SMART-PETSc: High-Performance MPI Library to Boost Performance of the PETSc Library

Drs. Donglai Dai (PI), **Sreevatsa (Sreev) Anantharamu** (Lead Developer), Hari Subramoni, D. K. Panda

s.anantharamu@x-scalesolutions.com

X-ScaleSolutions

http://x-scalesolutions.com

 \oplus

"PETSc, the Portable, Extensible Toolkit for Scientific Computation, includes a large suite of scalable parallel linear and nonlinear equation solvers, ODE integrators, and optimization algorithms for application codes written in C, C++, Fortran, and Python. In addition, PETSc includes support for managing parallel PDE discretizations including parallel matrix and vector assembly routines." (Used by more than 30 scientific toolkits/libraries)

"The MVAPICH2 software, based on MPI 3.1 standard, delivers the best performance, scalability and fault tolerance for high-end computing systems and servers using InfiniBand, Omni-Path, Ethernet/iWARP, RoCE(v1/v2), Cray Slingshot 10 and 11, and Rockport Networks networking technologies. This software is being used by more than 3,325 organizations in 90 countries worldwide to extract the potential of these emerging networking technologies for modern systems."

- Goal: Deliver best performance for PETSc end-applications via codesign to take full advantage of modern HPC architecture features
- Challenge: How?
- Thanks to support from DOE SBIR Phase-II and -I

Multi-core Processors

GPU accelerators high compute density, high performance/watt >9.7 TFlop DP on a chip

High Performance Interconnects – InfiniBand (DPU), Slingshot, Omnipath (IPU) <1usec latency, 200-400Gbps Bandwidth>

> Modern exascale machines (Frontier, El Capitan, Aurora) and cloud HPC (AWS, Azure)

- Drs. Donglai Dai, Sreevatsa (Sreev) Anantharamu, Hari Subramoni, D. K. Panda (Led by X-ScaleSolutions, LLC)
- Drs. Richard Tran Mills, Junchao Zhang (Argonne National Lab)
- Dr. Victor Eijkhout (Texas Advanced Computing Center)
- Drs. Sameer Shende, Allen Malony (ParaTools, Inc)

Presentation Outline

- MPI communication patterns in PETSc
- Optimizations
 - Matrix-vector multiplication kernel
 - Finite Difference PETSc application
 - Finite Element PETSc application
 - Intra-node bandwidth on modern CPUs
 - MVAPICH2-DPU with PETSc
 - Co-designed rendezvous protocols
- Profiling
 - TAU + PETSc via perfstubs
- Conclusions

MPI communication patterns in PETSc

Point-to-point

- Near-neighbor
- Parallel matrix-vector multiplication, assembly
- Solutions transfers (prolongators/restrictors) in multi-grid/-level preconditioners
- Krylov Solvers, Preconditioners
- libCEED exascale library (matrix-free back-end of PETSc) needs two rounds of point-to-point communication for each matrix-vector multiplication (compared to just one round for the usual assembled matrices)

Collectives

- Inner-products in Krylov solvers
- Coarse level solution in multigrid preconditioner

Partitioning PDE problems

Sparsity pattern of a parallel sparse matrix (Cover page of Prof. Saad's book)

Classical CG, (,) denotes an inner product

Multigrid

Optimizations: Matrix-vector kernel

- High-order finite-difference Laplacian stencil (stencil width=5)
- Up to 10% benefit
- Environment variable MV2_SMART_PETSC_MATVEC_OPT=1

Processors	Intel 8280 "Cascade Lake"
Cores/Node	56 (28 per socket)
Memory/Node	192GB DDR-4
Network	Mellanox Infiniband, HDR-100

Frontera system specification

X-ScaleSolutions

SC 2023

Optimizations: Finite Difference PETSc application

Poisson problem (Frontera at TACC)

- Poisson problem (with non-periodic boundary condition)
- 10th order finite-difference spatial discretization (non-symmetric due to non-periodic boundaries)
- Encountered in fluid, solid, and heat transfer applications
- Up to 9% application-level benefit on TACC
- Different Krylov subspace solvers
- GMRES Generalized Minimal Residual
- BICG Biconjugate Gradient
- BCGS Biconjugate Gradient-Stabilized

Optimizations: Finite Difference PETSc application

- Other CPUs
- Gary and Roberta AMD EPYC, Helios Intel Gold

Matrix-vector Kernel (Helios HPCAC) 100 7% 80 60 40 20 0 7 nodes PETSc + MVAPICH2 SMART-PETSc

Processors	AMD EPYC			
Cores/Node	16, 192			
Memory/Node	384GB DDR-4			
Network	Mellanox Infiniband, NDR-400			

Gary and Roberta at OACISS

Processors	Intel Gold		
Cores/Node	40		
Memory/No de	192GB DDR-4		
Network	Mellanox Infiniband, HDR-200		

Helios at HPCAC

Optimizations: Finite Element PETSc application

• libCEED

- Matrix-free back-end of many exascale high-order finite element libraries
- Sum-factorization, high throughput
- Uses PETSc tools to setup and perform MPI communication
- CPU, libxsmm, optimized blocked AVX512 instructions
- Bakeoff problem #2, conjugate gradient with mass matrix on a three-dimensional vector

Optimizations: Intra-node bandwidth on modern CPUs

- AMD EPYC, MPI-only
- Up to 17% latency reduction and 21% bandwidth improvement for large message sizes
- osu_latency and osu_bw microbenchmark
- Environment variable MV2_SMART_PETSC_OPT=1 to turn on enhancement

Optimizations: Intra-node bandwidth on modern CPUs

- MPI+OpenMP with AMD EPYC
- Up to 48% latency reduction and 90% bandwidth increase
- osu_bw microbenchmark
- Environment variable MV2_SMART_PETSC_OPT=1 to turn on enhancement

Optimizations: MVAPICH2-DPU with PETSc

• Using Bluefield DPU/SmartNICs to offload point-to-point, reduction and some computation

Nodes 27-point Laplacian stencil PETSc application

Execution Time, BF-3 (PETSc)

SC 2023

Optimizations: Co-designed rendezvous protocols

- Co-designed rendezvous protocols
- 3D-stencil benchmark (communication pattern similar to PETSc DMDA)
- Up to 50% performance benefit
- Demonstrates the maximum potential of such co-design enhancements
- Currently, porting it to PETSc

Profiling: TAU + PETSc via perfstubs

- Added interface for easy profiling of PETSc with TAU
- Contributed back to PETSc public repo
- Is now the de facto standard procedure to profile PETSc with TAU

🗐 PETSc > 🔳 petsc > Merge requests > 15516

Add perfstubs	
& Merged Samuel Khuvis requested to merge % khsal/petsc:perfstubs	ເ _{ເດີ} into main 1 year
Overview 76 Commits 8 Pipelines 51 Changes 17	
Github merge request	

Reading Profile files in profile.*

NODE 0;CONTEXT 0;THREAD 0:

	%Time	Exclusive	Inclusive	#Call	#Subrs	Inclusive	Name
		msec	total msec			usec/call	
	100.0	26	1,838	1	41322	1838424	.TAU application
	73.2	1	1,345	2	168	672950	SNESSolve
	62.2	3	1,142	2	1282	571442	SNESJacobianEval
	62.0	1,136	1,138	2	76	569494	DMPlexJacobianFE
	60.1	0.046	1,105	1	32	1105001	Solve 1
	15.2	87	279	5	11102	55943	Mesh Setup
	13.2	0.315	241	1	32	241765	Solve 0
	7.8	80	144	38785	38785	4	<pre>MPI_Allreduce()</pre>
	7.0	69	128	6	43386	21491	DualSpaceSetUp
	6.2	1	114	4	54	28536	PCSetUp
	6.0	12	110	2	892	55407	PCSetUp_GAMG+
ear ago	3.9	70	70	1	Θ	70888	MPI_Init_thread()
	3.7	68	68	41747	Θ	2	MPI Collective Sync
	3.6	8	66	4	3536	16548	SNESFunctionEval
	2.6	45	48	171	171	281	MPI_Bcast()
	1.9	34	34	7836	Θ	4	MPI_Barrier()
	1.8	0.567	33	2	68	16912	GAMG Coarsen

TAU pprof result

- Demonstrate performance benefits from Smart-PETSc
- Matrix-vector multiplication kernel, a finite-difference application and a finite-element application
- Discussed some enhancements that have potential to further increase application performance
- Enhancements targeting GPUs will be the next set of features
- X-ScaleSolutions will be happy to interact with potential customers/collaborators

Thank You!

Sreevatsa (Sreev) Anantharamu

s.anantharamu@x-scalesolutions.com

contactus@x-scalesolutions.com

http://x-scalesolutions.com/