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Supercomputing systems scaling rapidly

• Multi- and Many-core architectures

• High-performance Interconnects

InfiniBand and Omni-Path are popular HPC Interconnects

• Low-latency and High-bandwidth

• 192 systems (39%) in Jun’17 Top500 use IB

MPI used by vast majority of HPC applications

• Helping applications scale to thousands of cores

• Large systems exposing new scalability issues

Current Trends in HPC
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Components of an MPI Library

HPC Application

MPI Library
Blocking/Non-Blocking 

Collectives
MPI-3 RMA

(Remote Memory Access)

Tag Matching

Point-to-Point

High Performance Interconnects

InfiniBand
High Speed 

Ethernet
Omni-Path RoCE iWARP
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• On the receiver side, one needs to match the incoming 

message with the message that was posted by receiver

• Three parameters should match

– Context id, Source Rank, Tag

– Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

• Two kinds of the queues are involved in the receiver side

– Posted queue

– Unexpected queue

MPI Tag Matching 101
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• Most MPI libraries use double linked list for unexpected and posted queues

• Message to be removed could be in any position of the queue

– Removal time in the best case is O(1) and in the average case is linear O(N)

• Tag matching is in the critical path for point-to-point based operations

• Number of the processes in a job is increasing 

– Future extreme-scale systems are expected to have millions of cores*

– Multithreaded programming models

• All can push the search functions to go deeper in the lists

– Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Träff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

Search Time Analysis of the Default Double Linked List Design
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• Based on the Bin-based and default simple double linked list scheme

• Three phases 

– Starts with the default design

– Observes the communication pattern for each process during the runtime

– If all the conditions are held, it begins to convert the default scheme to the Bin-

based scheme

• Each process can have its own scheme

– Some may stay at the default scheme, some may need to convert to bin-based 

scheme

Proposed Adaptive Design



Network Based Computing Laboratory 8SC’18 Booth Talk, Bayatpour et al.

• For each of the posted and unexpected queues, we consider the following 

thresholds

– Number of the calls to the tag matching functions in the library (CALLS_NUM)

– The average number of queue look-up attempts per CALLS_NUM 

(MACTCH_ATTMPS)

• Each process maintains both during the runtime 

• If both thresholds are crossed

– Adaptive design changes from the double linked list scheme to the bin-based scheme

Proposed Adaptive Design (Cont’d)
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• Currently, conversion is one way from default to bin-based scheme 

and may occur only one time through the entire runtime

• These thresholds are fixed through entire runtime and they are 

configurable

– We have tuned them based on empirical analysis using OSU micro benchmarks

• We consider two possible sizes for NUM_BINS

– ¼  JOB_SIZE and ½ JOB_SIZE

– Based on MATCH_ATTMPS, we decide which one to choose

Proposed Adaptive Design (Cont’d)
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Summary of Tag Matching Performance

• Comparison of different designs/benchmarks at 512 processes on RI

• Adaptive design shows the best performance
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Summary of Memory Consumed for Tag Matching

• Comparison of different designs/ benchmarks at 512 processes on RI with 

default design

• Adaptive design shows minimal memory overhead
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• Convenient abstraction to implement group communication 

operations 

• Widely used across various scientific domains

– Owing to their ease of use and performance portability

• One of the most popular collective operations: MPI_Allreduce

– 37% of communication time

• MPI_Allreduce reduces values from all processes and distribute 

the result back to all processes

MPI Reduction Collectives 101
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• Tree-based strategies

– Recursive Doubling 

• Based on point-to-point operation

• High parallelism for computation

– All the process are involved in computation

• Pairs distance doubles after each step

• Log (P*) steps

• Hierarchical strategy 

– A two-level approach

• Intra-node reduction by root + inter-node Allreduce

• Computations are done by the root process of each node

Existing Designs for MPI_Allreduce 

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
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• Using OSU Micro benchmark suite*

• “Multiple Bandwidth Test”

– Back-to-back messages

• Sent to a pair before waiting for receive

• Evaluates the aggregate unidirectional bandwidth between 

multiple pairs of processes

• 1) Xeon + IB, 2)Xeon + Omni-Path, and 3) KNL + Omni-Path

Relative Throughput of Different Architectures

* http://mvapich.cse.ohio-state.edu/benchmarks/
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Performance limitations of Existing Designs for MPI_Allreduce

• Does not take advantage of large number of cores and high concurrency in 

communication

• Does not take advantage of shared memory collectives

• Needs kernel support for zero-copy communication for large messages 

in same node

• Too many inter-node communication for large PPNs

• Limited performance due to extra QPI transfers

• Limited computing power of switches limits its performance for medium 

and large message ranges
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Design Outline
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Performance Benefits for MiniAMR Application
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• Renewed interest in DL

– Deep Neural Networks (DNNs)

• Tensorflow, CNTK and many more

• Excellent accuracy for 

deep/convolutional neural networks

• Diverse applications – Image 

Recognition, Cancer Detection, Self-

Driving Cars, Speech Processing etc.

Deep Learning (DL) Frameworks and Trends

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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MPI Allreduce Collective

P1 1 P2 2 P3 3 P4 4

P1 1
0

P2 1
0

P3 1
0

P4 1
0

MPI_Allreduce(…, MPI_SUM, …)

• MPI_Allreduce – Walkthrough Example
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Performance limitations of Existing Designs for MPI_Allreduce

1. Load-balancing the computation and 

network resources

2. Overlap of communication and 

computation

State-of-the-art Allreduce Designs
Feature being used

1 2 3 4 5

Baidu-Allreduce [a] ✔ ✔ ❌ ❌ ❌

Linear Pipelining [b] ✔ ✔ ❌ ❌ ❌

Reduce-scatter followed by Allgather 
[c,d]

✔ ❌ ❌ ❌ ❌

Segmented Ring [e] ✔ ✔ ❌ ❌ ❌

XPMEM-based Reduction [f]  ❌ ❌ ✔ ❌ ❌

Proposed “SALaR” ✔ ✔ ✔ ✔ ✔

3.    Avoiding data copies and data staging 

4.    Avoiding the unnecessary synchronization  

overheads

5.    Heuristic based adaptive design
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• Designing high-performance Allreduce

– Pipelined design for efficient overlap of computation and communication

– Exploiting process Shared Address Space based truly zero-copy intra-node 

reduction

– One-sided inter-node communication to reduce synchronizations

– Efficient load-balanced inter-node communication

– Heuristic based adaptive design

• Modeling the proposed design

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale

Research Contribution
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• Introduction

• Motivation

• Contributions

• Proposed Designs

– Design Optimizations

– Modeling

• Experimental Results

• Conclusions & Future Work

Outline
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Summary of Proposed SALaR Designs

SALaR

SALaR-SHMEM SALaR-XPMEM

• SALaR-XPMEM

– Efficient Pipeline of Inter-node 

Allreduce with Intra-node Reduce

– Uses XPMEM as intra-node zero copy 

mechanism

• SALaR-SHMEM

– In case of lack of XPMEM module, 

shared memory is being used as the 

intra-node mechanism
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Impact of Chunk Size on Allreduce Performance 
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Impact of Heuristic based Design on Allreduce Performance 

• Adaptive design is close and in 

some cases, even has better 

performance compared to the 

Static version 

• Effectively removes the hassle 

of static tuning
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• Introduction

• Motivation

• Contributions

• Proposed Designs

– Design Optimizations

– Modeling

• Experimental Results

• Conclusions & Future Work

Outline
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Hardware Software

Cluster A
RI2

Cluster B
Comet

MPI 
Benchmark

DL Frameworks

40 Dual socket Intel 
Xeon series CPUs 14-

core Broadwell 
processors of 2.40 GHz

1944 Dell PowerEdge 
C6320 two- socket 

servers with 12-core 
Intel Xeon processors of 

2.50 GHz OSU
Microbenchmarks

v5.4.1

Microsoft Computational 
Network Toolkit (CNTK)

v.2.3.1

Mellanox MT4115 EDR 
ConnectX-4 HCAs

Mellanox MT4099 FDR 
ConnectX-3 HCAs

Horovod: Uber 
implementation of 

Tensorflow 
v0.12.1

Experimental Setup
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Performance Comparison of MPI_Allreduce (cont’d)

• Using osu_allreduce 

benchmark from OSU 

Microbenchmarks on 

Cluster B with 24 

processes per node

• SALaR outperforms 

Open MPI v3.1.2 and 

MVAPICH2 v2.3rc2 up to 

40% and 5X respectively 
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• CPU-based training AlexNet neural 

network ILSVRC2012 dataset from 

the ImageNet 

• SALaR designs perform up to 46% 

better than the MVAPICH2 library at 

896 processes 

• Increasing the scale, the benefits of 

the proposed designs also increases

Impact of SALaR Designs on CNTK 
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• CPU-based tf_cnn_benchmarks for 

distributed tests from TensorFlow 

Benchmarks (TF) 

– Training AlexNet neural network from 

the synthetic datasets 

• 15% and 35% improvements in the 

number of images per second at 448 and 

896 processes jobs 

• Increasing the job size, the benefits of 

SALaR compared to MVAPICH2 keep 

increasing 

Impact of SALaR Designs on TensorFlow
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• Designed multi-leader based collective operations 

– Capable of taking advantage of high-end features offered by modern network interconnects

• Modeled and analyzed proposed design theoretically 

• The benefits were evaluated on different architectures

• The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:

– http://mvapich.cse.ohio-state.edu/overview/#mv2X

• Studied the interplay between communication pattern of applications and different tag 

matching schemes

• Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to 

adapting dynamically to the communication characteristics of applications

• The adaptive approach opens up a new direction to design tag matching schemes for next-

generation exascale systems

Conclusions & Future Work
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• Proposed scalable and adaptive Allreduce design 

– Capable of taking advantage of high-end features offered by modern network 

interconnects and increased parallelism of Multi-/Many-core architectures

• Modeled and analyzed proposed design theoretically 

• The benefits were evaluated on different architectures and Deep Learning frameworks

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale

• In the future:

– Exploring the SALaR for other collective operations

• The SALaR design will be as a part of MVAPICH2! Check out:

– http://mvapich.cse.ohio-state.edu/

Conclusion and Future Work (cont’d)
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Thank you! Questions?


