
High Performance Broadcast with GPUDirect RDMA and
InfiniBand Hardware Multicast for Streaming Applications

GTC 2015

Presented By
Dhabaleswar K. (DK) Panda

The Ohio State University

Email: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

3

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

4

GTC ’15Streaming Applications

• Examples - surveillance, habitat
monitoring, etc..

• Require efficient transport of data
from/to distributed sources/sinks

• Sensitive to latency and
throughput metrics

• Require HPC resources to
efficiently carry out compute-
intensive tasks

5

GTC ’15

• Proliferation of Multi-Petaflop
systems

• Heterogeneity in compute
resources with GPGPUs

HPC Landscape

• High performance interconnects with
RDMA capabilities to host and GPU
memories

• Streaming applications leverage on
such resources

6

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

7

GTC ’15

• Pipelined data parallel compute
phases that form the crux of
streaming applications lend
themselves for GPGPUs

• Data distribution to GPGPU sites
occur over PCIe within the node
and over InfiniBand interconnects
across nodes

Nature of Streaming Applications

Courtesy: Agarwalla, Bikash, et al. "Streamline: A scheduling
heuristic for streaming applications on the grid." Electronic
Imaging 2006

• Broadcast operation is a key dictator of
throughput of streaming applications

• Reduced latency for each operation
• Support multiple back-to-back

operations
• More critical with accelerators

8

GTC ’15

• Traditional short message broadcast
operation between GPU buffers involves a
Host-Staged Multicast (HSM)
• Data copied from GPU buffers to host

memory
• Using InfiniBand Unreliable Datagram

(UD)-based hardware multicast

Shortcomings of Existing GPU Broadcast

• Sub-optimal use of near-scale invariant
UD-multicast performance

• PCIe resources wasted and benefits of
multicast nullified

• GPU-Direct RDMA capabilities unused

9

GTC ’15

• Can we design a GPU broadcast mechanism that can completely avoid
host-staging for streaming applications?

• Can we harness the capabilities of GPU-Direct RDMA (GDR)?
• Can we overcome limitations of UD transport and realize the true potential
of multicast for GPU buffers?

• Succinctly, how do we multicast GPU data using GDR efficiently?

Problem Statement

10

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

11

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Critical Factors
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

12

GTC ’15

• Goal is to be able to multicast GPU data in lesser time than the host-staged
multicast (~20us)

• Cost of cudamemcpy is ~8us for short messages for host->gpu, gpu->host
and gpu->gpu transfers

• Cudamemcpy costs and memory registration costs determine the viability of
a multicast protocol for GPU buffers

Factors to Consider for an Efficient GPU Multicast

13

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Eager Protocol
• Rendezvous Protocol
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

14

GTC ’15

• Copy user GPU data to host
eager buffers

• Perform Multicast and copy back

GPU

HCA

Host
eager

user
NW

Eager Protocol for GPU multicast

• Cudamemcpy dictates
performance

• Similar variation with eager buffers
on GPU
-Header encoding expensive

CUDAMEMCPY

MCAST

15

GTC ’15

• Register user GPU data and start
RTS multicast with control info

• Confirm ready receivers ≡ 0-byte
gather

• Perform Data Multicast

Rendezvous Protocol for GPU multicast

GPU

HCA

Host

user
NW

registration

• Registration cost and gather
limitations

• Handshake for each operation – not
required for streaming applications
which are error tolerant

GATHER

INFO
MCAST

DATA
MCAST

16

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

17

GTC ’15

• One time registration of window
of persistent buffers in streaming
apps

Orchestration of GDR-SGL-MCAST (GSM)

GPU

HCA

Host
control

user
NW

G
at

h
er

Scatter
Scatter

• Combine control and user data at
the source and scatter them at the
destinations using Scatter-Gather-
List abstraction

MCAST

• Scheme lends itself for pipelined
phases abundant in Streaming
Applications and avoids stressing
PCIe

18

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

19

GTC ’15

• Experiments were run on Wilkes @ University of Cambridge
• 12-core Ivy Bridge Intel(R) Xeon(R) E5-2630 @ 2.60 GHz with 64 GB RAM
• FDR ConnectX2 HCAs
• NVIDIA K20c GPUs
• Mellanox OFED version MLNX OFED LINUX-2.1-1.0.6 which supports

GPUDirect-RDMA (GDR) required
• Baseline Host-based MCAST uses MVAPICH2-GDR (http://mvapich.cse.

ohio-state.edu/downloads)
• GDR-SGL-MCAST is based on MVAPICH2-GDR

Experiment Setup

20

GTC ’15Host Staged MCAST and GDR-SGL MCAST Latency : (<= 8 nodes)

• GDR-SGL-MCAST (GSM)
• Host-Staged-MCAST (HSM)
• GSM Latency ≤ ~10us vs HSM

Latency ≤ ~23us
• Small latency increase with scale

A. Venkatesh, H. Subramoni, K. Hamidouche and D. K. Panda, A High Performance
Broadcast Design with Hardware Multicast and GPUDirect RDMA for Streaming
Applications on InfiniBand Clusters, IEEE International Conference on High Performance
Computing (HiPC ‘14), Dec 2014.

21

GTC ’15Host Staged MCAST and GDR-SGL MCAST Latency : (<= 64 nodes)

• Both GSM and HSM continue to
show near scale invariant latency
with 60% improvement (8 bytes)

22

GTC ’15

• Based on a synthetic benchmark that
mimics broadcast patterns in
Streaming Applications

• Long window of persistent m-byte
buffers with 1,000 back-to-back
multicast operations issued

• Execution time reduces by 3x-4x

Host Staged MCAST and GDR-SGL MCAST Streaming Benchmark

23

GTC ’15

• Introduction
• Motivation and Problem Statement
• Design Considerations
• Proposed Approach
• Results
• Conclusion and Future Work

Outline

24

GTC ’15

• Designed an efficient GPU data broadcast for streaming applications which
uses near-constant-latency hardware multicast feature and GPUDirect
RDMA

• Proposed a new methodology which overcomes the performance
challenges posed by UD transport

• Benefits shown with latency and streaming-application-communication
mimicking throughput benchmark

• Exploration of NVIDIA’s Fastcopy module for MPI_Bcast

Conclusion and Future work

25

GTC ’15

Learn about recent advances and upcoming features in
CUDA-aware MVAPICH2-GPU library

• S5461 - Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU

Clusters with InfiniBand
• Thursday, 03/19 (Today)
• Time: 17:00–17:50
• Room 212 B

One More Talk

26

GTC ’15

Contact
 panda@cse.ohio-state.edu

Thanks! Questions?

http://mvapich.cse.ohio-state.edu http://nowlab.cse.ohio-state.edu

mailto:panda@cse.ohio-state.edu

27

GTC ’15Funding Acknowledgments

Funding Support by

Equipment Support by

28

GTC ’15Backup

29

GTC ’15

• UD makes no ordering and reliability guarantees
• UD requires memory registration and has an MTU of 2KB
• Notification through polling preferred for performance
• Multicast scheme is window-based and NACK-based
• GDR allows buffers on GPU memory to be registered
• Once registered, the IB network interface can directly access GPU memory

Challenges in UD-transport, Multicast and GPU-Direct RDMA

30

GTC ’15

• IB specifies use of SG elements for
non-contiguous transfer

• Control and data specified in an array
of SG elements

• Avoids expensive cudaMemcpy calls
• Persistent buffers amortize
registration costs and facilitate
pipelining in SA

Hybrid approach using Scatter-Gather Lists + GPU-Direct RDMA: GDR-SGL-MCAST

