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Supercomputing systems scaling rapidly

•Multi- and Many-core architectures

•High-performance Interconnects

InfiniBand and Omni-Path are popular HPC Interconnects

•Low-latencyand High-bandwidth

•192 systems (39%) in Jun’17 Top500 use IB

MPI used by vastmajority of HPC applications

•Helping applications scale to thousands of cores

•Large systemsexposing new scalability issues

Current Trends in HPC
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Components of an MPI Library

HPC Application

MPI Library
Blocking/Non-Blocking 

Collectives
MPI-3 RMA

(Remote Memory Access)

Tag Matching

Point-to-Point

High Performance Interconnects

InfiniBand
High Speed 

Ethernet
Omni-Path RoCE iWARP
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•On the receiver side, one needs to match the incoming 

message with the message that was posted by receiver

•Three parameters should match

–Context id, Source Rank, Tag

–Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

•Two kinds of the queues are involved in the receiver side

– Posted queue

– Unexpected queue

MPI Tag Matching 101
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• Most MPI libraries use double linked list for unexpected and posted queues

• Message to be removed could be in any position of the queue

– Removal time in the best case is O(1) and in the average case is linear O(N)

• Tag matching is in the critical path for point-to-point based operations

• Number of the processes in a job is increasing 

– Future extreme-scale systems are expected to have millions of cores*

– Multithreaded programming models

• All can push the search functions to go deeper in the lists

– Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Träff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

Search Time Analysis of the Default Double Linked List Design
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• Based on the Bin-based and default simple double linked list scheme

• Three phases 

– Starts with the default design

– Observes the communication pattern for each process during the runtime

– If all the conditions are held, it begins to convert the default scheme to the Bin-

based scheme

• Each process can have its own scheme

– Some may stay at the default scheme, some may need to convert to bin-based 

scheme

Proposed Adaptive Design
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• For each of the posted and unexpected queues, we consider the following 

thresholds

– Number of the calls to the tag matching functions in the library (CALLS_NUM)

– The average number of queue look-up attempts per CALLS_NUM 

(MACTCH_ATTMPS)

• Each process maintains both during the runtime 

• If both thresholds are crossed

– Adaptive design changes from the double linked list scheme to the bin-based scheme

Proposed Adaptive Design (Cont’d)
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• Currently, conversion is one way from default to bin-based scheme 

and may occur only one time through the entire runtime

• These thresholds are fixed through entire runtime and they are 

configurable

– We have tuned them based on empirical analysis using OSU micro benchmarks

• We consider two possible sizes for NUM_BINS

– ¼  JOB_SIZE and ½ JOB_SIZE

– Based on MATCH_ATTMPS, we decide which one to choose

Proposed Adaptive Design (Cont’d)
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Summary of Tag Matching Performance

• Comparison of different designs/benchmarks at 512 processes on RI

• Adaptive design shows the best performance
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Summary of Memory Consumed for Tag Matching

• Comparison of different designs/ benchmarks at 512 processes on RI with 

default design

• Adaptive design shows minimal memory overhead
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• Convenient abstraction to implement group communication 

operations 

•Widely used across various scientific domains

–Owing to their ease of use and performance portability

•One of the most popular collective operations: MPI_Allreduce

–37% of communication time

•MPI_Allreduce reduces values from all processes and distribute 

the result back to all processes

MPI Reduction Collectives 101
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•Tree-based strategies

–Recursive Doubling 

•Based on point-to-point operation

•High parallelism for computation

–All the process are involved in computation

•Pairs distance doubles after each step

•Log (P*) steps

•Hierarchical strategy 

–A two-level approach

•Intra-node reduction by root + inter-node Allreduce

•Computations are done by the root process of each node

Existing Designs for MPI_Allreduce 

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
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• Using OSU Micro benchmark suite*

•“Multiple Bandwidth Test”

–Back-to-back messages

•Sent to a pair before waiting for receive

• Evaluates the aggregate unidirectional bandwidth between 

multiple pairs of processes

• 1) Xeon + IB, 2)Xeon + Omni-Path, and 3) KNL + Omni-Path

Relative Throughput of Different Architectures

* http://mvapich.cse.ohio-state.edu/benchmarks/
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Performance limitations of Existing Designs for MPI_Allreduce

• Does not take advantage of large number of cores and high concurrency in 

communication

• Does not take advantage of shared memory collectives

• Needs kernel support for zero-copy communication for large messages 

in same node

• Too many inter-node communication for large PPNs

• Limited performance due to extra QPI transfers

• Limited computing power of switches limits its performance for medium 

and large message ranges
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Design Outline
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Performance Benefits for MiniAMR Application
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• Renewed interest in DL

– Deep Neural Networks (DNNs)

• Tensorflow, CNTK and many more

• Excellent accuracy for 

deep/convolutional neural networks

• Diverse applications –Image 

Recognition, Cancer Detection, Self-

Driving Cars, Speech Processing etc.

Deep Learning (DL) Frameworks and Trends

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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MPI Allreduce Collective

P1 1 P2 2 P3 3 P4 4

P1 1
0

P2 1
0

P3 1
0

P4 1
0

MPI_Allreduce(…, MPI_SUM, …)

• MPI_Allreduce –Walkthrough Example



Network Based Computing Laboratory 27SC’18 Booth Talk, Bayatpour et al.

Performance limitations of Existing Designs for MPI_Allreduce

1. Load-balancing the computation and 

network resources

2. Overlap of communication and 

computation

State-of-the-art Allreduce Designs
Feature being used

1 2 3 4 5

Baidu-Allreduce [a]

Linear Pipelining [b]

Reduce-scatterfollowed by Allgather 
[c,d]

Segmented Ring [e]

XPMEM-based Reduction [f]  

Proposed “SALaR”

3.    Avoiding data copies and data staging 

4.    Avoiding the unnecessary synchronization  

overheads

5.    Heuristic based adaptive design
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• Designing high-performance Allreduce

– Pipelined design for efficient overlapof computation and communication

– Exploiting process Shared Address Space based truly zero-copyintra-node 

reduction

– One-sided inter-node communication to reduce synchronizations

– Efficient load-balancedinter-node communication

– Heuristic based adaptive design

• Modeling the proposed design

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduce by up to 5X at scale

Research Contribution
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• Introduction

•Motivation

•Contributions

•Proposed Designs

–Design Optimizations

–Modeling

•Experimental Results

•Conclusions & Future Work

Outline
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Summary of Proposed SALaR Designs

SALaR

SALaR-SHMEM SALaR-XPMEM

•SALaR-XPMEM

–Efficient Pipeline of Inter-node 

Allreduce with Intra-node Reduce

–Uses XPMEM as intra-node zero copy 

mechanism

•SALaR-SHMEM

–In case of lack of XPMEM module, 

shared memory is being used as the 

intra-node mechanism
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Impact of Chunk Size on Allreduce Performance 
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Impact of Heuristic based Design on Allreduce Performance 

•Adaptive design is close and in 

some cases, even has better 

performance compared to the 

Static version 

•Effectively removes the hassle 

of static tuning

SALaR-XPMEM designs 896 processes on Cluster A

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

  0

  50

  100

  150

  200

  250

  300

  350

  400

  10

  15

  20

  25

  30

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

  0

  5

SALaR-SHMEM  design on 896 processes on Cluster A

16M 32M 64M 128M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

  0

  50

  100

  150

  200

  250

  300

  350

  400

  10

  15

  20

  25

  30

1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Message Size (bytes)

 Static
 Adaptive

  0

  5

2%

5%



Network Based Computing Laboratory 33SC’18 Booth Talk, Bayatpour et al.

• Introduction

•Motivation

•Contributions

•Proposed Designs

–Design Optimizations

–Modeling

•Experimental Results

•Conclusions & Future Work

Outline
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Hardware Software

Cluster A
RI2

Cluster B
Comet

MPI 
Benchmark

DL Frameworks

40 Dual socket Intel 
Xeon series CPUs14-

core Broadwell 
processors of 2.40 GHz

1944 Dell PowerEdge 
C6320 two- socket 

servers with 12-core 
Intel Xeon processors of 

2.50 GHz OSU
Microbenchmarks

v5.4.1

Microsoft Computational 
Network Toolkit (CNTK)

v.2.3.1

Mellanox MT4115 EDR 
ConnectX-4 HCAs

Mellanox MT4099 FDR 
ConnectX-3 HCAs

Horovod: Uber 
implementation of 

Tensorflow 
v0.12.1

Experimental Setup
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Performance Comparison of MPI_Allreduce (cont’d)

•Using osu_allreduce 

benchmark from OSU 

Microbenchmarks on 

Cluster B with 24 

processes per node

•SALaR outperforms 

Open MPI v3.1.2 and 

MVAPICH2 v2.3rc2 up to 

40% and 5X respectively 
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• CPU-based training AlexNet neural 

network ILSVRC2012 dataset from 

the ImageNet 

• SALaR designs perform up to 46% 

better than the MVAPICH2 library at 

896 processes 

• Increasing the scale, the benefits of 

the proposed designs also increases

Impact of SALaR Designs on CNTK 
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• CPU-based tf_cnn_benchmarks for 

distributed tests from TensorFlow 

Benchmarks (TF) 

– Training AlexNet neural network from 

the synthetic datasets 

• 15% and 35% improvements in the 

number of images per second at 448 and 

896 processes jobs 

• Increasing the job size, the benefits of 

SALaR compared to MVAPICH2 keep 

increasing 

Impact of SALaR Designs on TensorFlow
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• Designed multi-leader based collective operations 

–Capable of taking advantage of high-end features offered by modern network interconnects

• Modeled and analyzed proposed design theoretically 

• The benefits were evaluated on different architectures

• The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:

–http://mvapich.cse.ohio-state.edu/overview/#mv2X

• Studied the interplay between communication pattern of applications and different tag 

matching schemes

• Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to 

adapting dynamically to the communication characteristics of applications

• The adaptive approach opens up a new direction to design tag matching schemes for next-

generation exascalesystems

Conclusions & Future Work
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• Proposed scalable and adaptive Allreduce design 

– Capable of taking advantage of high-end features offered by modern network 

interconnects and increased parallelism of Multi-/Many-core architectures

• Modeled and analyzed proposed design theoretically 

• The benefits were evaluated on different architectures and Deep Learning frameworks

• Improved the AlexNet training time on CNTK by up to 46%

• Reduced the latency of osu_allreduceby up to 5X at scale

• In the future:

– Exploring the SALaR for other collective operations

• The SALaR design will be as a part of MVAPICH2! Check out:

– http://mvapich.cse.ohio-state.edu/

Conclusion and Future Work (cont’d)
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Thank you! Questions?


