
Experiences with MVAPICH
on large-scale workloads
HPC Platform Efficiency and Power Savings

Martin Hilgeman

Distinguished Member of Technical Staff

HPC Performance Lead

Martin.Hilgeman@dell.com

Internal Use - Confidential
SC23 OSU booth talk

Dell Technologies HPC and AI Team Charter

Heading
Lorem ipsum dolor

sit amet,

consectetur

adipiscing elit.

Heading
Lorem ipsum dolor

sit amet,

consectetur

adipiscing elit.

Investment -
People and
innovation
ecosystem

Design, develop and integrate
HPC and DL systems
• Flexible reference architectures
• Systems tuned for research

computing, manufacturing, life
sciences, oil and gas, etc.

Act as the focal point for joint

R&D activities
• Technology collaboration with

partners for joint innovation

• Research coordination with Dell

Solution Centers, Centers For

Innovation and customers

HPC and AI
Innovation

Lab
Prototype and evaluate

advanced technologies
• NVMe, FPGAs, Containers, DL

workloads, new memory

technologies, HPC+Cloud, etc.

Conduct application
performance studies and
develop best practices
• White papers, blogs, presentations
• www.hpcatdell.com

Technical

briefings,

tours, remote

access

http://www.hpcatdell.com/

Internal Use - Confidential
SC23 OSU booth talk

World-class infrastructure in the Innovation Lab

Zenith
• Dell PowerEdge C6620 based on Intel Scalable

processors

• Liquid cooled and air cooled

Rattler

• Dell PowerEdge XE8545 with NVIDIA GPUs

Minerva

• Dell PowerEdge R6625 based on AMD EPYC

processors

• Liquid cooled and air cooled

Blue Bonnet

• Dell PowerEdge R6625 based on AMD EPYC

processors

• Broadcom RoCE v2

13K ft.2 lab, 1,300+ servers, ~10PB storage dedicated to HPC in collaboration with the community

Internal Use - Confidential
SC23 OSU booth talk

Load imbalance and MPI
collectives

Internal Use - Confidential
SC23 OSU booth talk

Collective MPI functions

Reduce Gather Scatter Bcast

Allreduce Allgather Alltoall

Internal Use - Confidential
SC23 OSU booth talk

Collective MPI function rationale

• Collective functions spend a lot of

time “fixing“ load imbalance

• MPI ranks spend different amounts of

time in MPI_Allreduce

0

20

40

60

80

100

120

140

160

180

200

0 64 128 192 256 320 384 448 512

W
a
ll

c
lo

c
k
 t
im

e
 (

s
)

MPI rank

NEMO 4 BENCH_ORCA_SI3_PISCES_ORCA1

App MPI_Allreduce MPI_Isend MPI_Recv MPI_Wait

Internal Use - Confidential
SC23 OSU booth talk

MPI-3 feature: non-blocking collectives

• MPI-3 has added support for non-blocking collectives
– They combine the potential benefits of nonblocking point-to-point operations, to exploit overlap and to

avoid synchronization, with the optimized implementation and message scheduling provided by

collective operations

– The call initiates the operation, which indicates that the system may start to copy data out of the send

buffer and into the receive buffer

– Workings are similar to non-blocking point to point calls (Isend/Irecv)

• Blocking: int MPI_Allreduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

• Non-blocking: int MPI_Iallreduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm, MPI_Request *request)

Internal Use - Confidential
SC23 OSU booth talk

The simple collective example – non blocking
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main(int argc, char* argv[])
{

int size, my_rank, result = 0;
MPI_Request request;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Iallreduce(&my_rank, &result, 1, MPI_INT, MPI_SUM,
MPI_COMM_WORLD, &request);

do_something();
printf("[MPI Process %d] Doing something else here.\n", my_rank);

MPI_Wait(&request, &status);

printf("[MPI Process %d] The sum of all ranks is %d.\n", my_rank,
result);

MPI_Finalize();

return EXIT_SUCCESS;
}

• Similar calling sequence as

MPI_Allreduce

• MPI_Request parameter is to track

completion (like in Isend/Irecv)

% mpirun –np 4 iallreduce.exe
[MPI Process 3] Doing something else here.
[MPI Process 0] Doing something else here.
[MPI Process 1] Doing something else here.
[MPI Process 1] The sum of all ranks is 6.
[MPI Process 2] Doing something else here.
[MPI Process 2] The sum of all ranks is 6.
[MPI Process 3] The sum of all ranks is 6.
[MPI Process 0] The sum of all ranks is 6.

Internal Use - Confidential
SC23 OSU booth talk

MOM5: load imbalance inhibits parallel scaling

0

500

1000

1500

2000

2500

3000

3500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024 1056 1088 1120

W
a
ll

c
lo

c
k
 t
im

e
 (

s
)

MPI rank

18 nodes, AMD EPYC 7513, HDR-200

App MPI_Allreduce MPI_Barrier MPI_Bcast MPI_Irecv MPI_Isend MPI_Recv MPI_Wait

Internal Use - Confidential
SC23 OSU booth talk

Result of perfect interconnect simulation

• Wait_*: load imbalance

• Exec_*: actual communication

123k calls, 119k < 64 bytes

Minimum time: 191 seconds

Maximum time: 463 seconds

Transfer time: 18 seconds

• Load imbalance is the cause

of parallel overhead and

potential scaling issue

• Communication overhead is

negligible

Internal Use - Confidential
SC23 OSU booth talk

Use hardware offload of the IB card for collectives

0

50

100

150

200

250

300

350

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

W
a
ll

C
lo

c
k
 T

im
e
 (

s
)

MPI rank

VASP OAsB 4x Intel 8358 HDR-200

exec_Allreduce wait_Allreduce exec_Alltoall wait_Alltoall exec_Alltoallv wait_Alltoallv exec_Bcast wait_Bcast

0

50

100

150

200

250

300

350

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

W
a
ll

C
lo

c
k
 T

im
e
 (

s
)

MPI rank

HCOLL enabled

exec_Allreduce wait_Allreduce exec_Alltoall wait_Alltoall exec_Alltoallv wait_Alltoallv exec_Bcast wait_Bcast

20% speedup!

% mpirun –genv HCOLL_ENABLE=1 –np 512 <app> # MVPAPICH2
% mpirun –-mca coll_hcoll_enable 1 –np 512 <app> # Open MPI
% mpirun –genv I_MPI_COLL_EXTERNAL hcoll –np 512 <app> # Intel MPI

Internal Use - Confidential
SC23 OSU booth talk

Case Study: GROMACS
with MVAPICH

Internal Use - Confidential
SC23 OSU booth talk

Why we like MVAPICH

• Rich set of diagnostics
– MVP_SHOW_ENV_INFO=2 combined with an MPI profiler gives you good insight where to tune for

eager/rendezvous switch points and choices for collective algorithm and zero copy

• FAST job startup on > 4096 cores
– MVP_HOMOGENEOUS_CLUSTER=1

• MPI-IO works as should be and allows us to give MPI file info hints via
ROMIO_HINTS=my_hints_file.txt

• We set MVP_USE_ALIGNED_ALLOC=1 by default to work around the occasional job

failure

Internal Use - Confidential
SC23 OSU booth talk

Application characteristics

Interaction Parallelism Communication

Pattern

Notes

Particle-

particle

MPI_Sendrecv Point-to-point Latency sensitive

PME MPI_Alltoall All-to-all Lot of data

movement and

very bandwidth

intensive

Internal Use - Confidential
SC23 OSU booth talk

Application and data set

• Gromacs 2023.2
– Compiled with AMD AOCC 4.0.0, AMD AOCL 4.0 for BLAS3, FFTs and math

– MVAPICH 2.3.7

• Protein in water
– 24.4 M atoms, 15000 steps

– Combined PP/PME run, no tuning of PP/PME rank ratio

Internal Use - Confidential
SC23 OSU booth talk

Compute environment

Dell PowerEdge C6625

Processor AMD EPYC 7713 64C

2.00 GHz

Memory 256 GB dual rank DDR4

@ 3200 MT/s

Interconnect NVIDIA ConnectX-6

HDR-200

OS RHEL 8.6

Internal Use - Confidential
SC23 OSU booth talk

Initial performance results

• Scaling tails off quickly

• Theoretically data data set should

scale well

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 64

n
s
/d

a
y

Number of nodes

7713

ideal

Environment

Compiler AMD AOCC 4.0.0

Math library AMD AOCL 4.0

MPI library MVAPICH 2.3.7

Internal Use - Confidential
SC23 OSU booth talk

MPI communication breakdown

• Much time spent in
– Bcast

– Gatherv

– Sendrecv

– Alltotall (PME ranks only)

– Recv/Waitall (load imbalance between PP

and PME ranks?)

0

50

100

150

200

250

300

350

400

450

500

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920

W
a
ll

c
lo

c
k
 t
im

e
 (

s
)

MPI rank

16 nodes

App MPI_Allreduce MPI_Alltoall

MPI_Bcast MPI_Comm_split MPI_Gatherv

MPI_Recv MPI_Sendrecv MPI_Waitall

Internal Use - Confidential
SC23 OSU booth talk

MPI message sizes

Bcast

0-64 bytes 64-512 bytes

512-2048 bytes > 4194304 bytes

Sendrecv

0-64 bytes 64-512 bytes

512-2048 bytes 2048-4096 bytes

4096-16384 bytes 16384-65536 bytes

65536-262144 bytes 262144-524288 bytes

524288-1048576 bytes

Gatherv

65536-262144 bytes

Internal Use - Confidential
SC23 OSU booth talk

Step 7: Look at MPI itself

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Mesage size

Remote bandwidth and latency compared to local

remote bandwidth remote latency

-70.0%

-60.0%

-50.0%

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

Message size

Remote Messages/s compared to local

Internal Use - Confidential
SC23 OSU booth talk

ApbDis and DLWM BIOS Options

• ApbDis (Algorithmic Performance Boost Disable)
– Governs the boost behavior of the Infinity Fabric.

– AMD recommend setting this to 1/Enabled for HPC workloads along with Fixed SOC P-state set to P0

(max performance).

• DLWM (Dynamic Link Width Management)
– xGMI Dynamic Link Width Management saves power during periods of low socket-to socket data

traffic by reducing the number of active xGMI lanes per link from 16 to 8.

– AMD recommends setting this to Forced x16 for HPC workloads.

• With ApbDis=Disabled and DLWM=Unforced, Infinity Fabric state transitions and

xGMI link width transitions cause system blackout periods of 100 to 200 µs.

• Both of these settings impact Infinity Fabric latency, bandwidth and power

consumption.

Internal Use - Confidential
SC23 OSU booth talk

Performance and Power Impacts of ApbDis

BIOS Configuration ApbDis DLWM

Local

Latency

Remote

Latency

System Idle

Power

HPL

(GFLOPS)

Performance Optimized Disabled Unforced 1.06 µs 1.45 µs 270 w 3600

ApbDis=1 Enabled Unforced +45 w 3393 (-6%)

DLWM=x16 Disabled Forced x16 +25 w 3490 (-3%)

ApbDis=1 + DLWM=x16 Enabled Forced x16 1.05 µs 1.23 µs +80 w 3277 (-9%)

• All testing performed using R6525 with AMD Milan 7713 and BIOS v2.0.1.

• Server-to-server latency measured using OSU benchmarks with HDR InfiniBand

and sockets local and remote to the InfiniBand HCA.
– Remote latency test transits the xGMI link on both servers.

Internal Use - Confidential
SC23 OSU booth talk

Disabling DLWM improves performance

• Better performance at 8 and 16 nodes

• Still bad at larger node counts

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 64

n
s
/d

a
y

Number of nodes

7713

ideal

Dlwm forced

Internal Use - Confidential
SC23 OSU booth talk

Deeper investigation

• Much time spent in MPI_Gatherv for

only few calls

• Large MPI_Wait in PME, load

imbalance?

• MPI_Alltoall execution dominates,

bandwidth limited?

MPI Perfect Interconnect simulation

exec_Alltoall wait_Alltoall MPI_Comm_split

exec_Gatherv wait_Gatherv MPI_Recv

exec_Reduce wait_Reduce MPI_Sendrecv

MPI_Waitall

PP rank 0 PP rank 1 PME rank 0

Internal Use - Confidential
SC23 OSU booth talk

Improving MVAPICH performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32 nodes, 4096 cores

26% improvement

Internal Use - Confidential
SC23 OSU booth talk

Final result

• 26% performance improvement on 32

nodes

• 64 node result does not scale due to

Gatherv

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 64

n
s
/d

a
y

Number of nodes

baseline

ideal

Dlwm disabled

optimized settings

Internal Use - Confidential
SC23 OSU booth talk

A peek at MVAPICH 3.0

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 64

n
s
/d

a
y

Number of nodes

ideal

optimized
settings

mvapich 3.0rc

• UCX allows better scalability on 64

nodes

Internal Use - Confidential
SC23 OSU booth talk

Conclusion

• MVAPICH is a robust MPI implementation allowing performance at scale for

popular HPC applications

• Performance can be further improved through a rich set of tunables, which can be

set with environment variables

	Default Section
	Slide 1: Experiences with MVAPICH on large-scale workloads
	Slide 2: Dell Technologies HPC and AI Team Charter
	Slide 3: World-class infrastructure in the Innovation Lab

	Load imbalance and MPI collectives
	Slide 4: Load imbalance and MPI collectives
	Slide 5: Collective MPI functions
	Slide 6: Collective MPI function rationale
	Slide 7: MPI-3 feature: non-blocking collectives
	Slide 8: The simple collective example – non blocking
	Slide 9: MOM5: load imbalance inhibits parallel scaling
	Slide 10: Result of perfect interconnect simulation
	Slide 11: Use hardware offload of the IB card for collectives

	Case Study: GROMACS
	Slide 12: Case Study: GROMACS with MVAPICH
	Slide 13: Why we like MVAPICH
	Slide 14: Application characteristics
	Slide 15: Application and data set
	Slide 16: Compute environment
	Slide 17: Initial performance results
	Slide 18: MPI communication breakdown
	Slide 19: MPI message sizes
	Slide 20: Step 7: Look at MPI itself
	Slide 21: ApbDis and DLWM BIOS Options
	Slide 22: Performance and Power Impacts of ApbDis
	Slide 23: Disabling DLWM improves performance
	Slide 24: Deeper investigation
	Slide 25: Improving MVAPICH performance
	Slide 26: Final result
	Slide 27: A peek at MVAPICH 3.0
	Slide 28: Conclusion

	Ending
	Slide 29

