Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda

Department of Computer Science and Engineering
The Ohio State University
Adaptive and Dynamic Design for MPI Tag Matching

M. Bayatpour, H. Subramoni, S. Chakraborty and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University
Supercomputing systems scaling rapidly
- Multi- and Many-core architectures
- High-performance Interconnects

InfiniBand and Omni-Path are popular HPC Interconnects
- Low-latency and High-bandwidth
- 192 systems (39%) in Jun’17 Top500 use IB

MPI used by vast majority of HPC applications
- Helping applications scale to thousands of cores
- Large systems exposing new scalability issues
Components of an MPI Library

HPC Application

MPI Library

- Blocking/Non-Blocking Collectives
- Point-to-Point
 - MPI-3 RMA (Remote Memory Access)

High Performance Interconnects

- InfiniBand
- Omni-Path
- High Speed Ethernet
- RoCE
- iWARP
MPI Tag Matching 101

• On the receiver side, one needs to match the incoming message with the message that was posted by receiver

• Three parameters should match
 – Context id, Source Rank, Tag
 – Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

• Two kinds of the queues are involved in the receiver side
 – Posted queue
 – Unexpected queue
Search Time Analysis of the Default Double Linked List Design

• Most MPI libraries use double linked list for unexpected and posted queues
• Message to be removed could be in any position of the queue
 – Removal time in the best case is $O(1)$ and in the average case is linear $O(N)$
• Tag matching is in the critical path for point-to-point based operations
• Number of the processes in a job is increasing
 – Future extreme-scale systems are expected to have millions of cores*
 – Multithreaded programming models
• All can push the search functions to go deeper in the lists
 – Impose significant overhead on the performance

Proposed Adaptive Design

• Based on the Bin-based and default simple double linked list scheme

• Three phases
 – Starts with the default design
 – Observes the communication pattern for each process during the runtime
 – If all the conditions are held, it begins to convert the default scheme to the Bin-based scheme

• Each process can have its own scheme
 – Some may stay at the default scheme, some may need to convert to bin-based scheme
Proposed Adaptive Design (Cont’d)

• For each of the posted and unexpected queues, we consider the following thresholds
 – Number of the calls to the tag matching functions in the library (CALLS_NUM)
 – The average number of queue look-up attempts per CALLS_NUM (MACTCH_ATTMPS)
• Each process maintains both during the runtime
• If both thresholds are crossed
 – Adaptive design changes from the double linked list scheme to the bin-based scheme
Proposed Adaptive Design (Cont’d)

• Currently, conversion is one way from default to bin-based scheme and may occur only one time through the entire runtime.

• These thresholds are fixed through entire runtime and they are configurable.
 – We have tuned them based on empirical analysis using OSU micro benchmarks.

• We consider two possible sizes for NUM_BINS.
 – \(\frac{1}{4} \) JOB_SIZE and \(\frac{1}{2} \) JOB_SIZE.
 – Based on MATCH_ATTMPS, we decide which one to choose.
Summary of Tag Matching Performance

- Comparison of different designs/benchmarks at 512 processes on RI
- Adaptive design shows the best performance
Summary of Memory Consumed for Tag Matching

- Comparison of different designs/benchmarks at 512 processes on RI with default design
- Adaptive design shows minimal memory overhead
Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University
Presented at Supercomputing 2017
MPI Reduction Collectives 101

• Convenient abstraction to implement group communication operations
• Widely used across various scientific domains
 – Owing to their ease of use and performance portability
• One of the most popular collective operations: MPI_Allreduce
 – 37% of communication time
• MPI_Allreduce reduces values from all processes and distribute the result back to all processes
Existing Designs for MPI_Allreduce

- Hierarchical strategy
- Tree-based strategies:
 - Recursive Doubling
 - Based on point-to-point operation
 - Computations are done by the root process of each node
 - High parallelism for computation
 - All the process are involved in computation
 - Pairs distance doubles after each step
 - Log (P*) steps

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction
Relative Throughput of Different Architectures

- Using OSU Micro benchmark suite*
- “Multiple Bandwidth Test”
 - Back-to-back messages
 - Sent to a pair before waiting for receive
- Evaluates the aggregate unidirectional bandwidth between multiple pairs of processes
- 1) Xeon + IB, 2) Xeon + Omni-Path, and 3) KNL + Omni-Path

* http://mvapich.cse.ohio-state.edu/benchmarks/
Communication Characteristics of Modern Architectures: Intra-node Communication

Shared Memory (KNL)

Multiple pair test vs. one pair test

- The relative throughput very close to the number of pairs
- Support many concurrent intra-node communication
Communication Characteristics of Modern Architectures: InfiniBand Interconnect

Xeon (Haswell) + IB (EDR - 100Gbps)

Multiple pair test vs. one pair test

- The relative throughput close to the number of communicating processes per node
- Support many concurrent intra-node communication
Communication Characteristics of Modern Architectures: Omni-Path Interconnect

Multiple pair test vs. one pair test

- The relative throughput of one for large messages
- Supports many concurrent communications for small and medium message range
- Similar behavior observed for Xeon + Omni-Path
Performance limitations of Existing Designs for MPI_Allreduce

• Does not take advantage of large number of cores and high concurrency in communication
• Does not take advantage of shared memory collectives
 • Needs kernel support for zero-copy communication for large messages in same node
• Too many inter-node communication for large PPNs
• Limited performance due to extra QPI transfers
• Limited computing power of switches limits its performance for medium and large message ranges
Performance of MPI_Allreduce On Omni-Path

- DPML always outperform MVAPICH2 for all medium and large message range
- DPML outperform IMPI in medium message range
- High parallelism of DPML benefits KNL more than XEON

*Processes Per Node
Performance of MPI_Allreduce On InfiniBand

- DPML outperforms MVAPICH2 for most of the medium and large message range
 - With 512K bytes, 3X improvement of DPML
- Higher benefits of DPML as the message size increases

XEON + IB (64 Nodes, 28 PPN)
Performance Benefits for MiniAMR Application

- For MiniAMR Application with 4096 processes, DPML can reduce the latency by **2.4X** on KNL + Omni-Path cluster.
- On XEON + Omni-Path, with 1792 processes, DPML can reduce the latency by **1.5X**.
SALaR: Scalable and Adaptive Designs for Large Message Reduction Collectives

M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, P. Kousha, and D. K. Panda

{bayatpour.1, hashmi.29, chakraborty.52, subramoni.1, kousha.2, panda.2}

@osu.edu

Department of Computer Science and Engineering
The Ohio State University
Presented at IEEE Cluster 2018
Deep Learning (DL) Frameworks and Trends

- Renewed interest in DL
 - Deep Neural Networks (DNNs)
- Tensorflow, CNTK and many more
- Excellent accuracy for deep/convolutional neural networks
- Diverse applications – Image Recognition, Cancer Detection, Self-Driving Cars, Speech Processing etc.

MPI Allreduce Collective

- MPI_Allreduce – Walkthrough Example
Performance limitations of Existing Designs for MPI_Allreduce

1. Load-balancing the computation and network resources
2. Overlap of communication and computation
3. Avoiding data copies and data staging
4. Avoiding the unnecessary synchronization overheads
5. Heuristic based adaptive design

<table>
<thead>
<tr>
<th>State-of-the-art Allreduce Designs</th>
<th>Feature being used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Baidu-Allreduce [a]</td>
<td>✔</td>
</tr>
<tr>
<td>Linear Pipelining [b]</td>
<td>✔</td>
</tr>
<tr>
<td>Reduce-scatter followed by Allgather [c,d]</td>
<td>✔</td>
</tr>
<tr>
<td>Segmented Ring [e]</td>
<td>✔</td>
</tr>
<tr>
<td>XPMEM-based Reduction [f]</td>
<td>✗</td>
</tr>
<tr>
<td>Proposed “SALaR”</td>
<td>✔</td>
</tr>
</tbody>
</table>
Research Contribution

• Designing high-performance Allreduce
 – Pipelined design for efficient overlap of computation and communication
 – Exploiting process Shared Address Space based truly zero-copy intra-node reduction
 – One-sided inter-node communication to reduce synchronizations
 – Efficient load-balanced inter-node communication
 – Heuristic based adaptive design

• Modeling the proposed design

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale
Outline

- Introduction
- Motivation
- Contributions
- Proposed Designs
 - Design Optimizations
 - Modeling
- Experimental Results
- Conclusions & Future Work
Summary of Proposed SALaR Designs

- SALaR-XPMEM
 - Efficient Pipeline of Inter-node Allreduce with Intra-node Reduce
 - Uses XPMEM as intra-node zero copy mechanism

- SALaR-SHMEM
 - In case of lack of XPMEM module, shared memory is being used as the intra-node mechanism
Impact of Chunk Size on Allreduce Performance

Latency of MPI_Allreduce on 224 processes and 28 processes per node on Cluster A

- Selecting the proper chunk size can have a big impact on the performance
- Different chunk is optimal for each message range

2MB is optimal among other chunk sizes

8MB is optimal among other chunk sizes
Impact of Heuristic based Design on Allreduce Performance

- Adaptive design is close and in some cases, even has better performance compared to the Static version.
- Effectively removes the hassle of static tuning.

<table>
<thead>
<tr>
<th>Message Size (bytes)</th>
<th>Static</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SALaR-SHMEM design on 896 processes on Cluster A

SALaR-XPMEM designs 896 processes on Cluster A
Outline

- Introduction
- Motivation
- Contributions
- Proposed Designs
 - Design Optimizations
 - Modeling
- Experimental Results
- Conclusions & Future Work
Experimental Setup

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster A</td>
<td>MPI Benchmark</td>
</tr>
<tr>
<td>RI2</td>
<td>Comet</td>
</tr>
<tr>
<td>40 Dual socket Intel Xeon series CPUs 14-core Broadwell processors of 2.40 GHz</td>
<td></td>
</tr>
<tr>
<td>Mellanox MT4115 EDR ConnectX-4 HCAs</td>
<td></td>
</tr>
<tr>
<td>Cluster B</td>
<td></td>
</tr>
<tr>
<td>Comet</td>
<td></td>
</tr>
<tr>
<td>1944 Dell PowerEdge C6320 two-socket servers with 12-core Intel Xeon processors of 2.50 GHz</td>
<td></td>
</tr>
<tr>
<td>Mellanox MT4099 FDR ConnectX-3 HCAs</td>
<td></td>
</tr>
</tbody>
</table>
Performance Comparison of MPI_Allreduce

- Using osu_allreduce benchmark from OSU Microbenchmarks on Cluster A with 28 processes per node
- SALaR outperforms Open MPI and MVAPICH2 up to 2X and 4X
- In the latest release of MVAPICH2, we have incorporated some of similar SALaR ideas and enhanced the performance
Performance Comparison of MPI_Allreduce (cont’d)

• Using osu_allreduce benchmark from OSU Microbenchmarks on Cluster B with 24 processes per node

• SALaR outperforms Open MPI v3.1.2 and MVAPICH2 v2.3rc2 up to 40% and 5X respectively
Impact of SALaR Designs on CNTK

- CPU-based training AlexNet neural network ILSVRC2012 dataset from the ImageNet
- SALaR designs perform up to 46% better than the MVAPICH2 library at 896 processes
- Increasing the scale, the benefits of the proposed designs also increases

![Graph showing CNTK Samples per Second on Cluster A (higher is better)]
Impact of SALaR Designs on TensorFlow

- CPU-based tf_cnn_benchmarks for distributed tests from TensorFlow Benchmarks (TF)
 - Training AlexNet neural network from the synthetic datasets
- 15% and 35% improvements in the number of images per second at 448 and 896 processes jobs
- Increasing the job size, the benefits of SALaR compared to MVAPICH2 keep increasing

![Graph showing TensorFlow Images per Second](image-url)
Conclusions & Future Work

• Designed multi-leader based collective operations
 – Capable of taking advantage of high-end features offered by modern network interconnects
• Modeled and analyzed proposed design theoretically
• The benefits were evaluated on different architectures
• The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:
 – http://mvapich.cse.ohio-state.edu/overview/#mv2X
• Studied the interplay between communication pattern of applications and different tag matching schemes
• Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to adapting dynamically to the communication characteristics of applications
• The adaptive approach opens up a new direction to design tag matching schemes for next-generation exascale systems
Conclusion and Future Work (cont’d)

• Proposed scalable and adaptive Allreduce design
 – Capable of taking advantage of high-end features offered by modern network interconnects and increased parallelism of Multi-/Many-core architectures

• Modeled and analyzed proposed design theoretically

• The benefits were evaluated on different architectures and Deep Learning frameworks

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale

• In the future:
 – Exploring the SALaR for other collective operations

• The SALaR design will be as a part of MVAPICH2! Check out:
 – http://mvapich.cse.ohio-state.edu/
References

[a] Baidu Allreduce Design: https://github.com/baidu-research/baidu-allreduce
[b] Efficient communications in training large scale neural networks, Zhao et al, Thematic Workshops ACM MM 2017
[c] MVAPICH2 2.3rc2
[d] Bandwidth optimal all-reduce algorithms for clusters of workstations, Patarasuk et al, Journal of Parallel and Distributed Comp ’09
[e] OpenMPI 1.8.5 and later
[f] Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, Hashmi et al, IPDPS ’17
Thank you! Questions?