
MVAPICH Collectives on Storage Class
Memories: Early Experiences

Talk by: Mustafa Abduljabbar

Credit to: Tran Tu and Nick Conteini
Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

2Network Based Computing Laboratory

Memory growth trends (e.g. DRAM)

The end of the Dennard scaling made it

more complex to sustain the DRAM growth

The gap between applications and growth is

increasing

3Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library

• Support for multiple interconnects

• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA,

OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms

• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:

• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

• OSU MPI Micro-Benchmarks (OMB), since 2003

• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,290 organizations in 90 countries

• More than 1.63 Million downloads from the OSU site directly

• Empowering many TOP500 clusters (Nov ‘22 ranking)

– 7th , 10,649,600-core (Sunway TaihuLight) at NSC,

Wuxi, China

– 19th, 448, 448 cores (Frontera) at TACC

– 34th, 288,288 cores (Lassen) at LLNL

– 46th, 570,020 cores (Nurion) in South Korea and many

others

• Available with software stacks of many vendors and Linux

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 19th ranked TACC Frontera system

• Empowering Top500 systems for more than 16 years

http://mvapich.cse.ohio-state.edu/

4Network Based Computing Laboratory

Why collectives?

• MPI collectives are used by many data intensive (map-reduce) workloads

• In MPI libraries, they are the heaviest in terms of computation and

communication (interconnect/mem buses)

• Collective performance (such as alltoall and allreduce) is based on many

factors, including but not limited to:

• The algorithmic choice

• The underlying pt-to-pt performance (inter-node vs intra-node)

• The platform characteristics (e.g. CPU/Memory model)

5Network Based Computing Laboratory

Architecture of our experimental
platform

Model Intel Xeon Platinum 8280M ("Cascade Lake")

Total cores per
CLX node:

112 cores on four sockets (28 cores/socket)

Hardware threads
per core:

1 Hyperthreading is not currently enabled on Frontera

Clock rate: 2.7GHz nominal

Memory: 2.1 TB NVDIMM

Cache: 32KB L1 data cache per core;
1MB L2 per core;
38.5 MB L3 per socket.
384 GB DDR4 RAM configured as an L4 cache
Each socket can cache up to 66.5 MB (sum of L2 and L3
capacity).

Local storage: 144GB /tmp partition on a 240GB SSD
4x 833 GB /mnt/fsdax[0,1,2,3] partitions on NVDIMM
3.2 TB usable local storage

6Network Based Computing Laboratory

The bigmem (Optane) vs smallmem node

Model Intel Xeon Platinum 8280 ("Cascade Lake")

Total cores per

CLX node:

56 cores on two sockets (28 cores/socket)

Hardware

threads per

core:

1, Hyperthreading is not currently enabled on

Frontera

Clock rate: 2.7GHz nominal

Memory: 192GB (2933 MT/s) DDR4

Cache: 32KB L1 data cache per core;

1MB L2 per core;

38.5 MB L3 per socket.

Each socket can cache up to 66.5 MB (sum of

L2 and L3 capacity).

Local storage: 144GB /tmp partition on a 240GB SSD

Model Intel Xeon Platinum 8280M ("Cascade Lake")

Total cores

per CLX node:

112 cores on four sockets (28 cores/socket)

Hardware

threads per

core:

1, Hyperthreading is not currently enabled on

Frontera

Clock rate: 2.7GHz nominal

Memory: 2.1 TB NVDIMM

Cache: 32KB L1 data cache per core;

1MB L2 per core;

38.5 MB L3 per socket.

384 GB DDR4 RAM configured as an L4

cache

Each socket can cache up to 66.5 MB (sum

of L2 and L3 capacity).

Local storage: 144GB /tmp partition on a 240GB SSD

4x 833 GB /mnt/fsdax[0,1,2,3] partitions on

NVDIMM

3.2 TB usable local storage

Bigmem Node Smallmem Node

7Network Based Computing Laboratory

• NOWLAB system: MRI

• Core(s) per socket: 28

• Socket(s): 2

• L2 cache: 1280K (70MB in total)

• L3 cache: 43008K (84MB in total)

• DRAM: 256GB

• Optane: 991GB

STREAM bandwidth with PMEM memory
modes

BW (MB/s)
Memory

mode
App direct

Memory

mode
App direct

Total

memory

required

(GB)

4.6 4.6 457.8 457.8

Copy 156246.3 2311.2 20249.0 2453.7

Scale 174390.6 2411.8 16097.6 2202.2

Add 194115.5 3831.0 17414.0 2910.5

Triad 197335.6 3854.9 22558.8 2776.7

8Network Based Computing Laboratory

Quick I/O sanity check shows 3 different BW/latency on the
Intel-Optane node

• Single core, hence, not maximizing

streaming BW usage

• SSD -> PM -> DRAM

• 2x BW increase on each step

• 10x latency decrease on each

step

SSD

PM

DRAM

SSD

PM

DRAM

9Network Based Computing Laboratory

MV2 Pt-to-Pt based with PMEM memory
modes

#Msg Size

L
a

te
n
c
y
 (

u
s
)

0

250000

500000

750000

1000000

1250000

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24

Memory mode PMEM-PMEM PMEM-DRAM DRAM-DRAM

P2P performance with different buffer allocations

#Msg Size

L
a

te
n
c
y
 (

u
s
)

0

5

10

15

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

Memory mode PMEM-PMEM PMEM-DRAM DRAM-DRAM

P2P performance with different buffer allocations

6.3x

2.2x

10Network Based Computing Laboratory

MV2 Pt-to-Pt based with PMEM memory
modes

#Msg Size

B
a
n
d

w
id

th
 (

M
B

/s
)

0

5000

10000

15000

20000

25000

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24

Memory mode PMEM-PMEM PMEM-DRAM DRAM-DRAM

P2P performance with different buffer allocations

#Msg Size

B
a
n
d

w
id

th
 (

M
B

/s
)

0

5000

10000

15000

20000

25000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

Memory mode PMEM-PMEM PMEM-DRAM DRAM-DRAM

P2P performance with different buffer allocations

L2

cache

L3

cache

11Network Based Computing Laboratory

Alltoall collective behavior

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576
2097152
4194304
8388608

16777216
33554432
67108864

134217728

64 KB 128
KB

256
KB

512
KB

1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128
MB

256
MB

512
MB

1 GB

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

Average Latency of Single Node AlltoAll on Frontera
"Small Mem" vs "Big Mem"

small_mem_28ppn

big_mem_28ppn

small_mem_56ppn

big_mem_56ppn

Around 1 TB of alltoall exchange
without drop in scaling

Proper collective tuning choice and
techniques to push the boundaries of
effective resource usage

Observed increase in latency due to
higher latency

12Network Based Computing Laboratory

Allreduce collective behavior

• Similar performance up to L2 (1MB),
and smallmem outperforms bigmem
beyond L3 size (32M)

• However, lower degradations
because allreduce is more
computationally heavy

• On par with DRAM with the small
range (< 1MB message size)

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

64 KB 128
KB

256
KB

512
KB

1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128
MB

256
MB

512
MB

1 GB

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

Average Latency of Single Node Allreduce on Frontera
"Small Mem" vs "Big Mem"

small_mem_28ppn

big_mem_28ppn

small_mem_56ppn

big_mem_56ppn

13Network Based Computing Laboratory

• We use usort GitHub - hsundar/usort: Fast distributed sorting routines using MPI and OpenMP

• Compare and evaluate the performance of one PMEM node with multiple

DRAM ones when data cannot fit into a single DRAM at application level

Using PMEMs for out-of-RAM sorting

Configuration DRAM node PMEM node

Core(s) per socket 28 28

Socket(s) 2 4

L2 cache 1024K 1024K

L3 cache 39424K 39424K

DRAM 186G 186G

Optane N/A 1.9T

https://github.com/hsundar/usort

14Network Based Computing Laboratory

Behavior of distributed sorting (i.e.
complexity)

• We used the usort (disk-to-disk

sorting) as a use-case for large

collectives (alltoall and allreduce)

• The scale-up mode is scalable

according to our tests sorting 1.1

TB of keys on a single PMEM

node

• Generally speaking, this

approach is cost effective (i.e. in

terms of performance, operation

and energy)

15Network Based Computing Laboratory

Scale-out vs Scale-up (usort)

Scale-up

Scale-out

16Network Based Computing Laboratory

Observations on the Multi-tiered Approach

• Intel PMEMs do not function as HBMs, however, they provide for a cost-

effective approach for scale-up and scale-out performance compared to

multiple expensive DRAM, HBM nodes

• For volatile usage, use in Memory mode (DRAM as an L4 cache)

• Intel is discontinuing this series to up their game in advanced interconnects

(CXL, CCIX)

• Using more DRAMs has only a small benefit of 10 – 18% speedup in the 4-node

case

• More cache capacity

• More memory channels

• Higher cost

17Network Based Computing Laboratory

Can we close the performance gap?

• To recap, performance is

impacted by

• Lower aggregate memory

bandwidth

• In the scale-up approach, lower

number of core resource (i.e.

caches)

• We are collaborating with ETRI

to close this gap

• Scale-out and process near-

memory
Figure: showing the interaction between MVAPICH

and the MEX hardware (in development) - courtesy

to ETRI

18Network Based Computing Laboratory

Designs for MPI_Allreduce : Overview
• Take a reduce-scatter allgather algorithm as a case-study

• Very widely used for long vector reductions (>= 256KB)

• Implement a staging-based emulated design and study on two processes as a starting point

• Use MPI_SUM as the sample MPI operation (applicable to others as well)

• Two phase algorithm

• Reduce-scatter phase results in every process having one “chunk” of the final reduced buffer

• Every step in the reduce-scatter involves a communication operation, followed by compute (example : sum)

• Allgather phase involves communication only and ensures that every process has all reduced

chunks in the receive buffer

• All send/recv operations are on DRAM buffers

• Staging is done between DRAM and Optane

19Network Based Computing Laboratory

Designs for MPI_Allreduce : Reduce scatter

• First phase involves exchanging one half of the buffer with a partner process

• Process on the left/right are responsible for reduction of first/second half respectively

• Process on the left computes 𝑆0 = 𝐴0 + 𝐵0, 𝑆1 = 𝐴1 + 𝐵1

• Process on the right computes 𝑆2 = 𝐴2 + 𝐵2, 𝑆3 = 𝐴3 + 𝐵3

• In the case of multiple processes, every process has a partner, and these steps are

divided into sub-steps recursively

𝐴0 𝐴1 𝐴2 𝐴3 𝐵0 𝐵1 𝐵2 𝐵3

Send(𝐴2, 𝐴3)

Send(𝐵0, 𝐵1)

𝑆0 𝑆1 𝐴2 𝐴3 𝐵0 𝐵1 𝑆2 𝑆3
Reduce

Process 0 Process 1 Process 0 Process 1

20Network Based Computing Laboratory

Designs for MPI_Allreduce : Emulate FPGA

• Start compute after staging operation is complete

• Measure “round-trip” time i.e., the staging overhead (to/from the SCM memory/optane)

• Measure compute time on the CPU

• To emulate FPGAs, we simply divide the measured CPU compute time in Allreduce by the

expected speedup from the FPGAs

• In a real scenario, compute happens on the FPGA and the reduced buffer is read from the SCM memory on

completion of compute --- the experiment above gives a close estimate

𝐴0 𝐴1 𝐴2 𝐴3

Process 0

SCM

Process 1

SCM

𝐵0 𝐵1 𝐵2 𝐵3

Read(𝑆0, 𝑆1) Write(𝐵2, 𝐵3,
𝐴2, 𝐴3)

Write(𝐴0, 𝐴1,
𝐵0, 𝐵1)

Read(𝑆2 , 𝑆3)

21Network Based Computing Laboratory

Designs for MPI_Allreduce : Allgather

• Final phase involves an “allgather” to exchange sums

• This adds to the total communication time for allreduce

• Pure comm time = T(allgather) + T(reduce-scatter-comm)

• Compute time = T(compute)/expected_compute_improvement + staging_overhead

• For CPU only runs, staging_overhead = 0, expected_compute_improvement = 1

𝑆0 𝑆1 𝐴2 𝐴3 𝐵0 𝐵1 𝑆2 𝑆3

Send(𝑆0, 𝑆1)

Send(𝑆2, 𝑆3)

𝑆0 𝑆1 𝑆2 𝑆3 𝑆0 𝑆1 𝑆2 𝑆3

Process 0 Process 1 Process 0 Process 1

22Network Based Computing Laboratory

Experimental results
• We run 1 process per node, 2 nodes on two different platforms with the Infiniband

HDR-200 interconnect

• AMD EPYC 7713 64-Core Processor

• Since AMD does not support Optane, we only measure compute/communication

time on the platform and use staging overheads obtained on the intel platform

• We compare CPU-only algorithms with emulated FPGAs

• Each 10X, 50X and 100X faster than the CPU respectively

• Use representative long vector message range : 1M – 16M

23Network Based Computing Laboratory

Experimental results : Overall latency

0

1000

2000

3000

4000

5000

6000

7000

1M 2M 4M 8M 16M

La
te

n
cy

(u
s)

Message Size (bytes)

MPI_Allreduce using different compute devices

10X FPGA 50X FPGA 100X FPGA CPU

• Staging to FPGA performs up to ~30%

better than CPU based algorithm on AMD

platforms for 4M and 8M messages

• We are working closely on lowering host-

to-SCM/FPGA latency and coming up with

better near-memory reduction designs

• A prototype HW implementation is

underway

AMD EPYC 7713 64-Core Processor

24Network Based Computing Laboratory

THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS
Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data
Project

http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning
Project

http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/

25Network Based Computing Laboratory

Experimental results - Alltoall

• Run Alltoall up to 1GB on both
nodes to form a baseline

• Bigmem runs for larger
messages due to higher capacity

• Total memory consumed
exceeds DRAM capacity

• Smallmem_28ppn

• Per process memory req. = 128 *
28 * 2 = 7168MB

• Total memory req. = 7168 * 28 ~
200GB

• 200GB exceeds DRAM size 1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

67108864

134217728

64
KB

128
KB

256
KB

512
KB

1 MB2 MB4 MB8 MB 16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

1 GB

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

Average Latency of Single Node AlltoAll on Frontera
"Small Mem" vs "Big Mem"

small_mem_28ppn

big_mem_28ppn

small_mem_56ppn

big_mem_56ppn

26Network Based Computing Laboratory

Experimental results - Allgather
• Run Allgather up to 1GB on

both nodes to form a
baseline

• Bigmem runs for larger
messages due to higher
capacity

• Total memory consumed
exceeds DRAM capacity

• Smallmem_28ppn

• Per process memory req. =
256 * 28 ~ 7168MB

• Total memory req. = 7168 *
28 ~ 200GB

• 200GB exceeds DRAM size

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

67108864

134217728

64
KB

128
KB

256
KB

512
KB

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

1
GB

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

Average Latency of Allgather on Frontera –
“Small Mem” Vs. “Big Mem”

small_mem_28ppn

big_mem_28ppn

small_mem_56ppn

big_mem_56ppn

