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GTC ’15Streaming Applications

• Examples - surveillance, habitat 
monitoring, etc..

• Require efficient transport of data 
from/to distributed sources/sinks

• Sensitive to latency and 
throughput metrics 

• Require HPC resources to 
efficiently carry out compute-
intensive tasks
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• Proliferation of Multi-Petaflop 
systems

• Heterogeneity in compute 
resources with GPGPUs

HPC Landscape

• High performance interconnects with 
RDMA capabilities to host and GPU 
memories

• Streaming applications leverage on 
such resources
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• Pipelined data parallel compute 
phases that form the crux of 
streaming applications lend 
themselves for GPGPUs

• Data distribution to GPGPU sites 
occur over PCIe within the node 
and over InfiniBand interconnects 
across nodes

Nature of Streaming Applications

Courtesy: Agarwalla, Bikash, et al. "Streamline: A scheduling 
heuristic for streaming applications on the grid." Electronic 
Imaging 2006

• Broadcast operation is a key dictator of 
throughput of streaming applications

• Reduced latency for each operation
• Support multiple back-to-back 

operations
• More critical with accelerators
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• Traditional short message broadcast 
operation between GPU buffers involves a 
Host-Staged Multicast (HSM)
• Data copied from GPU buffers to host 

memory
• Using InfiniBand Unreliable Datagram

(UD)-based hardware multicast

Shortcomings of Existing GPU Broadcast

• Sub-optimal use of near-scale invariant 
UD-multicast performance 

• PCIe resources wasted and benefits of 
multicast nullified

• GPU-Direct RDMA capabilities unused
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• Can we design a GPU broadcast mechanism that can completely avoid 
host-staging for streaming applications?

• Can we harness the capabilities of GPU-Direct RDMA (GDR)?
• Can we overcome limitations of UD transport and realize the true potential 
of multicast for GPU buffers?

• Succinctly, how do we multicast GPU data using GDR efficiently?

Problem Statement
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• Goal is to be able to multicast GPU data in lesser time than the host-staged 
multicast (~20us)

• Cost of cudamemcpy is ~8us for short messages for host->gpu, gpu->host 
and gpu->gpu transfers

• Cudamemcpy costs and memory registration costs determine the viability of 
a multicast protocol for GPU buffers

Factors to Consider for an Efficient GPU Multicast
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• Copy user GPU data to host 
eager buffers

• Perform Multicast and copy back

GPU

HCA

Host
eager

user
NW

Eager Protocol for GPU multicast

• Cudamemcpy dictates 
performance

• Similar variation with eager buffers 
on GPU
-Header encoding expensive

CUDAMEMCPY

MCAST
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• Register user GPU data and start 
RTS multicast with control info

• Confirm ready receivers ≡ 0-byte 
gather

• Perform Data Multicast

Rendezvous Protocol for GPU multicast

GPU

HCA

Host

user
NW

registration

• Registration cost and gather 
limitations

• Handshake for each operation – not 
required for streaming applications 
which are error tolerant

GATHER

INFO 
MCAST

DATA 
MCAST
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• One time registration of window 
of persistent buffers in streaming 
apps

Orchestration of GDR-SGL-MCAST (GSM)

GPU

HCA

Host
control

user
NW

G
at

h
er

Scatter
Scatter

• Combine control and user data at 
the source and scatter them at the 
destinations using Scatter-Gather-
List abstraction

MCAST

• Scheme lends itself for pipelined 
phases abundant in Streaming 
Applications and avoids stressing 
PCIe
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• Experiments were run on Wilkes @ University of Cambridge
• 12-core Ivy Bridge Intel(R) Xeon(R) E5-2630 @ 2.60 GHz with 64 GB RAM
• FDR ConnectX2 HCAs
• NVIDIA K20c GPUs
• Mellanox OFED version MLNX OFED LINUX-2.1-1.0.6 which supports 

GPUDirect-RDMA (GDR) required
• Baseline Host-based MCAST uses MVAPICH2-GDR (http://mvapich.cse.

ohio-state.edu/downloads)
• GDR-SGL-MCAST is based on MVAPICH2-GDR

Experiment Setup
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• GDR-SGL-MCAST (GSM)
• Host-Staged-MCAST (HSM)
• GSM Latency ≤ ~10us vs HSM 

Latency ≤ ~23us
• Small latency increase with scale

A. Venkatesh, H. Subramoni, K. Hamidouche and D. K. Panda, A High Performance 
Broadcast Design with Hardware Multicast and GPUDirect RDMA for Streaming 
Applications on InfiniBand Clusters, IEEE International Conference on High Performance 
Computing (HiPC ‘14), Dec 2014. 
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• Both GSM and HSM continue to 
show near scale invariant latency 
with 60% improvement (8 bytes)
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• Based on a synthetic benchmark that 
mimics broadcast patterns in 
Streaming Applications

• Long window of persistent m-byte 
buffers with 1,000 back-to-back 
multicast operations issued

• Execution time reduces by 3x-4x

Host Staged MCAST and GDR-SGL MCAST Streaming Benchmark
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• Designed an efficient GPU data broadcast for streaming applications which 
uses near-constant-latency hardware multicast feature and GPUDirect 
RDMA

• Proposed a new methodology which overcomes the performance 
challenges posed by UD transport

• Benefits shown with latency and streaming-application-communication 
mimicking throughput benchmark

• Exploration of NVIDIA’s Fastcopy module for MPI_Bcast

Conclusion and Future work
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Learn about recent advances and upcoming features in 
CUDA-aware MVAPICH2-GPU library

  
• S5461 - Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU 

Clusters with InfiniBand
• Thursday, 03/19 (Today)
• Time: 17:00–17:50 
• Room 212 B

   

One More Talk
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Contact
 panda@cse.ohio-state.edu

Thanks! Questions?

http://mvapich.cse.ohio-state.edu http://nowlab.cse.ohio-state.edu

mailto:panda@cse.ohio-state.edu
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• UD makes no ordering and reliability guarantees 
• UD requires memory registration and has an MTU of 2KB
• Notification through polling preferred for performance
• Multicast scheme is window-based and NACK-based
• GDR allows buffers on GPU memory to be registered 
• Once registered, the IB network interface can directly access GPU memory

Challenges in UD-transport, Multicast and GPU-Direct RDMA
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• IB specifies use of SG elements for 
non-contiguous transfer

• Control and data specified in an array 
of SG elements 

• Avoids expensive cudaMemcpy calls
• Persistent buffers amortize 
registration costs and facilitate 
pipelining in SA

Hybrid approach using Scatter-Gather Lists + GPU-Direct RDMA: GDR-SGL-MCAST


