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Current Trends in HPC

- )

Supercomputing systems scaling rapidly

« Multi- and Manycore architectures
SRR #| « Highperformance Interconnects

_ ) InfiniBand and Om#Path are popular HPC Interconnects

|5 « Lowlatencyand Highbandwidth

«192 systems (39%) iIin Jun’ 17 Topb6&t

(  MPI used by vashajority of HPC applications

» Helpingapplications scale to thousands of cores
« Large systemexposing new scalability issues
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Components of an MPI Library

HPC Application
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Blocking/NorBlocking | MPI3 RMA

Collectives Pointto-Point (Remote Memory Access)
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High Performance Interconnects
InfiniBand OmniPath Algh Sjeeee ‘ RoCE IWARP
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MPI Tag Matching 101

* On the recelver side, one needs to match the incoming
message with the message that was posted by receiver

 Three parameters should match

— Contextid, Source Rank, Tag
— Wildcards (MPlI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

 Two kinds of the queues are involved In the recelver side

— Posted gueue

— Unexpected queue
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Search Time Analysis of the Default Double Linked List Design

 Most MPI libraries use double linked list for unexpected and posted queues

« Message to be removed could be in any position of the queue

— Removal time in the best case is O(1) and in the average case is linear O(N)
 Tag matching is in the critical path for poetotpoint based operations
 Number of the processes in a job is increasing

— Future extremescale systems are expected to have millions of cores*

— Multithreaded programming models

e All can push the search functions to go deeper in the lists

— Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Traff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

SC’18 Booth Talk, Bayatpour et al.



Proposed Adaptive Design

 Based on the Bthased and default simple double linked list scheme

 Three phases
— Starts with the default design
— Observes the communication pattern for each process during the runtime

— If all the conditions are held, it begins to convert the default scheme to the Bin
based scheme

 Each process can have its own scheme

— Some may stay at the default scheme, some may need to convertoasied
scheme
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Proposed Adaptive Design (cont'd)

 For each of the posted and unexpected queues, we consider the following
thresholds

— Number of the calls to the tag matching functions in the library (CALLS_NUM)

— The average number of queue leak attempts per CALLS NUM
(MACTCH_ATTMPS)

 Each process maintains both during the runtime

e |f both thresholds are crossed

— Adaptive design changes from the double linked list scheme to thedsed scheme
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Proposed Adaptive Design (Cont’d)

 Currently, conversion is one way from default to-based scheme
and may occur only one time through the entire runtime

 These thresholds are fixed through entire runtime and they are
configurable

— We haveiunedthem based on empirical analysis using OSU micro benchmarks

 We consider two possible sizes for NUM_BINS

— Y, JOB_SIZE and ¥2 JOB_SIZE
— Based on MATCH_ATTMPS, we decide which one to choose
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Summary of Tag Matching Performance
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Normalized Tag Matching Time
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(b) Total Tag Matching Time, Normalized to Default (Lower is Better)

 Comparison of different designs/benchmarks at 512 processes on Rl

« Adaptive design shows the best performance
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Summary of Memory Consumed for Tag Matching

Memory Overhead (KB)
O = M W o O Oy ~1 0 WO

Mini Lulesh nas.CG nas.EP nas.FT

(a) Memory Overhead per Process, Compared to Default (Lower 1s Better)

 Comparison of different designs/ benchmarks at 512 processes on RI with
default design

 Adaptive design shows minimal memory overhead
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MPI Reduction Collectives 101

« Convenient abstraction to implement group communication
operations

 Widely used across various scientific domains
— Owing to their ease of use and performance portability
 One of the most popular collective operatiomdP| Allreduce
— 37% of communication time

« MPI_Allreduce reduces values from all processes and distribute
the result back to all processes
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Existing Designs for MPI_Allreduce

* Hierarchical strategy
» Treglageldstiapgresch
— Recinmgisa o bdidgction by root + intenode Allreduce
* Bashep iy arerg&ie by the root process of each nod

« High parallelism for computation
—All the process are involved in computation

 Pairs distance doubles after each step

e Log (P*) steps

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction
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Relative Throughput of Different Architectures

 Using OSU Micro benchmark suite*
e “Mul ti ple Bandwidth Test?’
— Backto-back messages
e Sent to a pair before waiting for receive

 Evaluates the aggregate unidirectional bandwidth between
multiple pairs of processes

1) Xeon + IB, 2)Xeon + Oniath, and 3) KNL + Orpath

* http: //mvaplch cse.ohiestate.edu/benchmarks/
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Communication Characteristics of Modern Architectures:

Intra-node Communication
Shared Memory (KNL)

18
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Communication Characteristics of Modern Architectures:
InfiniBand Interconnect

Xeon (Haswell) + IB (EDR - 100Gbps) i . ]
Multiple pair test vs. one pair test

18 W 2-pair 4-pair 8-pair m 16-pair

‘.II ’ |

* The elative throughput close to
the number of communicating
processes per node

=
N

[
o

e Support many concurrent intra
node communication

Relative Throughput

Higher is better

| |
LRy [l

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Byte)
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Communication Characteristics of Modern Architectures:
Omni-Path Interconnect

KNL + Omni-Path (100 Gbps)

18 Multiple pair test vs. one pair test
' ' 8-pair m 16-pair

* The relative throughput of one for

2 large messages
3 N
£ 10 o * Supports many concurrent
— 5 .
v 3 S communications for small and
S 6 5 medium message range
e =
4 £l + Similar behavior observed for Xeon +
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Performance limitations of Existing Designs for MPI_Allreduce

Does not take advantage of large number of cores and high concurrency |
communication

Does not take advantage of shared memory collectives

 Needs kernel support for zeimopy communication for large messages
In same node

Too many inteinode communication for large PPNs
Limited performance due to extra QPI transfers

Limited computing power of switches limits its performance for medium
and large message ranges
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Design Outline

Collective
CPU
Interconnect Cluster A,B Cluster C Cluster D Not available
_ Data Partitioning Multi Leader
Designs (DPML)
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Performance of MPI_Allreduce On Omni-Path
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XEON + Omni-Path (64 Nodes, 28 PPN*) KNL + Omni-Path (32 Nodes, 32 PPN)

DPML always outperform MVAPICHZ2 for all medium and large message range
DPML outperform IMPI in medium message range
High parallelism of DPML benefits KNL more than XEON

*Processes Per Node
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Performance of MPI_Allreduce On InfiniBand
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XEON + IB (64 Nodes, 28 PPN)

 DPML outperform MVAPICHZ2 for most of the medium and large message range
— With 512K bytes3X improvemenbf DPML
« Higher benefits of DPML as the message size increases
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Performance Benefits for MiniAMR Application
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e For MinlAMR Application with 4096 processes, DPML can reduce the lateAci)by
on KNL + Om#RRath cluster

« On XEON + OmPRiath, with 1792 processes, DPML can reduce the latentysby
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Deep Learning (DL) Frameworks and Trends

° Renewed |nterest |n DL Chart 1.1 Artificial Intelligence Revenue, World Markets: 2016-2025
— Deep Neural Networks (DNNSs) ::::

« Tensorflow, CNTK and many more $aﬂ:m
« Excellent accuracy for £ oo

deep/convolutional neural networks E $20.000
« Diverse applications Image :::: I |

Recognition, Cancer Detection, Self 5000 I

— = m B I

Driving Cars, Speech Processing etc.

-

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

(Source: Tractica)

https://www.top500.org/news/marketfor-artificial-intelligenceprojectedto-hit-36-billion-by-2025/
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MPI Allreduce Collective

 MPI_Allreduce- Walkthrough Example

P1 | 1 P2 | 2 P3 | 3 P4 | 4

N
MPI_Allreduce(, MPI_SUM,.)

7\

P2 P4
0 0 0 0

P1

—
—

P3
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Performance limitations of Existing Designs for MPI_Allreduce

1. Loadbalancing the computation and 3. Avoiding data copies and data staging
network resources 4. Avoiding the unnecessary synchronizatiot

overheads

2. Overlap of communication and
5. Heuristic based adaptive design

computation

Feature being used

1 2 3 4 5

State-of-the-art Allreduce Designs

BaiduAllreduce [a]
Linear Pipelining [b]

Reducescatterfollowed byAllgather

[c.d
Segmented Ring [e]

XPMEMbased Reduction [f]
Pr o p oSALeRd
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Research Contribution

« Designing higiperformance Allreduce

Pipelined design for efficiemtverlapof computation and communication

Exploiting process Shared Address Space basedtruincopyintra-node
reduction

Onesided internode communication to reducgy/nchronizations
Efficientload-balancednter-node communication

Heuristic baseddaptivedesign

 Modeling the proposed design

 Improved the AlexNet training time on CNTK by up to 46%

 Reduced the latency of osu_allreduce by up to 5X at scale
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Outline

e |ntroduction
 Motivation
e Contributions

 Proposed Designs
— Design Optimizations

— Modeling
 EXxperimental Results

e Conclusions & Future Work
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Summary of Proposed SALaR Designs

e SALaRKPMEM SALaR

— Efficient Pipeline of Intenode

Allreduce with Intranode Reduce

— Uses XPMEM as intreode zero copy
mechanism

« SALaFSHMEM

— In case of lack of XPMEM module,
shared memory is being used as the
Intra-node mechanism
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Impact of Chunk Size on Allreduce Performance

8MB is optimal among
other chunk sizes

50 . . . . 500
128K
T R RRRERETE g%ﬂgK -------------------- - 400
2MB is 2
_ Sl aM - < 300
optimal %) 3
& 20 o M - & 200
among other ® ®
chunk sizes 107 g S - 100
oLm | | Uml 0
1M 2M 4M 8M 16M 32M 64M  128M
Message Size (bytes) Message Size (bytes)
SALaRXPMEM SALaRXPMEM (Larger Messages)

Latency of MPI_Allreduce on 224 processes and 28 processes per node on Cluster A

o Selecting the proper chunk size can have a big impact on the
performance

« Different chunk is optimal for each message range
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Impact of Heuristic based Designh on Allreduce Performance
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SALaRXPMEM designs 896 processes on Cluster A
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Outline

e |ntroduction
 Motivation
e Contributions

 Proposed Designs
— Design Optimizations
— Modeling

e Experimental Results

e Conclusions & Future Work
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Experimental Setup

Hardware Software
Cluster A Cluster B MPI DL Erameworks
RI2 Comet Benchmark
40 Dual socket Intel 1944 Dell PowerEdge Microsoft Computational
Xeon series CPUg- C6320 twe socket Network Toolkit (CNTK)
core Broadwell servers with 1zZore v.2.3.1
processorof 2.40 GHz | Intel Xeon processors 0
2.50 GHz OoSsuU
Microbenchmarks
Mellanox MT4115 EDR MellanoxMT4099 FDR vo.4.1 Horovod: Uber
ConnectX4 HCAs ConnectX3 HCAs implementation of
Tensorflow
v0.12.1
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Performance Comparison of MPI_Allreduce

. 60 T T T T
e Using osu_allreduce o 2on (I
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Microbenchmarks on Clusterg 30y oo - 1 9 ;‘gg
: B 20f el - W
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100
 SALaR outperforms Open MPI © 0—"16M 32M  64M  128M
and MVAPICH2 up to 2X and Message Size (bytes) ~ Message Size (bytes)
P 448 Processes (Same as in the Paper)
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* Inthe latest release of 23 wabeedics W %
z AL SEEN g o
MVAPICHZ2Z, we have = ;g Bl 2 a0
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0 0
the performance M 2M | 4M 8M 16M 32M .64M 128M
Message Size (bytes) Message Size (bytes)

756 Processes (Latest Numbers)
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Performance Comparison of MPI_Allreduce (cont'd)

_ 140 : : ‘ : 2,000 5X
* Using osu_allreduce e mgmet40%-
S
benchmark from OSU FRbe :
: s
Microbenchmarks on .
1 0 1M 2M 4M 8M
Cluster B with 24 . SN o L
processes per node 768 Processes on Cluster B
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Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.



Impact of SALaR Designs on CNTK

CPUbased training AlexNet neural 600 AR
network ILSVRC2012 dataset from E jgg """" I SALaRSHMEM™ 4604
the ImageNet % o

SALaR designs perform up to 46% g igg

better than the MVAPICH?2 library at

112 224 448 896
Number of Processes

|ncreasing the scale. the benefits of CNTK Samples per Second on Cluster A (higher is |
the proposed designs also increases

896 processes
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Impact of SALaR Designs on TensorFlow

e CPUbased tf cnn_benchmarks for

distributed tests from TensorFlow 600 ! ! '
500 MVAPICHZ2 2.3rc2
Benchmarks (TF) D I
o S 400
— Training AlexNet neural network fror% 300
the synthetic datasets § 200
 15% and 35% improvements in the 100
number of images per second at 448 and  © 112 224 448 896

896 processes jobs Number of Processes
TensorFlow Images per Second (higher is better

e Increasing the job size, the benefits of
SALaR compared to MVAPICH2 keep
Increasing
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Conclusions & Future Work

Designed multleader based collective operations
— Capable of taking advantage of highd features offered by modern network interconnects

Modeled and analyzed proposed design theoretically

The benefits were evaluated on different architectures
TheDPML design is released as a part of MVARKCRI3b! Check out:

— http://mvapich.cse.ohiestate.edu/overview/#mv2X

o Studiedthe interplay between communication pattern of applications and different tag
matching schemes

 Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to
adapting dynamically to the communication characteristics of applications

 Theadaptive approach opens up a new direction to design tag matching schemes for next
generationexascalesystems
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Conclusion and Future Work (cont’d)
 Proposed scalable and adaptive Allreduce design

— Capable of taking advantage of highd features offered by modern network
Interconnects and increased parallelism of MdiMiany-core architectures

« Modeled and analyzed proposed design theoretically

 The benefits were evaluated on different architectures and Deep Learning frame
 Improved the AlexNet training time on CNTK by up to 46%

 Reduced the latency afsu_allreducédy up to 5X at scale

e In the future:

— Exploring the SALaR for other collective operations

« The SALaR design will be as a part of MVAPICH2! Check out:

— http://mvapich.cse.ohiestate.edu/
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Thank you! Questions?
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