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World-class infrastructure in the Innovation Lab 

Zenith
• Dell PowerEdge C6620 based on Intel Scalable 

processors

• Liquid cooled and air cooled

Rattler

• Dell PowerEdge XE8545 with NVIDIA GPUs

Minerva

• Dell PowerEdge R6625 based on AMD EPYC 

processors

• Liquid cooled and air cooled

Blue Bonnet

• Dell PowerEdge R6625 based on AMD EPYC 

processors

• Broadcom RoCE v2

13K ft.2 lab, 1,300+ servers, ~10PB storage dedicated to HPC in collaboration with the community
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Load imbalance and MPI 
collectives
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Collective MPI functions

Reduce Gather Scatter Bcast

Allreduce Allgather Alltoall
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Collective MPI function rationale

• Collective functions spend a lot of 

time “fixing“ load imbalance

• MPI ranks spend different amounts of 

time in MPI_Allreduce
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MPI-3 feature: non-blocking collectives

• MPI-3 has added support for non-blocking collectives
– They combine the potential benefits of nonblocking point-to-point operations, to exploit overlap and to 

avoid synchronization, with the optimized implementation and message scheduling provided by 

collective operations

– The call initiates the operation, which indicates that the system may start to copy data out of the send 

buffer and into the receive buffer

– Workings are similar to non-blocking point to point calls (Isend/Irecv)

• Blocking:        int MPI_Allreduce(  const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op, 
MPI_Comm comm)

• Non-blocking: int MPI_Iallreduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm, MPI_Request *request)
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The simple collective example – non blocking
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main(int argc, char* argv[])
{

int size, my_rank, result = 0;
MPI_Request request;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Iallreduce(&my_rank, &result, 1, MPI_INT, MPI_SUM, 
MPI_COMM_WORLD, &request);

do_something();
printf("[MPI Process %d] Doing something else here.\n", my_rank);

MPI_Wait(&request, &status);

printf("[MPI Process %d] The sum of all ranks is %d.\n", my_rank, 
result);

MPI_Finalize();

return EXIT_SUCCESS;
}

• Similar calling sequence as 

MPI_Allreduce

• MPI_Request parameter is to track 

completion (like in Isend/Irecv)

% mpirun –np 4 iallreduce.exe 
[MPI Process 3] Doing something else here.
[MPI Process 0] Doing something else here.
[MPI Process 1] Doing something else here.
[MPI Process 1] The sum of all ranks is 6.
[MPI Process 2] Doing something else here.
[MPI Process 2] The sum of all ranks is 6.
[MPI Process 3] The sum of all ranks is 6.
[MPI Process 0] The sum of all ranks is 6.
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MOM5: load imbalance inhibits parallel scaling
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Result of perfect interconnect simulation

• Wait_*: load imbalance

• Exec_*: actual communication

123k calls, 119k < 64 bytes

Minimum time: 191 seconds

Maximum time: 463 seconds

Transfer time: 18 seconds

• Load imbalance is the cause 

of parallel overhead and 

potential scaling issue

• Communication overhead is 

negligible
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Use hardware offload of the IB card for collectives
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20% speedup! 

% mpirun –genv HCOLL_ENABLE=1            –np 512 <app>   # MVPAPICH2
% mpirun –-mca coll_hcoll_enable 1       –np 512 <app>   # Open MPI
% mpirun –genv I_MPI_COLL_EXTERNAL hcoll –np 512 <app>   # Intel MPI
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Case Study: GROMACS 
with MVAPICH
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Why we like MVAPICH

• Rich set of diagnostics
– MVP_SHOW_ENV_INFO=2 combined with an MPI profiler gives you good insight where to tune for 

eager/rendezvous switch points and choices for collective algorithm and zero copy

• FAST job startup on > 4096 cores
– MVP_HOMOGENEOUS_CLUSTER=1

• MPI-IO works as should be and allows us to give MPI file info hints via 
ROMIO_HINTS=my_hints_file.txt

• We set MVP_USE_ALIGNED_ALLOC=1 by default to work around the occasional job 

failure
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Application characteristics

Interaction Parallelism Communication 

Pattern

Notes

Particle-

particle

MPI_Sendrecv Point-to-point Latency sensitive

PME MPI_Alltoall All-to-all Lot of data

movement and 

very bandwidth 

intensive
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Application and data set

• Gromacs 2023.2
– Compiled with AMD AOCC 4.0.0, AMD AOCL 4.0 for BLAS3, FFTs and math

– MVAPICH 2.3.7

• Protein in water
– 24.4 M atoms, 15000 steps

– Combined PP/PME run, no tuning of PP/PME rank ratio
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Compute environment

Dell PowerEdge C6625

Processor AMD EPYC 7713 64C 

2.00 GHz

Memory 256 GB dual rank DDR4 

@ 3200 MT/s

Interconnect NVIDIA ConnectX-6 

HDR-200

OS RHEL 8.6
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Initial performance results

• Scaling tails off quickly

• Theoretically data data set should 

scale well
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MPI communication breakdown

• Much time spent in
– Bcast

– Gatherv

– Sendrecv

– Alltotall (PME ranks only)

– Recv/Waitall (load imbalance between PP 

and PME ranks?)
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MPI message sizes

Bcast

0-64 bytes 64-512 bytes

512-2048 bytes > 4194304 bytes

Sendrecv

0-64 bytes 64-512 bytes

512-2048 bytes 2048-4096 bytes

4096-16384 bytes 16384-65536 bytes

65536-262144 bytes 262144-524288 bytes

524288-1048576 bytes

Gatherv

65536-262144 bytes
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Step 7: Look at MPI itself
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ApbDis and DLWM BIOS Options

• ApbDis (Algorithmic Performance Boost Disable)
– Governs the boost behavior of the Infinity Fabric.

– AMD recommend setting this to 1/Enabled for HPC workloads along with Fixed SOC P-state set to P0 

(max performance).

• DLWM (Dynamic Link Width Management)
– xGMI Dynamic Link Width Management saves power during periods of low socket-to socket data 

traffic by reducing the number of active xGMI lanes per link from 16 to 8. 

– AMD recommends setting this to Forced x16 for HPC workloads.

• With ApbDis=Disabled and DLWM=Unforced, Infinity Fabric state transitions and 

xGMI link width transitions cause system blackout periods of 100 to 200 µs.

• Both of these settings impact Infinity Fabric latency, bandwidth and power 

consumption.
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Performance and Power Impacts of ApbDis

BIOS Configuration ApbDis DLWM

Local 

Latency

Remote 

Latency

System Idle 

Power

HPL 

(GFLOPS)

Performance Optimized Disabled Unforced 1.06 µs 1.45 µs 270 w 3600

ApbDis=1 Enabled Unforced +45 w 3393 (-6%)

DLWM=x16 Disabled Forced x16 +25 w 3490 (-3%)

ApbDis=1 + DLWM=x16 Enabled Forced x16 1.05 µs 1.23 µs +80 w 3277 (-9%)

• All testing performed using R6525 with AMD Milan 7713 and BIOS v2.0.1.

• Server-to-server latency measured using OSU benchmarks with HDR InfiniBand 

and sockets local and remote to the InfiniBand HCA.
– Remote latency test transits the xGMI link on both servers.
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Disabling DLWM improves performance

• Better performance at 8 and 16 nodes

• Still bad at larger node counts
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Deeper investigation

• Much time spent in MPI_Gatherv for 

only few calls

• Large MPI_Wait in PME, load 

imbalance?

• MPI_Alltoall execution dominates, 

bandwidth limited?

MPI Perfect Interconnect simulation

exec_Alltoall wait_Alltoall MPI_Comm_split

exec_Gatherv wait_Gatherv MPI_Recv

exec_Reduce wait_Reduce MPI_Sendrecv

MPI_Waitall

PP rank 0 PP rank 1 PME rank 0
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Improving MVAPICH performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32 nodes, 4096 cores

26% improvement



Internal Use - Confidential
SC23 OSU booth talk

Final result

• 26% performance improvement on 32 

nodes

• 64 node result does not scale due to 

Gatherv
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A peek at MVAPICH 3.0
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Conclusion

• MVAPICH is a robust MPI implementation allowing performance at scale for 

popular HPC applications

• Performance can be further improved through a rich set of tunables, which can be 

set with environment variables
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