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Memory growth trends (e.g. DRAM)

The end of the Dennard scaling made it 

more complex to sustain the DRAM growth

The gap between applications and growth is 

increasing
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library 

• Support for multiple interconnects

• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS EFA, 

OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms

• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:

• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

• OSU MPI Micro-Benchmarks (OMB), since 2003

• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,290 organizations in 90 countries

• More than 1.63 Million downloads from the OSU site directly

• Empowering many TOP500 clusters (Nov ‘22 ranking)

– 7th , 10,649,600-core (Sunway TaihuLight) at NSC, 

Wuxi, China

– 19th, 448, 448 cores (Frontera) at TACC

– 34th, 288,288 cores (Lassen) at LLNL

– 46th, 570,020 cores (Nurion) in South Korea and many 

others

• Available with software stacks of many vendors and Linux 

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 19th ranked TACC Frontera system

• Empowering Top500 systems for more than 16 years

http://mvapich.cse.ohio-state.edu/
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Why collectives?

• MPI collectives are used by many data intensive (map-reduce) workloads 

• In MPI libraries, they are the heaviest in terms of computation and 

communication (interconnect/mem buses)

• Collective performance (such as alltoall and allreduce) is based on many 

factors, including but not limited to:

• The algorithmic choice

• The underlying pt-to-pt performance (inter-node vs intra-node)

• The platform characteristics (e.g. CPU/Memory model)
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Architecture of our experimental 
platform

Model Intel Xeon Platinum 8280M ("Cascade Lake")

Total cores per 
CLX node:

112 cores on four sockets (28 cores/socket)

Hardware threads 
per core:

1 Hyperthreading is not currently enabled on Frontera

Clock rate: 2.7GHz nominal

Memory: 2.1 TB NVDIMM

Cache: 32KB L1 data cache per core;
1MB L2 per core;
38.5 MB L3 per socket.
384 GB DDR4 RAM configured as an L4 cache
Each socket can cache up to 66.5 MB (sum of L2 and L3 
capacity).

Local storage: 144GB /tmp partition on a 240GB SSD
4x 833 GB /mnt/fsdax[0,1,2,3] partitions on NVDIMM
3.2 TB usable local storage
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The bigmem (Optane) vs smallmem node

Model Intel Xeon Platinum 8280 ("Cascade Lake")

Total cores per 

CLX node:

56 cores on two sockets (28 cores/socket)

Hardware 

threads per 

core:

1, Hyperthreading is not currently enabled on 

Frontera

Clock rate: 2.7GHz nominal

Memory: 192GB (2933 MT/s) DDR4

Cache: 32KB L1 data cache per core;

1MB L2 per core;

38.5 MB L3 per socket.

Each socket can cache up to 66.5 MB (sum of 

L2 and L3 capacity).

Local storage: 144GB /tmp partition on a 240GB SSD

Model Intel Xeon Platinum 8280M ("Cascade Lake")

Total cores 

per CLX node:

112 cores on four sockets (28 cores/socket)

Hardware 

threads per 

core:

1, Hyperthreading is not currently enabled on 

Frontera

Clock rate: 2.7GHz nominal

Memory: 2.1 TB NVDIMM

Cache: 32KB L1 data cache per core;

1MB L2 per core;

38.5 MB L3 per socket.

384 GB DDR4 RAM configured as an L4 

cache

Each socket can cache up to 66.5 MB (sum 

of L2 and L3 capacity).

Local storage: 144GB /tmp partition on a 240GB SSD

4x 833 GB /mnt/fsdax[0,1,2,3] partitions on 

NVDIMM

3.2 TB usable local storage

Bigmem Node Smallmem Node
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• NOWLAB system: MRI

• Core(s) per socket: 28

• Socket(s): 2

• L2 cache: 1280K (70MB in total)

• L3 cache: 43008K (84MB in total)

• DRAM: 256GB

• Optane: 991GB

STREAM bandwidth with PMEM memory 
modes

BW (MB/s)
Memory 

mode
App direct

Memory 

mode
App direct

Total 

memory 

required 

(GB)

4.6 4.6 457.8 457.8

Copy 156246.3 2311.2 20249.0 2453.7

Scale 174390.6 2411.8 16097.6 2202.2

Add 194115.5 3831.0 17414.0 2910.5

Triad 197335.6 3854.9 22558.8 2776.7
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Quick I/O sanity check shows 3 different BW/latency on the 
Intel-Optane node

• Single core, hence, not maximizing 

streaming BW usage

• SSD -> PM -> DRAM

• 2x BW increase on each step

• 10x latency decrease on each 

step

SSD

PM

DRAM

SSD

PM

DRAM
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MV2 Pt-to-Pt based with PMEM memory 
modes
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MV2 Pt-to-Pt based with PMEM memory 
modes
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Alltoall collective behavior
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Around 1 TB of alltoall exchange 
without drop in scaling

Proper collective tuning choice and 
techniques to push the boundaries of 
effective resource usage

Observed increase in latency due to 
higher latency
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Allreduce collective behavior

• Similar performance up to L2 (1MB), 
and smallmem outperforms bigmem
beyond L3 size (32M)

• However, lower degradations 
because allreduce is more 
computationally heavy

• On par with DRAM with the small 
range ( < 1MB message size)

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

64 KB 128 
KB

256 
KB

512 
KB

1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 
MB

256 
MB

512 
MB

1 GB

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

Average Latency of Single Node Allreduce on Frontera
"Small Mem" vs "Big Mem"

small_mem_28ppn

big_mem_28ppn

small_mem_56ppn

big_mem_56ppn



13Network Based Computing Laboratory

• We use usort GitHub - hsundar/usort: Fast distributed sorting routines using MPI and OpenMP

• Compare and evaluate the performance of one PMEM node with multiple 

DRAM ones when data cannot fit into a single DRAM at application level

Using PMEMs for out-of-RAM sorting

Configuration DRAM node PMEM node

Core(s) per socket 28 28

Socket(s) 2 4

L2 cache 1024K 1024K

L3 cache 39424K 39424K

DRAM 186G 186G

Optane N/A 1.9T

https://github.com/hsundar/usort
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Behavior of distributed sorting (i.e. 
complexity)

• We used the usort (disk-to-disk 

sorting) as a use-case for large 

collectives (alltoall and allreduce)

• The scale-up mode is scalable 

according to our tests sorting 1.1 

TB of keys on a single PMEM 

node

• Generally speaking, this 

approach is cost effective (i.e. in 

terms of performance, operation 

and energy)
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Scale-out vs Scale-up (usort)

Scale-up

Scale-out
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Observations on the Multi-tiered Approach

• Intel PMEMs do not function as HBMs, however, they provide for a cost-

effective approach for scale-up and scale-out performance compared to 

multiple expensive DRAM, HBM nodes

• For volatile usage, use in Memory mode (DRAM as an L4 cache)

• Intel is discontinuing this series to up their game in advanced interconnects 

(CXL, CCIX)

• Using more DRAMs has only a small benefit of 10 – 18% speedup in the 4-node 

case

• More cache capacity 

• More memory channels

• Higher cost
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Can we close the performance gap?

• To recap, performance is 

impacted by 

• Lower aggregate memory 

bandwidth

• In the scale-up approach, lower 

number of core resource (i.e. 

caches)

• We are collaborating with ETRI 

to close this gap

• Scale-out and process near-

memory
Figure: showing the interaction between MVAPICH 

and the MEX hardware (in development)  - courtesy 

to ETRI 
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Designs for MPI_Allreduce : Overview
• Take a reduce-scatter allgather algorithm as a case-study

• Very widely used for long vector reductions (>= 256KB)

• Implement a staging-based emulated design and study on two processes as a starting point

• Use MPI_SUM as the sample MPI operation (applicable to others as well)

• Two phase algorithm

• Reduce-scatter phase results in every process having one “chunk” of the final reduced buffer

• Every step in the reduce-scatter involves a communication operation, followed by compute (example : sum)

• Allgather phase involves communication only and ensures that every process has all reduced 

chunks in the receive buffer

• All send/recv operations are on DRAM buffers

• Staging is done between DRAM and Optane
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Designs for MPI_Allreduce : Reduce scatter

• First phase involves exchanging one half of the buffer with a partner process

• Process on the left/right are responsible for reduction of first/second half respectively

• Process on the left computes 𝑆0 = 𝐴0 + 𝐵0, 𝑆1 = 𝐴1 + 𝐵1

• Process on the right computes 𝑆2 = 𝐴2 + 𝐵2, 𝑆3 = 𝐴3 + 𝐵3

• In the case of multiple processes, every process has a partner, and these steps are 

divided into sub-steps recursively

𝐴0 𝐴1 𝐴2 𝐴3 𝐵0 𝐵1 𝐵2 𝐵3

Send(𝐴2, 𝐴3)

Send(𝐵0, 𝐵1)

𝑆0 𝑆1 𝐴2 𝐴3 𝐵0 𝐵1 𝑆2 𝑆3
Reduce

Process 0 Process 1 Process 0 Process 1
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Designs for MPI_Allreduce : Emulate FPGA

• Start compute after staging operation is complete

• Measure “round-trip” time i.e., the staging overhead (to/from the SCM memory/optane)

• Measure compute time on the CPU

• To emulate FPGAs, we simply divide the measured CPU compute time in Allreduce by the 

expected speedup from the FPGAs

• In a real scenario, compute happens on the FPGA and the reduced buffer is read from the SCM memory on 

completion of compute --- the experiment above gives a close estimate

𝐴0 𝐴1 𝐴2 𝐴3

Process 0

SCM 

Process 1

SCM 

𝐵0 𝐵1 𝐵2 𝐵3

Read(𝑆0, 𝑆1) Write(𝐵2, 𝐵3, 
𝐴2, 𝐴3 )

Write(𝐴0, 𝐴1, 
𝐵0, 𝐵1 )

Read(𝑆2 , 𝑆3)
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Designs for MPI_Allreduce : Allgather

• Final phase involves an “allgather” to exchange sums

• This adds to the total communication time for allreduce

• Pure comm time = T(allgather) + T(reduce-scatter-comm)

• Compute time = T(compute)/expected_compute_improvement + staging_overhead

• For CPU only runs, staging_overhead = 0, expected_compute_improvement = 1

𝑆0 𝑆1 𝐴2 𝐴3 𝐵0 𝐵1 𝑆2 𝑆3

Send(𝑆0, 𝑆1)

Send(𝑆2, 𝑆3)

𝑆0 𝑆1 𝑆2 𝑆3 𝑆0 𝑆1 𝑆2 𝑆3

Process 0 Process 1 Process 0 Process 1
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Experimental results
• We run 1 process per node, 2 nodes on two different platforms with the Infiniband

HDR-200 interconnect

• AMD EPYC 7713 64-Core Processor 

• Since AMD does not support Optane, we only measure compute/communication 

time on the platform and use staging overheads obtained on the intel platform

• We compare CPU-only algorithms with emulated FPGAs

• Each 10X, 50X and 100X faster than the CPU respectively

• Use representative long vector message range : 1M – 16M 
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Experimental results : Overall latency
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• Staging to FPGA performs up to ~30% 

better than CPU based algorithm on AMD 

platforms for 4M and 8M messages

• We are working closely on lowering host-

to-SCM/FPGA latency and coming up with 

better near-memory reduction designs

• A prototype HW implementation is 

underway

AMD EPYC 7713 64-Core Processor 
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THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS
Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data 
Project

http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning 
Project

http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
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Experimental results - Alltoall

• Run Alltoall up to 1GB on both 
nodes to form a baseline

• Bigmem runs for larger 
messages due to higher capacity

• Total memory consumed 
exceeds DRAM capacity

• Smallmem_28ppn

• Per process memory req. = 128 * 
28 * 2 = 7168MB

• Total memory req. = 7168 * 28 ~ 
200GB

• 200GB exceeds DRAM size 1
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Experimental results - Allgather
• Run Allgather up to 1GB on 

both nodes to form a 
baseline

• Bigmem runs for larger 
messages due to higher 
capacity

• Total memory consumed 
exceeds DRAM capacity

• Smallmem_28ppn

• Per process memory req. = 
256 * 28 ~ 7168MB

• Total memory req. = 7168 * 
28 ~ 200GB

• 200GB exceeds DRAM size
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