-blocking collectives to DPU
- Offloads non-blocking Alltoall (MPI_Ialltoall) to DPU
- Offloads non-blocking Broadcast (MPI_Ibcast) to DPU
- Offloads non-blocking Alltoallv (MPI_Ialltoallv) to DPU
- Offloads non-blocking Point-to-Point (MPI_Isend, MPI_Irecv) to DPU

Available from X-ScaleSolutions, please send a note to contactus@x-scalesolutions.com to get a trial license.
Overlap of Communication and Computation with osu_ialltoall (BF-2, 32 Nodes)

- 32 Nodes, 16 PPN
 - Delivers Peak Overlap

- 32 Nodes, 32 PPN
 - 100% overlap
Total Execution Time with osu_Ialltoall (BF-2, 32 Nodes)

Benefits in Total execution time (Compute + Communication)
P3DFFT Application Execution Time (BF-2, 32 Nodes)

Benefits in application-level execution time

32 Nodes, 16 PPN

32 Nodes, 32 PPN
P3DFFT Application Execution Time (BF-3, 16 Nodes)

Benefits in application-level execution time
Total Execution Time with osu_ibcast (BF-2, 32 Nodes)

Benefits in Total execution time (Compute + Communication)
Accelerating HPL with MVAPICH2-DPU and X-ScaleHPL-DPU (BF-2)

Benefits in application-level execution time

16x32 process grid

31x32 process grid
Total Execution Time with osu_Ialltoallv (BF-3, 32 Xeon Nodes, 1K Processes)
Total Execution Time with osu_Ialltoallv (BF-2, 8 AMD EPYC Nodes)

![Graph showing Total execution Time BF-2 (osu_Ialltoallv)]

- **64 PPN**
 - Message size: 16384
 - Time: 0.63ms
 - Reduction: 63%
 - Message size: 32768
 - Time: 0.64ms
 - Reduction: 64%
 - Message size: 65536
 - Time: 0.69ms
 - Reduction: 69%
 - Message size: 131072
 - Time: 0.41ms
 - Reduction: 41%
 - Message size: 262144
 - Time: 0.39ms
 - Reduction: 39%

- **128 PPN**
 - Message size: 16384
 - Time: 0.58ms
 - Reduction: 58%
 - Message size: 32768
 - Time: 0.70ms
 - Reduction: 70%
 - Message size: 65536
 - Time: 0.72ms
 - Reduction: 72%
 - Message size: 262144
 - Time: 0.39ms
 - Reduction: 39%
XCompact3D Application Execution Time (8 AMD EPYC Nodes)

Average Time per Iteration of Xcompact3D

Input Data Size

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MVAPICH2 MVAPICH2-DPU

9% 9% 15% 14% 10% 9%

AMD EPYC cluster
8 nodes 128 ppn
Presentation Outline

• Overview of the MVAPICH Project

• **Offloading Strategies and Benefits:**
 • Non-blocking Collectives (communication)
 • Ialltoall and P3DFFT
 • Ibcast and HPL
 • Ialltoallv and Xcompact3D
 • **Non-blocking Point-to-point (communication)**
 • Applications using 3D Stencils
 • **Non-blocking Point-to-point and collective (communication and computation)**
 • PETSc
 • Offloading DL training (computation and I/O)

• Conclusions
Offloading MPI Point-to-Point with 3D Stencil (BF-3)

- Use GVMI to Offload MPI_Isend/MPI_Irecv to the DPU
- 3D Stencil Overlap Benchmark:
 - Perform data exchange with 6 peers. (Similar to 7-point stencil)
 - Overlap computation with data-exchange
 - Up to 18% benefits

![Diagram showing normalized overall latency for different data exchange sizes (64K, 128K, 256K) with MVAPICH2 and MVAPICH2-DPU, showing benefits of 13%, 18%, and 15% respectively.]
Offloading MPI Point-to-Point and Reduction with PETSc (BF-3)

- **PETSc:**
 - Solves 3D Laplacian with 27-point finite difference stencil

- Modified Solver Algorithm to efficiently offload reduction (compute + communication) operations to the DPU

- Problem Size: 256x256x256
 - Strong Scaling Run
 - Up to 24% benefits

Benefits in Total execution time (Compute + Communication)
Presentation Outline

• Overview of X-ScaleSolutions
• Overview of the MVAPICH Project
• Offloading Strategies and Benefits:
 • Non-blocking Collectives (communication)
 • Ialltoall and P3DFFT
 • Ibcast and HPL
 • Ialltoally and Xcompact3D
 • Non-blocking Point-to-point (communication)
 • Applications using 3D Stencils
 • Non-blocking Point-to-point and collective (communication and computation)
 • PETSc
 • Offloading DL training (computation and I/O)
• Conclusions
X-ScaleAI-DPU Package

- Accelerating CPU-based DNN training with DPU support
- Based on MVAPICH2 2.3.7 with Horovod 0.25.0
- Supports all features available with the MVAPICH2 2.3.7 release (http://mvapich.cse.ohio-state.edu)
- Supports PyTorch framework for Deep Learning with offloaded checkpointing

Available from X-ScaleSolutions, please send a note to contactus@x-scalesolutions.com to get a trial license.
Training of ResNet-20v1 model on the CIFAR10 dataset (BF-3)

System Configuration
- Two Intel(R) Xeon(R) 16-core CPUs (32 total) E5-2697A V4 @ 2.60 GHz
- NVIDIA BlueField-3 SoC, HDR100 100Gb/s InfiniBand adapters
- Memory: 256GB DDR4 2400MHz RDIMMs per node
- 1TB 7.2K RPM SSD 2.5" hard drive per node
- NVIDIA ConnectX-6 HDR/HDR100 200/100Gb/s InfiniBand adapters with Socket Direct

Up to 19% Performance improvement using X-ScaleAI-DPU over CPU-only training on the ResNet-20v1 model on the CIFAR10 dataset
X-ScaleAI-DPU: Checkpointing Offload for DNN Training

• New X-ScaleAI-DPU feature: offload DNN checkpointing during training to the DPU.
• Up to 33% improvement in epoch time on the ResNet-34 model using X-ScaleAI-DPU compared to CPU only.
• Improvement percentage using X-ScaleAI-DPU for checkpointing increases as number of nodes increases.
• Improvement observed across different DL models.

Performance improvement for checkpointing using X-ScaleAI-DPU over CPU-only training on the ResNet-34 model on the CIFAR10 dataset
Conclusions

• DPU technology provides novel ways to offload computation, communication, and I/O from host CPUs to DPU cores
• Demonstrated two ways to take advantage of the DPU technology to accelerate MPI and Deep Learning applications
• Promises potential for accelerating application performance further
• X-ScaleSolutions will be happy to get engaged with collaborators
Thank You!

Donglai Dai

contactus@x-scalesolutions.com

http://x-scalesolutions.com/