
Designing OpenSHMEM and Hybrid
MPI+OpenSHMEM Libraries for Exascale Systems:

MVAPICH2-X Experience

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Talk at OpenSHMEM Workshop (August 2016)

by

http://www.cse.ohio-state.edu/~panda

OpenSHMEM Workshop (August ‘16) 2Network Based Computing Laboratory

High-End Computing (HEC): ExaFlop & ExaByte

100-200

PFlops in

2016-2018

1 EFlops in

2023-2024?

10K-20K

EBytes in

2016-2018

40K EBytes

in 2020 ?

ExaFlop & HPC
•

ExaByte & BigData
•

OpenSHMEM Workshop (August ‘16) 3Network Based Computing Laboratory

Trends for Commodity Computing Clusters in the Top 500
List (http://www.top500.org)

0
10
20
30
40
50
60
70
80
90
100

0
50

100
150
200
250
300
350
400
450
500

P
e

rc
e

n
ta

ge
 o

f
C

lu
st

e
rs

N
u

m
b

e
r

o
f

C
lu

st
e

rs

Timeline

Percentage of Clusters

Number of Clusters

85%

OpenSHMEM Workshop (August ‘16) 4Network Based Computing Laboratory

Drivers of Modern HPC Cluster Architectures

Tianhe – 2 Titan Stampede Tianhe – 1A

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Accelerators / Coprocessors
high compute density, high

performance/watt
>1 TFlop DP on a chip

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM

OpenSHMEM Workshop (August ‘16) 5Network Based Computing Laboratory

Supporting Programming Models for Multi-Petaflop and
Exaflop Systems: Challenges

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP,

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE,

Aries, and Omni-Path)

Multi/Many-core
Architectures

Accelerators
(GPU and MIC)

Middleware
Co-Design

Opportunities

and

Challenges

across Various

Layers

Performance

Scalability

Resilience

Communication Library or Runtime for Programming Models

Point-to-point

Communication

Collective

Communication

Energy-

Awareness

Synchronization

and Locks

I/O and

File Systems

Fault

Tolerance

OpenSHMEM Workshop (August ‘16) 6Network Based Computing Laboratory

• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

– Scalable job start-up

• Scalable Collective communication
– Offload

– Non-blocking

– Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• Support for efficient multi-threading

• Integrated Support for GPGPUs and Accelerators

• Fault-tolerance/resiliency

• QoS support for communication and I/O

• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM,
CAF, …)

• Virtualization

• Energy-Awareness

Broad Challenges in Designing Communication Libraries for (MPI+X) at
Exascale

OpenSHMEM Workshop (August ‘16) 7Network Based Computing Laboratory

• Extreme Low Memory Footprint
– Memory per core continues to decrease

• D-L-A Framework

– Discover

• Overall network topology (fat-tree, 3D, …), Network topology for processes for a given job

• Node architecture, Health of network and node

– Learn

• Impact on performance and scalability

• Potential for failure

– Adapt

• Internal protocols and algorithms

• Process mapping

• Fault-tolerance solutions

– Low overhead techniques while delivering performance, scalability and fault-tolerance

Additional Challenges for Designing Exascale Software Libraries

OpenSHMEM Workshop (August ‘16) 8Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2012

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,625 organizations in 81 countries

– More than 382,000 (> 0.38 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Jun ‘16 ranking)

• 12th ranked 519,640-core cluster (Stampede) at TACC

• 15th ranked 185,344-core cluster (Pleiades) at NASA

• 31st ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

– Stampede at TACC (12th in Jun’16, 462,462 cores, 5.168 Plops)

http://mvapich.cse.ohio-state.edu/

OpenSHMEM Workshop (August ‘16) 9Network Based Computing Laboratory

MVAPICH2 Overall Architecture

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

Point-to-

point

Primitives

Collectives

Algorithms

Energy-

Awareness

Remote

Memory

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active

Messages
Job Startup

Introspection

& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, OmniPath)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP*
SR-

IOV
GDR

Transport Mechanisms

Shared

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

OpenSHMEM Workshop (August ‘16) 10Network Based Computing Laboratory

MVAPICH2 Software Family

Requirements MVAPICH2 Library to use

MPI with IB, iWARP and RoCE MVAPICH2

Advanced MPI, OSU INAM, PGAS and MPI+PGAS with IB and RoCE MVAPICH2-X

MPI with IB & GPU MVAPICH2-GDR

MPI with IB & MIC MVAPICH2-MIC

HPC Cloud with MPI & IB MVAPICH2-Virt

Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA

OpenSHMEM Workshop (August ‘16) 11Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture
– Unified Runtime for Hybrid MPI+PGAS programming

– OpenSHMEM Support

– Other PGAS support (UPC, CAF and UPC++)

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 12Network Based Computing Laboratory

Architectures for Exascale Systems

• Modern architectures have increasing number of cores per node, but have limited memory per core

– Memory bandwidth per core decreases

– Network bandwidth per core decreases

– Deeper memory hierarchy

– More parallelism within the node

Coherence Domain

Coherence Domain

Node

Coherence Domain

Coherence Domain

Node

Hypothetical Future Architecture*

*Marc Snir, Keynote Talk – Programming Models for High Performance Computing, Cluster, Cloud and Grid Computing (CCGrid 2013)

OpenSHMEM Workshop (August ‘16) 13Network Based Computing Laboratory

Maturity of Runtimes and Application Requirements

• MPI has been the most popular model for a long time

- Available on every major machine

- Portability, performance and scaling

- Most parallel HPC code is designed using MPI

- Simplicity - structured and iterative communication patterns

• PGAS Models

- Increasing interest in community

- Simple shared memory abstractions and one-sided communication

- Easier to express irregular communication

• Need for hybrid MPI + PGAS

- Application can have kernels with different communication characteristics

- Porting only part of the applications to reduce programming effort

OpenSHMEM Workshop (August ‘16) 14Network Based Computing Laboratory

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on communication

characteristics

• Benefits:

– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

OpenSHMEM Workshop (August ‘16) 15Network Based Computing Laboratory

Current Approaches for Hybrid Programming

• Need more network and
memory resources

• Might lead to deadlock!

• Layering one programming model over another

– Poor performance due to semantics mismatch

– MPI-3 RMA tries to address

• Separate runtime for each programming model

Hybrid (OpenSHMEM + MPI) Applications

OpenSHMEM Runtime MPI Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Class

OpenSHMEM Workshop (August ‘16) 16Network Based Computing Laboratory

The Need for a Unified Runtime

• Deadlock when a message is sitting in one runtime, but application calls the other runtime

• Prescription to avoid this is to barrier in one mode (either OpenSHMEM or MPI) before entering
the other

• Or runtimes require dedicated progress threads

• Bad performance!!

• Similar issues for MPI + UPC applications over individual runtimes

shmem_int_fadd (data at p1);

/* operate on data */

MPI_Barrier(comm);

/*
local
computation

*/
MPI_Barrier(comm);

P0 P1

OpenSHMEM
Runtime

MPI Runtime OpenSHMEM
Runtime

MPI Runtime

Active Msg

OpenSHMEM Workshop (August ‘16) 17Network Based Computing Laboratory

MVAPICH2-X for Hybrid MPI + PGAS Applications

• Unified communication runtime for MPI, UPC, UPC++,

OpenSHMEM, CAF

– Available since 2012 (starting with MVAPICH2-X 1.9)

– http://mvapich.cse.ohio-state.edu

• Feature Highlights

– Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, UPC++,

MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC

– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC

v1.2 standard compliant (with initial support for UPC 1.3), CAF

2008 standard (OpenUH), UPC++

– Scalable Inter-node and intra-node communication – point-to-

point and collectives

http://mvapich.cse.ohio-state.edu/

OpenSHMEM Workshop (August ‘16) 18Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture
– Unified Runtime for Hybrid MPI+PGAS programming

– OpenSHMEM Support

– Other PGAS support (UPC, CAF and UPC++)

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 19Network Based Computing Laboratory

OpenSHMEM Design in MVAPICH2-X

• OpenSHMEM Stack based on OpenSHMEM Reference Implementation

• OpenSHMEM Communication over MVAPICH2-X Runtime

– Uses active messages, atomic and one-sided operations and remote registration cache

Communication API
Symmetric Memory

Management API

Minimal Set of Internal API

OpenSHMEM API

InfiniBand, RoCE, iWARP

Data
Movement

CollectivesAtomics
Memory

Management

Active
Messages

One-sided
Operations

MVAPICH2-X Runtime
Remote

Atomic Ops

Enhanced
Registration Cache

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance

Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012

OpenSHMEM Workshop (August ‘16) 20Network Based Computing Laboratory

OpenSHMEM Data Movement: Performance
shmem_putmem shmem_getmem

• OSU OpenSHMEM micro-benchmarks

- http://mvapich.cse.ohio-state.edu/benchmarks/

• Slightly better performance for putmem and getmem with MVAPICH2-X

• MVAPICH2-X 2.2 RC1, Broadwell CPU, InfiniBand EDR Interconnect

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256 512 1K 2K

Ti
m

e
 (

u
s)

Message Size

UH-SHMEM MV2X-SHMEM

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256 512 1K 2K

Ti
m

e
 (

u
s)

Message Size

UH-SHMEM MV2X-SHMEM

http://mvapich.cse.ohio-state.edu/benchmarks/

OpenSHMEM Workshop (August ‘16) 21Network Based Computing Laboratory

OpenSHMEM Atomic Operations: Performance

• OSU OpenSHMEM micro-benchmarks (OMB v5.3)

• MV2-X SHMEM performs up to 22% better compared to UH-SHMEM

0

0.5

1

1.5

2

2.5

3

3.5

fadd finc add inc cswap swap

Ti
m

e
 (

u
s)

UH-SHMEM MV2X-SHMEM

OpenSHMEM Workshop (August ‘16) 22Network Based Computing Laboratory

Collective Communication: Performance On Stampede
Reduce (1,024 processes) Broadcast (1,024 processes)

Collect (1,024 processes)

Barrier

0

50

100

128 256 512 1024 2048

Ti
m

e
 (

u
s)

No. of Processes

1

10

100

1000

10000

100000

1000000

4 16 64 256 1K 4K 16K 64K 256K

Ti
m

e
 (

u
s)

Message Size

1

10

100

1000

Ti
m

e
 (

u
s)

Message Size

1

10

100

1000

1 4 16 64 256 1K 4K 16K 64K

Ti
m

e
 (

u
s)

Message Size

MV2X-SHMEM

OpenSHMEM Workshop (August ‘16) 23Network Based Computing Laboratory

• Near-constant MPI and OpenSHMEM

initialization time at any process count

• 10x and 30x improvement in startup time

of MPI and OpenSHMEM respectively at

16,384 processes

• Memory consumption reduced for

remote endpoint information by

O(processes per node)

• 1GB Memory saved per node with 1M

processes and 16 processes per node

Towards High Performance and Scalable OpenSHMEM Startup at Exascale

P M

O

Job Startup Performance

M
em

o
ry

 R
eq

u
ir

ed
 t

o
 S

to
re

En

d
p

o
in

t
In

fo
rm

at
io

n

a b c d

eP

M

PGAS – State of the art

MPI – State of the art

O PGAS/MPI – Optimized

PMIX_Ring

PMIX_Ibarrier

PMIX_Iallgather

Shmem based PMI

b

c

d

e

a
On-demand
Connection

On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K

Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)

PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st

European MPI Users' Group Meeting (EuroMPI/Asia ’14)

Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15)

SHMEMPMI – Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda, 16th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16) , Accepted for Publication

a

b

c d

e

OpenSHMEM Workshop (August ‘16) 24Network Based Computing Laboratory

On-demand Connection Management for OpenSHMEM+MPI

0

10

20

30

32 64 128 256 512 1K 2K 4KTi
m

e
 T

ak
e

n
 (

Se
co

n
d

s)

Number of Processes

Breakdown of OpenSHMEM Startup

Connection Setup

PMI Exchange

Memory Registration

Shared Memory Setup

Other

0

20

40

60

80

100

120

16 64 256 1K 4K

Ti
m

e
 T

ak
e

n
 (

Se
co

n
d

s)

Number of Processes

Performance of OpenSHMEM
Initialization and Hello World

Hello World - Static

Initialization - Static

Hello World - On-demand

Initialization - On-demand

• Static connection establishment wastes memory and takes a lot of time

• On-demand connection management improves OpenSHMEM initialization time by 29.6 times

• Time taken for Hello World reduced by 8.31 times at 8,192 processes

• Available since MVAPICH2-X 2.1rc1

OpenSHMEM Workshop (August ‘16) 25Network Based Computing Laboratory

OpenSHMEM 1.3 Support: NBI Operations

0

1000000

2000000

3000000

4000000

2 4 8
1

6
3

2
6

4
1

2
8

2
5

6
5

1
2

1
K

2
K

4
K

8
K

1
6

K
3

2
K

6
4

K
1

2
8

K
2

5
6

K
5

1
2

K
1

MM
e

ss
ag

e
 R

at
e

Message Size (Bytes)

Blocking NBI

0
1000000
2000000
3000000
4000000

M
e

ss
ag

e
 R

at
e

Message Size (Bytes)

Blocking NBI

Inter-node Put Inter-node Get

0

50

100

150

32K 64K 128K 256K 512K 1M

O
ve

rl
ap

 (
%

)

Message Size (Bytes)

Blocking NBI

Inter-node Get

• Higher message rate

• Perfect overlap of

computation/Communication

• Extension of OMB with NBI benchmarks

• Will be available with next releases of

MVAPICH2-X

OpenSHMEM Workshop (August ‘16) 26Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture
– Unified Runtime for Hybrid MPI+PGAS programming

– OpenSHMEM Support

– Other PGAS support (UPC, CAF and UPC++)

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 27Network Based Computing Laboratory

0

1000

2000

3000

4000

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

Ti
m

e
 (

m
s)

Message Size

UPC-GASNet
UPC-OSU

0
50

100
150
200
250

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

Ti
m

e
 (

m
s)

Message Size

UPC-GASNet

UPC-OSU 2X

UPC Collectives Performance
Broadcast (2,048 processes) Scatter (2,048 processes)

Gather (2,048 processes) Exchange (2,048 processes)

0

5000

10000

15000

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

Ti
m

e
 (

u
s)

Message Size

UPC-GASNet
UPC-OSU

0

100

200

300

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

Ti
m

e
 (

m
s)

Message Size

UPC-GASNet

UPC-OSU

25X

2X

35%

J. Jose, K. Hamidouche, J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC (HiPS’14, in association with

IPDPS’14)

OpenSHMEM Workshop (August ‘16) 28Network Based Computing Laboratory

Performance Evaluations for CAF model

0

1000

2000

3000

4000

5000

6000

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (byte)

GASNet-IBV

GASNet-MPI

MV2X

0

1000

2000

3000

4000

5000

6000

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (byte)

GASNet-IBV

GASNet-MPI

MV2X

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2X

L
a

te
n

c
y

(m
s

)

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2XL
a

te
n

c
y
 (

m
s

)

0 100 200 300

bt.D.256

cg.D.256

ep.D.256

ft.D.256

mg.D.256

sp.D.256

GASNet-IBV GASNet-MPI MV2X

Time (sec)

Get NAS-CAFPut

• Micro-benchmark improvement (MV2X vs. GASNet-IBV, UH CAF test-suite)

– Put bandwidth: 3.5X improvement on 4KB; Put latency: reduce 29% on 4B

• Application performance improvement (NAS-CAF one-sided implementation)

– Reduce the execution time by 12% (SP.D.256), 18% (BT.D.256)

3.5X

29%

12%

18%

J. Lin, K. Hamidouche, X. Lu, M. Li and D. K. Panda, High-performance Co-array Fortran support with MVAPICH2-X: Initial

experience and evaluation, HIPS’15

OpenSHMEM Workshop (August ‘16) 29Network Based Computing Laboratory

UPC++ Collectives Performance

MPI + {UPC++}

application

GASNet Interfaces

UPC++

Runtime

Network

Conduit (MPI)

MVAPICH2-X

Unified

communication

Runtime (UCR)

MPI + {UPC++}

application

UPC++ Runtime
MPI

Interfaces

• Full and native support for hybrid MPI + UPC++ applications

• Better performance compared to IBV and MPI conduits

• OSU Micro-benchmarks (OMB) support for UPC++

• Available with the latest release of MVAPICH2-X 2.2RC1

0

5000

10000

15000

20000

25000

30000

35000

40000

T
im

e
(u

s)

Message Size (bytes)

GASNet_MPI

GASNET_IBV

MV2-X

14x

Inter-node Broadcast (64 nodes 1:ppn)

OpenSHMEM Workshop (August ‘16) 30Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM
– Graph500

– Out-of-Core Sort

– MiniMD

– MaTEx

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 31Network Based Computing Laboratory

• Identify the communication critical section (mpiP, HPCToolkit)

• Allocate memory in shared address space

• Convert MPI Send/Recvs to assignment operations or one-sided operations

– Non-blocking operations can be utilized

– Coalescing for reducing the network operations

• Introduce synchronization operations for data consistency

– After Put operations or before get operations

• Load balance through global view of data

Incremental Approach to Exploit One-sided Operations

OpenSHMEM Workshop (August ‘16) 32Network Based Computing Laboratory

• Breadth First Search (BFS) Traversal

• Uses ‘Level Synchronized BFS Traversal Algorithm

– Each process maintains – ‘CurrQueue’ and ‘NewQueue’

– Vertices in CurrQueue are traversed and newly discovered vertices are sent to their

owner processes

– Owner process receives edge information

• If not visited; updates parent information and adds to NewQueue

– Queues are swapped at end of each level

– Initially the ‘root’ vertex is added to currQueue

– Terminates when queues are empty

Graph500 Benchmark – The Algorithm

OpenSHMEM Workshop (August ‘16) 33Network Based Computing Laboratory

• Communication and co-ordination using one-sided routines and fetch-add

atomic operations

– Every process keeps receive buffer

– Synchronization using atomic fetch-add routines

• Level synchronization using non-blocking barrier

– Enables more computation/communication overlap

• Load Balancing utilizing OpenSHMEM shmem_ptr

– Adjacent processes can share work by reading shared memory

Hybrid Graph500 Design

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM

Programming Models, International Supercomputing Conference (ISC '13), June 2013

OpenSHMEM Workshop (August ‘16) 34Network Based Computing Laboratory

Pseudo Code For Both MPI and Hybrid Versions
Algorithm 1: EXISTING MPI SEND/RECV

while true do

while CurrQueue != NULL do

for vertex u in CurrQueue do

HandleReceive()

u ← Dequeue(CurrQueue)

Send(u, v) to owner

end

Send empty messages to all others

while all_done != N − 1 do

HandleReceive()

end

// Procedure: HandleReceive

if rcv_count = 0 then

all_ done ← all_done + 1

else

update (NewQueue, v)

Algorithm 2: HYBRID VERSION

while true do

while CurrQueue 6= NULL do

for vertex u in CurrQueue do

u ← Dequeue(CurrQueue)

to the adjacent points to u do

Shmem_fadd(owner, size,recv_index)

shmem_put(owner, size,recv_buf)

end

end

end

if recv_buf[size] = done then

Set ← 1

end

OpenSHMEM Workshop (August ‘16) 35Network Based Computing Laboratory

Graph500 - BFS Traversal Time

• Hybrid design performs better than MPI implementations

• 16,384 processes

- 1.5X improvement over MPI-CSR

- 13X improvement over MPI-Simple (Same communication characteristics)

• Strong Scaling

Graph500 Problem Scale = 29

0

5

10

15

20

25

30

35

4K 8K 16K

Ti
m

e
 (

s)

No. of Processes

13X

7.6X

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1024 2048 4096 8192Tr
av

e
rs

e
d

 E
d

ge
s

P
e

r
Se

co
n

d

of Processes

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid

Performance Strong Scaling

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500

Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International

Supercomputing Conference (ISC '13), June 2013

OpenSHMEM Workshop (August ‘16) 36Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM
– Graph500

– Out-of-Core Sort

– MiniMD

– MaTEx

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 37Network Based Computing Laboratory

Out-of-Core Sorting

• Sorting: One of the most common algorithms in data analytics

• Sort Benchmark (sortbenchmark.org) ranks various frameworks available

for large scale data analytics

• Read data from a global filesystem, sort it and write back to global

filesystem

OpenSHMEM Workshop (August ‘16) 38Network Based Computing Laboratory

0

0.1

0.2

0.3

0.4

512-1TB 1024-2TB 2048-4TB 4096-8TB

So
rt

 R
at

e
 (

TB
/m

in
)

No. of Processes - Input Data

MPI
Hybrid-SR
Hybrid-ER

Hybrid MPI+OpenSHMEM Sort Application
Execution Time

J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche, K. Schulz, H. Sundar and D. Panda Designing Scalable Out-of-core Sorting with
Hybrid MPI+PGAS Programming Models, PGAS’14

Weak Scalability

• Performance of Hybrid (MPI+OpenSHMEM) Sort Application

• Execution Time (seconds)
- 1TB Input size at 8,192 cores: MPI – 164, Hybrid-SR (Simple Read) – 92.5,

Hybrid-ER (Eager Read) - 90.36

- 45% improvement over MPI-based design

• Weak Scalability (configuration: input size of 1TB per 512 cores)

- At 4,096 cores: MPI – 0.25 TB/min, Hybrid-SR – 0.34 TB/min, Hybrid-SR – 0.38 TB/min

- 38% improvement over MPI based design

38%

0

200

400

600

800

1024-1TB 2048-1TB 4096-1TB 8192-1TB

Ti
m

e
 (

se
c)

No. of Processes - Input Data

MPI
Hybrid-SR
Hybrid-ER

45%

OpenSHMEM Workshop (August ‘16) 39Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM
– Graph500

– Out-of-Core Sort

– MiniMD

– MaTEx

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 40Network Based Computing Laboratory

Overview of MiniMD
• MiniMD is a Molecular Dynamics (MD) mini-application in the

Mantevo project at Sandia National Laboratories

• It has a stencil communication pattern which employs point-to-point

message passing with irregular data

• Primary work loop inside MiniMD

– Migrate the atoms to different ranks in every 20th iteration

– Exchange position information of atoms in boundary regions

– Compute forces based on local atoms and those in boundary region from

neighboring ranks

– Exchange force information of atoms in boundary regions

– Update velocities and positions of local atoms

OpenSHMEM Workshop (August ‘16) 41Network Based Computing Laboratory

MiniMD – Total Execution Time

• Hybrid design performs better than MPI implementation

• 1,024 processes

- 17% improvement over MPI version

• Strong Scaling

Input size: 128 * 128 * 128

Performance Strong Scaling

0

1000

2000

3000

512 1,024

Hybrid-Barrier MPI-Original Hybrid-Advanced

17%

0

1000

2000

3000

256 512 1,024

Hybrid-Barrier MPI-Original Hybrid-Advanced

Ti
m

e
 (

m
s)

Ti
m

e
 (

m
s)

of Cores # of Cores

OpenSHMEM Workshop (August ‘16) 42Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM
– Graph500

– Out-of-Core Sort

– MiniMD

– MaTEx

• Integrated Support for GPGPUs

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 43Network Based Computing Laboratory

Accelerating MaTEx k-NN with Hybrid MPI and OpenSHMEM

KDD (2.5GB) on 512 cores

9.0%

KDD-tranc (30MB) on 256 cores

27.6%

• Benchmark: KDD Cup 2010 (8,407,752 records, 2 classes, k=5)
• For truncated KDD workload on 256 cores, reduce 27.6% execution time
• For full KDD workload on 512 cores, reduce 9.0% execution time

J. Lin, K. Hamidouche, J. Zhang, X. Lu, A. Vishnu, D. Panda. Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM,

OpenSHMEM 2015

• MaTEx: MPI-based Machine learning algorithm library
• k-NN: a popular supervised algorithm for classification
• Hybrid designs:

– Overlapped Data Flow; One-sided Data Transfer; Circular-buffer Structure

OpenSHMEM Workshop (August ‘16) 44Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs
– Overview of CUDA-Aware Concepts

– Designing Efficient MPI Runtime for GPU Clusters

– Designing Efficient OpenSHMEM Runtime for GPU Clusters

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 45Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:

cudaMemcpy(s_hostbuf, s_devbuf, . . .);

MPI_Send(s_hostbuf, size, . . .);

At Receiver:

MPI_Recv(r_hostbuf, size, . . .);

cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces

High Productivity and Low Performance

MPI + CUDA - Naive

OpenSHMEM Workshop (August ‘16) 46Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:
for (j = 0; j < pipeline_len; j++)

cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j * blksz,

…);

for (j = 0; j < pipeline_len; j++) {

while (result != cudaSucess) {

result = cudaStreamQuery(…);

if(j > 0) MPI_Test(…);

}

MPI_Isend(s_hostbuf + j * block_sz, blksz . . .);

}

MPI_Waitall();

<<Similar at receiver>>

• Pipelining at user level with non-blocking MPI and CUDA interfaces

Low Productivity and High Performance

MPI + CUDA - Advanced

OpenSHMEM Workshop (August ‘16) 47Network Based Computing Laboratory

• Support GPU to GPU communication through standard MPI interfaces

- e.g. enable MPI_Send, MPI_Recv from/to GPU memory

• Provide high performance without exposing low level details to the programmer

- Pipelined data transfer which automatically provides optimizations inside MPI

library without user tuning

• A new design incorporated in MVAPICH2 to support this functionality

Can this be done within MPI Library?

OpenSHMEM Workshop (August ‘16) 48Network Based Computing Laboratory

At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware MPI Library: MVAPICH2-GPU

OpenSHMEM Workshop (August ‘16) 49Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Redesign with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs
– Overview of CUDA-Aware Concepts

– Designing Efficient MPI Runtime for GPU Clusters

– Designing Efficient OpenSHMEM Runtime for GPU Clusters

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 50Network Based Computing Laboratory

• OFED with support for GPUDirect RDMA is developed by NVIDIA

and Mellanox

• OSU has a design of MVAPICH2 using GPUDirect RDMA

– Hybrid design using GPU-Direct RDMA

• GPUDirect RDMA and Host-based pipelining

• Alleviates P2P bandwidth bottlenecks on SandyBridge and

IvyBridge

• Similar bottlenecks on Haswell

– Support for communication using multi-rail

– Support for Mellanox Connect-IB and ConnectX VPI adapters

– Support for RoCE with Mellanox ConnectX VPI adapters

GPU-Direct RDMA (GDR) with CUDA

IB
Adapter

System
Memory

GPU
Memory

GPU

CPU

Chipset

SNB E5-2670 IVB E5-2680V2

SNB E5-2670 /

IVB E5-2680V2

Intra-socket Inter-sockets Intra-socket Inter-sockets

P2P read <1.0 GBs <300 MBs 3.5 GBs <300 MBs

P2P write 5.2 GBs <300 MBs 6.4 GBs <300 MBs

OpenSHMEM Workshop (August ‘16) 51Network Based Computing Laboratory

0

1000

2000

3000

4000

1 4 16 64 256 1K 4K

MV2-GDR2.2rc1
MV2-GDR2.0b
MV2 w/o GDR

GPU-GPU Internode Bi-Bandwidth

Message Size (bytes)

B
i-

B
an

d
w

id
th

 (
M

B
/s

)

0

5

10

15

20

25

30

0 2 8 32 128 512 2K

MV2-GDR2.2rc1 MV2-GDR2.0b

MV2 w/o GDR

GPU-GPU internode latency

Message Size (bytes)

La
te

n
cy

 (
u

s)

MVAPICH2-GDR-2.2rc1
Intel Ivy Bridge (E5-2680 v2) node - 20 cores

NVIDIA Tesla K40c GPU
Mellanox Connect-X4 EDR HCA

CUDA 7.5
Mellanox OFED 3.0 with GPU-Direct-RDMA

10x
2X

11x

Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)

2.18us

0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1K 4K

MV2-GDR2.2rc1

MV2-GDR2.0b

MV2 w/o GDR

GPU-GPU Internode Bandwidth

Message Size (bytes)

B
an

d
w

id
th

(M

B
/s

) 11X

2X

3X

OpenSHMEM Workshop (August ‘16) 52Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

• HoomdBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768

MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768

MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

A
ve

ra
ge

 T
im

e
St

ep
s

p
er

se

co
n

d
 (

TP
S)

Number of Processes

MV2 MV2+GDR

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32A
ve

ra
ge

 T
im

e
St

ep
s

p
er

se

co
n

d
 (

TP
S)

Number of Processes

64K Particles 256K Particles

2X
2X

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

OpenSHMEM Workshop (August ‘16) 53Network Based Computing Laboratory

• Overview of MVAPICH2-X PGAS Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs
– Overview of CUDA-Aware Concepts

– Designing Efficient MPI Runtime for GPU Clusters

– Designing Efficient OpenSHMEM Runtime for GPU Clusters

• Integrated Support for MICs

Outline

OpenSHMEM Workshop (August ‘16) 54Network Based Computing Laboratory

Limitations of OpenSHMEM for GPU Computing

• OpenSHMEM memory model does not support disjoint memory address spaces -
case with GPU clusters

PE 0

Existing OpenSHMEM Model with CUDA

• Copies severely limit the performance

PE 1

GPU-to-GPU
Data Movement

PE 0

cudaMemcpy (host_buf, dev_buf, . . .)
shmem_putmem (host_buf, host_buf, size, pe)
shmem_barrier (…)

host_buf = shmem_malloc (…)

PE 1

shmem_barrier (. . .)
cudaMemcpy (dev_buf, host_buf, size, . . .)

host_buf = shmem_malloc (…)

• Synchronization negates the benefits of one-sided communication

• Similar issues with UPC

cudaMemcpy (host_buf, dev_buf, . . .)

cudaMemcpy (host_buf, dev_buf, . . .)

shmem_barrier (…)

shmem_barrier (…)

OpenSHMEM Workshop (August ‘16) 55Network Based Computing Laboratory

Global Address Space with Host and Device Memory

Host Memory

Private

Shared

Host Memory

Device Memory Device Memory

Private

Shared

Private

Shared

Private

Shared

shared space
on host memory

shared space
on device memory

N N

N N

• Extended APIs:

• heap_on_device/heap_on_host

• a way to indicate location of heap

• host_buf = shmalloc (sizeof(int), 0);

• dev_buf = shmalloc (sizeof(int), 1);

CUDA-Aware OpenSHMEM
Same design for UPC
PE 0

shmem_putmem (dev_buf, dev_buf, size, pe)

PE 1

dev_buf = shmalloc (size, 1);

dev_buf = shmalloc (size, 1);
S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K. Panda, Extending

OpenSHMEM for GPU Computing, IPDPS’13

OpenSHMEM Workshop (August ‘16) 56Network Based Computing Laboratory

• After device memory becomes part of the global shared space:

- Accessible through standard OpenSHMEM communication APIs

- Data movement transparently handled by the runtime

- Preserves one-sided semantics at the application level

• Efficient designs to handle communication

- Inter-node transfers use host-staged transfers with pipelining

- Intra-node transfers use CUDA IPC

- Possibility to take advantage of GPUDirect RDMA (GDR)

• Goal: Enabling High performance one-sided communications semantics with GPU devices

CUDA-aware OpenSHMEM Runtime

OpenSHMEM Workshop (August ‘16) 57Network Based Computing Laboratory

• GDR for small/medium message sizes

• Host-staging for large message to avoid PCIe

bottlenecks

• Hybrid design brings best of both

• 3.13 us Put latency for 4B (7X improvement) and 4.7

us latency for 4KB

• 9X improvement for Get latency of 4B

Exploiting GDR: OpenSHMEM: Inter-node Evaluation

0

5

10

15

20

25

1 4 16 64 256 1K 4K

Host-Pipeline

GDR

Small Message shmem_put D-D

Message Size (bytes)

La
te

n
cy

 (
u

s)

0

200

400

600

800

8K 32K 128K 512K 2M

Host-Pipeline

GDR

Large Message shmem_put D-D

Message Size (bytes)

La
te

n
cy

 (
u

s)

0
5

10
15
20
25
30
35

1 4 16 64 256 1K 4K

Host-Pipeline

GDR

Small Message shmem_get D-D

Message Size (bytes)

La
te

n
cy

 (
u

s)

7X

9X

OpenSHMEM Workshop (August ‘16) 58Network Based Computing Laboratory

0

2

4

6

8

10

1 4 16 64 256 1K 4K

IPC GDR

Small Message shmem_put D-H

Message Size (bytes)

La
te

n
cy

 (
u

s)

• GDR for small and medium message sizes

• IPC for large message to avoid PCIe bottlenecks

• Hybrid design brings best of both

• 2.42 us Put D-H latency for 4 Bytes (2.6X improvement) and 3.92 us latency for 4 KBytes

• 3.6X improvement for Get operation

• Similar results with other configurations (D-D, H-D and D-H)

OpenSHMEM: Intra-node Evaluation

0

2

4

6

8

10

12

14

1 4 16 64 256 1K 4K

IPC GDR

Small Message shmem_get D-H

Message Size (bytes)

La
te

n
cy

 (
u

s)

2.6X 3.6X

OpenSHMEM Workshop (August ‘16) 59Network Based Computing Laboratory

0

0.05

0.1

8 16 32 64

Ex
e

cu
ti

o
n

 t
im

e

(s
e

c)

Number of GPU Nodes

Host-Pipeline Enhanced-GDR

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c +

Mellanox Connect-IB)

- New designs achieve 20% and 19% improvements on 32

and 64 GPU nodes

Application Evaluation: GPULBM and 2DStencil

19%

0

100

200

8 16 32 64

Ev
o

lu
ti

o
n

 T
im

e

(m
se

c)

Number of GPU Nodes

Weak Scaling
Host-Pipeline Enhanced-GDR

GPULBM: 64x64x64 2DStencil 2Kx2K
• Redesign the application

• CUDA-Aware MPI : Send/Recv=> hybrid CUDA-Aware
MPI+OpenSHMEM
• cudaMalloc =>shmalloc(size,1);
• MPI_Send/recv => shmem_put + fence
• 53% and 45%
• Degradation is due to small
Input size
• Will be available in future MVAPICH2-GDR

45 %

1. K. Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C. Ching and D. K. Panda, Exploiting

GPUDirect RDMA in Designing High Performance OpenSHMEM for GPU Clusters. IEEE Cluster 2015.

2. K. Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C. Ching and D. K. Panda, CUDA-Aware

OpenSHMEM: Extensions and Designs for High Performance OpenSHMEM on GPU Clusters.

To appear in PARCO.

OpenSHMEM Workshop (August ‘16) 60Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs

• Integrated Support for MICs
– Designing Efficient MPI Runtime for Intel MIC

– Designing Efficient OpenSHMEM Runtime for Intel MIC

Outline

OpenSHMEM Workshop (August ‘16) 61Network Based Computing Laboratory

Designs for Clusters with IB and MIC

• Offload Mode

• Intranode Communication

• Coprocessor-only Mode

• Symmetric Mode

• Internode Communication

• Coprocessors-only

• Symmetric Mode

• Multi-MIC Node Configurations

OpenSHMEM Workshop (August ‘16) 62Network Based Computing Laboratory

Host Proxy-based Designs in MVAPICH2-MIC

• Direct IB channels is limited by P2P read bandwidth

• MVAPICH2-MIC uses a hybrid DirectIB + host proxy-based approach to work around this

962.86 MB/s
5280 MB/s

P2P Read / IB Read from Xeon Phi
P2P Write/IB Write to Xeon Phi

6977 MB/s 6296 MB/s

IB Read from Host

Xeon Phi-to-Host

SNB E5-2670

S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh, K. Kandalla, H. Subramoni and D. K. Panda, MVAPICH-PRISM: A
Proxy-based Communication Framework using InfiniBand and SCIF for Intel MIC Clusters Int'l Conference on

Supercomputing (SC '13), November 2013

OpenSHMEM Workshop (August ‘16) 63Network Based Computing Laboratory

MIC-RemoteMIC Point-to-Point Communication (Active Proxy)

osu_latency (small)

osu_bw osu_bibw
B

ette
r

B
et

te
r

B
et

te
r

B
ette

r

osu_latency (large)

0

2000

4000

6000

1 16 256 4K 64K 1M

B
a

n
d

w
id

th

(M
B

/s
ec

)

Message Size (Bytes)

0

2000

4000

6000

8000

10000

1 16 256 4K 64K 1M

B
a
n

d
w

id
th

(M
B

/s
ec

)

Message Size (Bytes)

5681 8290

0

5

10

15

20

25

0 2 8 32 128 512 2K

L
a
te

n
cy

 (
u

se
c)

Message Size (Bytes)

MV2-MIC-2.0GA w/ proxy

MV2-MIC-2.0GA w/o proxy

0

1000

2000

3000

4000

5000

8K 32K 128K 512K 2M

L
a
te

n
cy

 (
u

se
c)

Message Size (Bytes)

OpenSHMEM Workshop (August ‘16) 64Network Based Computing Laboratory

• Overview of MVAPICH2-X Architecture

• Case Study of Applications Re-design with Hybrid
MPI+OpenSHMEM

• Integrated Support for GPGPUs

• Integrated Support for MICs
– Designing Efficient MPI Runtime for Intel MIC

– Designing Efficient OpenSHMEM Runtime for Intel MIC

Outline

OpenSHMEM Workshop (August ‘16) 65Network Based Computing Laboratory

Need for Non-Uniform Memory Allocation in OpenSHMEM

• MIC cores have limited

memory per core

• OpenSHMEM relies on

symmetric memory,

allocated using shmalloc()

• shmalloc() allocates same amount of memory on all PEs

• For applications running in symmetric mode, this limits the total heap size

• Similar issues for applications (even host-only) with memory load imbalance

(Graph500, Out-of-Core Sort, etc.)

• How to allocate different amounts of memory on host and MIC cores, and still be

able to communicate?

MIC MemoryHost Memory

Host Cores MIC Cores

Memory per core

OpenSHMEM Workshop (August ‘16) 66Network Based Computing Laboratory

OpenSHMEM Design for MIC Clusters

OpenSHMEM
Applications

Multi/Many-Core Architectures
with memory heterogeneity

MVAPICH2-X OpenSHMEM Runtime

InfiniBand Networks

OpenSHMEM
Programming Model

InfiniBand
Channel

SCIF Channel
Shared Memory/

CMA Channel

Proxy based Communication

Extensions

Application
Co-Design

Symmetric Memory Manager

• Non-Uniform Memory Allocation:

– Team-based Memory Allocation

(Proposed Extensions)

– Address Structure for non-uniform memory allocations

void shmem_team_create(shmem_team_t team, int *ranks,

int size, shmem_team_t *newteam);

void shmem_team_destroy(shmem_team_t *team);

void shmem_team_split(shmem_team_t team, int color,

int key, shmem_team_t *newteam);

int shmem_team_rank(shmem_team_t team);

int shmem_team_size(shmem_team_t team);

void *shmalloc_team (shmem_team_t team, size_t size);

void shfree_team(shmem_team_t team, void *addr);

OpenSHMEM Workshop (August ‘16) 67Network Based Computing Laboratory

HOST2

Proxy-based Designs for OpenSHMEM

OpenSHMEM Put using Active Proxy OpenSHMEM Get using Active Proxy

HOST1

MIC1
H
C
A

HOST2

MIC2
H
C
A

(1) IB REQ

(2) SCIF
Read

(2) IB
Write

(3) IB
FIN

HOST1

MIC1
H
C
A

MIC2
H
C
A

(3) IB
FIN

(2) SCIF
Read

(2) IB
Write

(1) IB
REQ

• MIC architectures impose limitations on read bandwidth when HCA reads from
MIC memory

– Impacts both put and get operation performance

• Solution: Pipelined data transfer by proxy running on host using IB and SCIF
channels

• Improves latency and bandwidth!

OpenSHMEM Workshop (August ‘16) 68Network Based Computing Laboratory

OpenSHMEM Put/Get Performance

OpenSHMEM Put Latency OpenSHMEM Get Latency

0

1000

2000

3000

4000

5000

1 4

1
6

6
4

2
5

6

1
K

4
K

1
6

K

6
4

K

2
5

6
K

1
M

4
M

La
te

n
cy

 (
u

s)

Message Size

MV2X-Def
MV2X-Opt

0

1000

2000

3000

4000

5000

1 4

1
6

6
4

2
5

6

1
K

4
K

1
6

K

6
4

K

2
5

6
K

1
M

4
M

La
te

n
cy

 (
u

s)

Message Size

MV2X-Def

MV2X-Opt

• Proxy-based designs alleviate hardware limitations

• Put Latency of 4M message: Default: 3911us, Optimized: 838us

• Get Latency of 4M message: Default: 3889us, Optimized: 837us

4.5X 4.6X

OpenSHMEM Workshop (August ‘16) 69Network Based Computing Laboratory

Graph500 Evaluations with Extensions

• Redesigned Graph500 using MIC to overlap computation/communication
– Data Transfer to MIC memory; MIC cores pre-processes received data

– Host processes traverses vertices, and sends out new vertices

• Graph500 Execution time at 1,024 processes:
– 16 processes on each Host and MIC node

– Host-Only: .33s, Host+MIC with Extensions: .26s

• Magnitudes of improvement compared to default symmetric mode
– Default Symmetric Mode: 12.1s, Host+MIC Extensions: 0.16s

0

0.2

0.4

0.6

0.8

128 256 512 1024
Ex

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Processes

Host Host+MIC (extensions)

26%

J. Jose, K. Hamidouche, X. Lu, S. Potluri, J. Zhang, K. Tomko and D. K. Panda, High Performance OpenSHMEM for Intel MIC Clusters: Extensions,

Runtime Designs and Application Co-Design, IEEE International Conference on Cluster Computing (CLUSTER '14) (Best Paper Finalist)

OpenSHMEM Workshop (August ‘16) 70Network Based Computing Laboratory

• GPU-initiated communication with GDS technology for OpenSHMEM
– Similar to NVSHMEM but for inter-node communication

– Hybrid GDS-NVSHMEM

• Heterogeneous Memory support for OpenSHMEM
– NVRAM-/NVMe- aware protocols

• Energy-Aware OpenSHMEM runtime
– Energy-Performance tradeoffs

– Model extensions for energy-awareness

• Co-design approach at different level
– Programming Model and Runtime

– Hardware Support

– Application

Looking into the Future ….

OpenSHMEM Workshop (August ‘16) 71Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by

OpenSHMEM Workshop (August ‘16) 72Network Based Computing Laboratory

Personnel Acknowledgments
Current Students

– A. Augustine (M.S.)

– A. Awan (Ph.D.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

– S. Gugnani (Ph.D.)

Past Students

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist

– S. Sur

Past Post-Docs

– H. Wang

– X. Besseron

– H.-W. Jin

– M. Luo

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– J. Hashimi (Ph.D.)

– N. Islam (Ph.D.)

– M. Li (Ph.D.)

– K. Kulkarni (M.S.)

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– E. Mancini

– S. Marcarelli

– J. Vienne

– D. Banerjee

– J. Lin

Current Research Scientists

– K. Hamidouche

– X. Lu

Past Programmers

– D. Bureddy

Current Research Specialist

– M. Arnold

– J. Perkins

– H. Subramoni

OpenSHMEM Workshop (August ‘16) 73Network Based Computing Laboratory

• August 15-17, 2016; Columbus, Ohio, USA

• Keynote Talks, Invited Talks, Invited Tutorials by Intel, NVIDIA, Contributed Presentations, Tutorial on MVAPICH2, MVAPICH2-X,

MVAPICH2-GDR, MVAPICH2-MIC,MVAPICH2-Virt, MVAPICH2-EA, OSU INAM as well as other optimization and tuning hints

Upcoming 4th Annual MVAPICH User Group (MUG) Meeting

• Tutorials

– Recent Advances in CUDA for GPU Cluster Computing

• Davide Rossetti, Sreeram Potluri (NVIDIA)

– Designing High-Performance Software on Intel Xeon Phi and Omni-Path Architecture

• Ravindra Babu Ganapathi, Sayantan Sur (Intel)

– Enabling Exascale Co-Design Architecture

• Devendar Bureddy (Mellanox)

– How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2

Libraries

• The MVAPICH Team

• Demo and Hands-On Session

– Performance Engineering of MPI Applications with MVAPICH2 and TAU

• Sameer Shende (University of Oregon, Eugene) with Hari Subramoni, and Khaled

Hamidouche (The Ohio State University)

– Visualize and Analyze your Network Activities using INAM (InfiniBand Networking and

Monitoring tool)

• MVAPICH Group, The Ohio State University(The Ohio State University)

• Student Travel Support available through NSF
• More details at: http://mug.mvapich.cse.ohio-state.edu

• Keynote Speakers

– Thomas Schulthess (CSCS, Switzerland)

– Gilad Shainer (Mellanox)

• Invited Speakers (Confirmed so far)

– Kapil Arya (Mesosphere, Inc. and Northeastern University)

– Jens Glaser (University of Michigan)

– Darren Kerbyson (Pacific Northwest National Laboratory)

– Ignacio Laguna (Lawrence Livermore National Laboratory)

– Adam Moody (Lawrence Livermore National Laboratory)

– Takeshi Nanri (University of Kyushu, Japan)

– Davide Rossetti (NVIDIA)

– Sameer Shende (University of Oregon)

– Karl Schulz (Intel)

– Filippo Spiga (University of Cambridge, UK)

– Sayantan Sur (Intel)

– Rick Wagner (San Diego Supercomputer Center)

– Yajuan Wang (Inspur, China)

http://mug.mvapich.cse.ohio-state.edu/

OpenSHMEM Workshop (August ‘16) 74Network Based Computing Laboratory

International Workshop on Extreme Scale Programming
Models and Middleware (ESPM2)

ESPM2 2016 will be held with the Supercomputing Conference (SC ‘16), at Salt Lake City,

Utah, on Friday, November 18th, 2016

http://web.cse.ohio-state.edu/~hamidouc/ESPM2/espm2_16.html#program

In Cooperation with ACM SIGHPC

Paper Submission Deadline: August 26th, 2016

Author Notification: September 30th, 2016

Camera Ready: October 7th, 2016

ESPM2 2015 was held with the Supercomputing Conference (SC ‘15), at Austin,
Texas, on Sunday, November 15th, 2015

http://web.cse.ohio-state.edu/~hamidouc/ESPM2/espm2.html#program

http://web.cse.ohio-state.edu/~hamidouc/ESPM2/espm2_16.html
http://web.cse.ohio-state.edu/~hamidouc/ESPM2/espm2_16.html

OpenSHMEM Workshop (August ‘16) 75Network Based Computing Laboratory

panda@cse.ohio-state.edu

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH Project
http://mvapich.cse.ohio-state.edu/

mailto:panda@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/

