
Accelerating MPI Message Matching and Reduction Collectives For
Multi-/Many-core Architectures

Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Adaptive and Dynamic Design for MPI Tag
Matching

M. Bayatpour, H. Subramoni, S. Chakraborty and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Network Based Computing Laboratory 3SC’18 Booth Talk, Bayatpour et al.

Supercomputing systems scaling rapidly

• Multi- and Many-core architectures

• High-performance Interconnects

InfiniBand and Omni-Path are popular HPC Interconnects

• Low-latency and High-bandwidth

• 192 systems (39%) in Jun’17 Top500 use IB

MPI used by vast majority of HPC applications

• Helping applications scale to thousands of cores

• Large systems exposing new scalability issues

Current Trends in HPC

Network Based Computing Laboratory 4SC’18 Booth Talk, Bayatpour et al.

Components of an MPI Library

HPC Application

MPI Library
Blocking/Non-Blocking

Collectives
MPI-3 RMA

(Remote Memory Access)

Tag Matching

Point-to-Point

High Performance Interconnects

InfiniBand
High Speed

Ethernet
Omni-Path RoCE iWARP

Network Based Computing Laboratory 5SC’18 Booth Talk, Bayatpour et al.

• On the receiver side, one needs to match the incoming

message with the message that was posted by receiver

• Three parameters should match

– Context id, Source Rank, Tag

– Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

• Two kinds of the queues are involved in the receiver side

– Posted queue

– Unexpected queue

MPI Tag Matching 101

Network Based Computing Laboratory 6SC’18 Booth Talk, Bayatpour et al.

• Most MPI libraries use double linked list for unexpected and posted queues

• Message to be removed could be in any position of the queue

– Removal time in the best case is O(1) and in the average case is linear O(N)

• Tag matching is in the critical path for point-to-point based operations

• Number of the processes in a job is increasing

– Future extreme-scale systems are expected to have millions of cores*

– Multithreaded programming models

• All can push the search functions to go deeper in the lists

– Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Träff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

Search Time Analysis of the Default Double Linked List Design

Network Based Computing Laboratory 7SC’18 Booth Talk, Bayatpour et al.

• Based on the Bin-based and default simple double linked list scheme

• Three phases

– Starts with the default design

– Observes the communication pattern for each process during the runtime

– If all the conditions are held, it begins to convert the default scheme to the Bin-

based scheme

• Each process can have its own scheme

– Some may stay at the default scheme, some may need to convert to bin-based

scheme

Proposed Adaptive Design

Network Based Computing Laboratory 8SC’18 Booth Talk, Bayatpour et al.

• For each of the posted and unexpected queues, we consider the following

thresholds

– Number of the calls to the tag matching functions in the library (CALLS_NUM)

– The average number of queue look-up attempts per CALLS_NUM

(MACTCH_ATTMPS)

• Each process maintains both during the runtime

• If both thresholds are crossed

– Adaptive design changes from the double linked list scheme to the bin-based scheme

Proposed Adaptive Design (Cont’d)

Network Based Computing Laboratory 9SC’18 Booth Talk, Bayatpour et al.

• Currently, conversion is one way from default to bin-based scheme

and may occur only one time through the entire runtime

• These thresholds are fixed through entire runtime and they are

configurable

– We have tuned them based on empirical analysis using OSU micro benchmarks

• We consider two possible sizes for NUM_BINS

– ¼ JOB_SIZE and ½ JOB_SIZE

– Based on MATCH_ATTMPS, we decide which one to choose

Proposed Adaptive Design (Cont’d)

Network Based Computing Laboratory 10SC’18 Booth Talk, Bayatpour et al.

Summary of Tag Matching Performance

• Comparison of different designs/benchmarks at 512 processes on RI

• Adaptive design shows the best performance

Network Based Computing Laboratory 11SC’18 Booth Talk, Bayatpour et al.

Summary of Memory Consumed for Tag Matching

• Comparison of different designs/ benchmarks at 512 processes on RI with

default design

• Adaptive design shows minimal memory overhead

Scalable Reduction Collectives with Data Partitioning-
based Multi-Leader Design

M. Bayatpour, S. Chakraborty , H. Subramoni, X. Lu, and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Presented at Supercomputing 2017

Network Based Computing Laboratory 13SC’18 Booth Talk, Bayatpour et al.

• Convenient abstraction to implement group communication

operations

• Widely used across various scientific domains

– Owing to their ease of use and performance portability

• One of the most popular collective operations: MPI_Allreduce

– 37% of communication time

• MPI_Allreduce reduces values from all processes and distribute

the result back to all processes

MPI Reduction Collectives 101

Network Based Computing Laboratory 14SC’18 Booth Talk, Bayatpour et al.

• Tree-based strategies

– Recursive Doubling

• Based on point-to-point operation

• High parallelism for computation

– All the process are involved in computation

• Pairs distance doubles after each step

• Log (P*) steps

• Hierarchical strategy

– A two-level approach

• Intra-node reduction by root + inter-node Allreduce

• Computations are done by the root process of each node

Existing Designs for MPI_Allreduce

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu

Network Based Computing Laboratory 15SC’18 Booth Talk, Bayatpour et al.

• Using OSU Micro benchmark suite*

• “Multiple Bandwidth Test”

– Back-to-back messages

• Sent to a pair before waiting for receive

• Evaluates the aggregate unidirectional bandwidth between

multiple pairs of processes

• 1) Xeon + IB, 2)Xeon + Omni-Path, and 3) KNL + Omni-Path

Relative Throughput of Different Architectures

* http://mvapich.cse.ohio-state.edu/benchmarks/

Network Based Computing Laboratory 16SC’18 Booth Talk, Bayatpour et al.

0

2

4

6

8

10

12

14

16

18

1 4 16 64 256 1K 4K 16K 64K 256K 1M

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Message Size (Byte)

Shared Memory (KNL)

2-pair 4-pair 8-pair 16-pair

Communication Characteristics of Modern Architectures:
Intra-node Communication

• Support many concurrent intra-node

communication

• The relative throughput very close to

the number of pairs

Multiple pair test vs. one pair test

H
ig

h
er

 is
 b

et
te

r

Network Based Computing Laboratory 17SC’18 Booth Talk, Bayatpour et al.

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1K 4K 16K 64K 256K 1M

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Message Size (Byte)

Xeon (Haswell) + IB (EDR - 100Gbps)

2-pair 4-pair 8-pair 16-pair

Communication Characteristics of Modern Architectures:
InfiniBand Interconnect

• The relative throughput close to

the number of communicating

processes per node

• Support many concurrent intra-

node communication

Multiple pair test vs. one pair test

H
ig

h
er

 is
 b

et
te

r

Network Based Computing Laboratory 18SC’18 Booth Talk, Bayatpour et al.

0

2

4

6

8

10

12

14

16

18

1 4 16 64 256 1K 4K 16K 64K 256K 1M

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Message Size (Byte)

KNL + Omni-Path (100 Gbps)

2-pair 4-pair 8-pair 16-pair

Communication Characteristics of Modern Architectures:
Omni-Path Interconnect

• The relative throughput of one for

large messages

• Supports many concurrent

communications for small and

medium message range

• Similar behavior observed for Xeon +

Omni-Path

Multiple pair test vs. one pair test

H
ig

h
er

 is
 b

et
te

r

Network Based Computing Laboratory 19SC’18 Booth Talk, Bayatpour et al.

Performance limitations of Existing Designs for MPI_Allreduce

• Does not take advantage of large number of cores and high concurrency in

communication

• Does not take advantage of shared memory collectives

• Needs kernel support for zero-copy communication for large messages

in same node

• Too many inter-node communication for large PPNs

• Limited performance due to extra QPI transfers

• Limited computing power of switches limits its performance for medium

and large message ranges

Network Based Computing Laboratory 20SC’18 Booth Talk, Bayatpour et al.

Design Outline

Network Based Computing Laboratory 21SC’18 Booth Talk, Bayatpour et al.

0

200

400

600

800

1000

1200

1400

8K 16K 32K 64K 128K 256K

Message Size
MVAPICH2 DPML IMPI

Performance of MPI_Allreduce On Omni-Path

KNL + Omni-Path (32 Nodes, 32 PPN)

0

200

400

600

800

1000

1200

1400

1600

1800

8K 16K 32K 64K 128K 256K

Message Size
MVAPICH2 DPML IMPI

4 X

• DPML always outperform MVAPICH2 for all medium and large message range

• DPML outperform IMPI in medium message range

• High parallelism of DPML benefits KNL more than XEON
*Processes Per Node

XEON + Omni-Path (64 Nodes, 28 PPN*)

0

20

40

60

80

100

120

140

1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size

1.5 X

0

50

100

150

200

250

300

350

1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size

Lo
w

er is b
etter

mailto:panda@cse.ohio-state.edu

Network Based Computing Laboratory 22SC’18 Booth Talk, Bayatpour et al.

0

500

1000

1500

2000

2500

3000

8K 16K 32K 64K 128K 256K 512K

Message Size
MVAPICH2 DPML

0

20

40

60

80

100

120

128 256 512 1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size
MVAPICH2 DPML

Performance of MPI_Allreduce On InfiniBand

• DPML outperform MVAPICH2 for most of the medium and large message range

– With 512K bytes, 3X improvement of DPML

• Higher benefits of DPML as the message size increases

XEON + IB (64 Nodes, 28 PPN)

3 XLo
w

er is b
etter

Network Based Computing Laboratory 23SC’18 Booth Talk, Bayatpour et al.

Performance Benefits for MiniAMR Application

0

10

20

30

40

50

60

70

80

448 896 1792

Number of ProcessesMVAPICH2 DPML IMPI

0

10

20

30

40

50

60

70

80

512 1024 1280 2048 2560 4096

La
te

n
cy

 (
s)

Number of ProcessesMVAPICH2 DPML IMPI

• For MiniAMR Application with 4096 processes, DPML can reduce the latency by 2.4X

on KNL + Omni-Path cluster

• On XEON + Omni-Path, with 1792 processes, DPML can reduce the latency by 1.5X

2.4X 1.5X

KNL + Omni-Path (32 PPN) XEON + Omni-Path (28 PPN)

Lo
w

er is b
etter

SALaR: Scalable and Adaptive Designs for Large
Message Reduction Collectives

M. Bayatpour, J. Hashmi,

S. Chakraborty, H. Subramoni, P. Kousha, and D. K. Panda

{bayatpour.1, hashmi.29, chakraborty.52, subramoni.1, kousha.2, panda.2}

@osu.edu

Department of Computer Science and Engineering
The Ohio State University

Presented at IEEE Cluster 2018

Network Based Computing Laboratory 25SC’18 Booth Talk, Bayatpour et al.

• Renewed interest in DL

– Deep Neural Networks (DNNs)

• Tensorflow, CNTK and many more

• Excellent accuracy for

deep/convolutional neural networks

• Diverse applications – Image

Recognition, Cancer Detection, Self-

Driving Cars, Speech Processing etc.

Deep Learning (DL) Frameworks and Trends

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

Network Based Computing Laboratory 26SC’18 Booth Talk, Bayatpour et al.

MPI Allreduce Collective

P1 1 P2 2 P3 3 P4 4

P1 1
0

P2 1
0

P3 1
0

P4 1
0

MPI_Allreduce(…, MPI_SUM, …)

• MPI_Allreduce – Walkthrough Example

Network Based Computing Laboratory 27SC’18 Booth Talk, Bayatpour et al.

Performance limitations of Existing Designs for MPI_Allreduce

1. Load-balancing the computation and

network resources

2. Overlap of communication and

computation

State-of-the-art Allreduce Designs
Feature being used

1 2 3 4 5

Baidu-Allreduce [a] ✔ ✔ ❌ ❌ ❌

Linear Pipelining [b] ✔ ✔ ❌ ❌ ❌

Reduce-scatter followed by Allgather
[c,d]

✔ ❌ ❌ ❌ ❌

Segmented Ring [e] ✔ ✔ ❌ ❌ ❌

XPMEM-based Reduction [f] ❌ ❌ ✔ ❌ ❌

Proposed “SALaR” ✔ ✔ ✔ ✔ ✔

3. Avoiding data copies and data staging

4. Avoiding the unnecessary synchronization

overheads

5. Heuristic based adaptive design

Network Based Computing Laboratory 28SC’18 Booth Talk, Bayatpour et al.

• Designing high-performance Allreduce

– Pipelined design for efficient overlap of computation and communication

– Exploiting process Shared Address Space based truly zero-copy intra-node

reduction

– One-sided inter-node communication to reduce synchronizations

– Efficient load-balanced inter-node communication

– Heuristic based adaptive design

• Modeling the proposed design

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale

Research Contribution

Network Based Computing Laboratory 29SC’18 Booth Talk, Bayatpour et al.

• Introduction

• Motivation

• Contributions

• Proposed Designs

– Design Optimizations

– Modeling

• Experimental Results

• Conclusions & Future Work

Outline

Network Based Computing Laboratory 30SC’18 Booth Talk, Bayatpour et al.

Summary of Proposed SALaR Designs

SALaR

SALaR-SHMEM SALaR-XPMEM

• SALaR-XPMEM

– Efficient Pipeline of Inter-node

Allreduce with Intra-node Reduce

– Uses XPMEM as intra-node zero copy

mechanism

• SALaR-SHMEM

– In case of lack of XPMEM module,

shared memory is being used as the

intra-node mechanism

Network Based Computing Laboratory 31SC’18 Booth Talk, Bayatpour et al.

Impact of Chunk Size on Allreduce Performance

128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 128K
 512K
 2M
 4M
 8M
 16M
 32M

 0

 100

 200

 300

 400

 500

16M 32M 64M

• Selecting the proper chunk size can have a big impact on the

performance

• Different chunk is optimal for each message range

Latency of MPI_Allreduce on 224 processes and 28 processes per node on Cluster A

SALaR-XPMEM (Larger Messages)

8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 128K
 512K
 2M
 4M
 8M
 16M
 32M

 0

 10

 20

 30

 40

 50

1M 2M 4M

SALaR-XPMEM

2MB is

optimal

among other

chunk sizes

8MB is optimal among

other chunk sizes

Network Based Computing Laboratory 32SC’18 Booth Talk, Bayatpour et al.

Impact of Heuristic based Design on Allreduce Performance

• Adaptive design is close and in

some cases, even has better

performance compared to the

Static version

• Effectively removes the hassle

of static tuning

SALaR-XPMEM designs 896 processes on Cluster A

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10

 15

 20

 25

 30

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

 0

 5

SALaR-SHMEM design on 896 processes on Cluster A

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10

 15

 20

 25

 30

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

 0

 5

2%

5%

Network Based Computing Laboratory 33SC’18 Booth Talk, Bayatpour et al.

• Introduction

• Motivation

• Contributions

• Proposed Designs

– Design Optimizations

– Modeling

• Experimental Results

• Conclusions & Future Work

Outline

Network Based Computing Laboratory 34SC’18 Booth Talk, Bayatpour et al.

Hardware Software

Cluster A
RI2

Cluster B
Comet

MPI
Benchmark

DL Frameworks

40 Dual socket Intel
Xeon series CPUs 14-

core Broadwell
processors of 2.40 GHz

1944 Dell PowerEdge
C6320 two- socket

servers with 12-core
Intel Xeon processors of

2.50 GHz OSU
Microbenchmarks

v5.4.1

Microsoft Computational
Network Toolkit (CNTK)

v.2.3.1

Mellanox MT4115 EDR
ConnectX-4 HCAs

Mellanox MT4099 FDR
ConnectX-3 HCAs

Horovod: Uber
implementation of

Tensorflow
v0.12.1

Experimental Setup

Network Based Computing Laboratory 35SC’18 Booth Talk, Bayatpour et al.

 800

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Open MPI 3.0.1
 MVAPICH2 2.3rc2
 SALaR−SHMEM
 SALaR−XPMEM

 0

 100

 200

 300

 400

 500

 600

 700

Performance Comparison of MPI_Allreduce

2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Open MPI 3.0.1
 MVAPICH2 2.3rc2
 SALaR−SHMEM
 SALaR−XPMEM

 0

 10

 20

 30

 40

 50

 60

1M

• Using osu_allreduce

benchmark from OSU

Microbenchmarks on Cluster

A with 28 processes per node

• SALaR outperforms Open MPI

and MVAPICH2 up to 2X and

4X

• In the latest release of

MVAPICH2, we have

incorporated some of similar

SALaR ideas and enhanced

the performance

448 Processes (Same as in the Paper)

756 Processes (Latest Numbers)

 40

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 OpenMPI 3.0.1
 MVAPICH2 2.3GA
 SALaR−XPMEM
 SALaR−SHMEM

 0

 5

 10

 15

 20

 25

 30

 35

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 OpenMPI 3.0.1
 MVAPICH2 2.3GA
 SALaR−XPMEM
 SALaR−SHMEM

 0

 100

 200

 300

 400

 500

 600

 700

4X

2X

Network Based Computing Laboratory 36SC’18 Booth Talk, Bayatpour et al.

Performance Comparison of MPI_Allreduce (cont’d)

• Using osu_allreduce

benchmark from OSU

Microbenchmarks on

Cluster B with 24

processes per node

• SALaR outperforms

Open MPI v3.1.2 and

MVAPICH2 v2.3rc2 up to

40% and 5X respectively

768 Processes on Cluster B

1536 Processes on Cluster B

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Open MPI 3.1.2
 MVAPICH2 2.3rc2
 SALaR−SHMEM

 0

 500

 1,000

 1,500

 2,000

 100

 120

 140

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Open MPI 3.1.2
 MVAPICH2 2.3rc2
 SALaR−SHMEM

 0

 20

 40

 60

 80

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Open MPI 3.1.2
 MVAPICH2 2.3rc2
 SALaR−SHMEM

 0

 500

 1,000

 1,500

 2,000

 100

 120

 140

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Open MPI 3.1.2
 MVAPICH2 2.3rc2
 SALaR−SHMEM

 0

 20

 40

 60

 80

5X

40%

Network Based Computing Laboratory 37SC’18 Booth Talk, Bayatpour et al.

• CPU-based training AlexNet neural

network ILSVRC2012 dataset from

the ImageNet

• SALaR designs perform up to 46%

better than the MVAPICH2 library at

896 processes

• Increasing the scale, the benefits of

the proposed designs also increases

Impact of SALaR Designs on CNTK

 500

 600

112 224 448 896

S
am

p
le

s/
S

ec
o
n
d

Number of Processes

 MVAPICH2 2.3rc2
 SALaR−SHMEM
 SALaR−XPMEM

 0

 100

 200

 300

 400

CNTK Samples per Second on Cluster A (higher is better)

46%

Network Based Computing Laboratory 38SC’18 Booth Talk, Bayatpour et al.

• CPU-based tf_cnn_benchmarks for

distributed tests from TensorFlow

Benchmarks (TF)

– Training AlexNet neural network from

the synthetic datasets

• 15% and 35% improvements in the

number of images per second at 448 and

896 processes jobs

• Increasing the job size, the benefits of

SALaR compared to MVAPICH2 keep

increasing

Impact of SALaR Designs on TensorFlow

 500

 600

112 224 448 896

S
am

p
le

s/
S

ec
o
n
d

Number of Processes

 MVAPICH2 2.3rc2
 SALaR−SHMEM
 SALaR−XPMEM

 0

 100

 200

 300

 400

TensorFlow Images per Second (higher is better)

35%

Network Based Computing Laboratory 39SC’18 Booth Talk, Bayatpour et al.

• Designed multi-leader based collective operations

– Capable of taking advantage of high-end features offered by modern network interconnects

• Modeled and analyzed proposed design theoretically

• The benefits were evaluated on different architectures

• The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:

– http://mvapich.cse.ohio-state.edu/overview/#mv2X

• Studied the interplay between communication pattern of applications and different tag

matching schemes

• Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to

adapting dynamically to the communication characteristics of applications

• The adaptive approach opens up a new direction to design tag matching schemes for next-

generation exascale systems

Conclusions & Future Work

Network Based Computing Laboratory 40SC’18 Booth Talk, Bayatpour et al.

• Proposed scalable and adaptive Allreduce design

– Capable of taking advantage of high-end features offered by modern network

interconnects and increased parallelism of Multi-/Many-core architectures

• Modeled and analyzed proposed design theoretically

• The benefits were evaluated on different architectures and Deep Learning frameworks

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale

• In the future:

– Exploring the SALaR for other collective operations

• The SALaR design will be as a part of MVAPICH2! Check out:

– http://mvapich.cse.ohio-state.edu/

Conclusion and Future Work (cont’d)

Network Based Computing Laboratory 41SC’18 Booth Talk, Bayatpour et al.

References

[a] Baidu Allreduce Design: https://github.com/baidu- research/baidu-allreduce

[b] Efficient communications in training large scale neural networks, Zhao et al, Thematic Workshops ACMMM2017

[d] Bandwidth optimal all-reduce algorithms for clusters of workstations, Patarasuk et al, Journal of Parallel and Distributed Comp ’09

[e] OpenMPI 1.8.5 and later

[f] Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, Hashmi et al, IPDPS ‘17

[c] MVAPICH2 2.3rc2

Network Based Computing Laboratory 42SC’18 Booth Talk, Bayatpour et al.

Thank you! Questions?

