Efficient Reliability Support for Hardware Multicast-based Broadcast in GPU-enabled Streaming Applications

^1^Ching-Hsiang Chu, ^1^Khaled Hamidouche, ^1^Hari Subramoni, ^1^Akshay Venkatesh, ^2^Bracy Elton and ^1^Dhabaleswar K. (DK) Panda

^1^Department of Computer Science and Engineering, The Ohio State University
^2^Engility Corporation

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2016-5770
Outline

- Introduction
- Proposed Designs
- Performance Evaluation
- Conclusion and Future Work
Drivers of Modern HPC Cluster Architectures

• Multi-core processors are ubiquitous
• InfiniBand (IB) is very popular in HPC clusters
• Accelerators/Coprocessors are becoming common in high-end systems

Pushing the envelope towards Exascale computing
Motivation

- Streaming applications on HPC systems

 1. Communication (MPI)
 - Pipeline of broadcast-type operations

 2. Computation (CUDA)
 - Multiple GPU nodes as workers
 - Examples
 - Deep learning frameworks
 - Proton computed tomography (pCT)
Communication for Streaming Applications

- High-performance Heterogeneous Broadcast*
 - Leverages NVIDIA GPUDirect and IB hardware multicast (MCAST) features
 - Eliminates unnecessary data staging through host memory

Limitations of the Existing Scheme

• IB hardware multicast significantly improves the performance, however, it is a Unreliable Datagram (UD)-based scheme
 ➢ Reliability needs to be handled explicitly

• Existing Negative ACKnowledgement (NACK)-based Design
 – Sender must stall to check receipt of NACK packets
 ➢ Breaks the pipeline of broadcast operations
 – Re-send MCAST packets even if it is not necessary for some receivers
 ➢ Wastes network resource, degrades throughput/bandwidth
Problem Statement

• How to provide reliability support while leveraging UD-based IB hardware multicast to achieve high-performance broadcast for GPU-enabled streaming applications?
 • Maintains the pipeline of broadcast operations
 • Minimizes the consumption of Peripheral Component Interconnect Express (PCIe) resources
Outline

• Introduction

• Proposed Designs
 – Remote Memory Access (RMA)-based Design

• Performance Evaluation

• Conclusion and Future Work
Overview: RMA-based Reliability Design

• Goals of the proposed design
 – Allows the receivers to retrieve lost MCAST packets through the RMA operations without interrupting sender
 ➢ Maintains pipelining of broadcast operations
 ➢ Minimizes consumption of PCIe resources

• Major Benefit of MPI-3 Remote Memory Access (RMA)*
 – Supports one-sided communication ➔ broadcast sender won’t be interrupted

• Major Challenge
 – How and where receivers can retrieve the correct MCAST packets through RMA operations

*”MPI Forum”, http://mpi-forum.org/
Implementing MPI_Bcast: Sender Side

- Maintains an additional window of a circular backup buffer for MCAST packets
- Exposes this window to other processes in the MCAST group, e.g., performs MPI_Win_create
- Utilizes an additional helper thread to copy MCAST packets to the backup buffer ➔ we can overlap with broadcast communication
Implementing MPI_Bcast: Receiver Side

- When a receiver experiences **timeout** (lost MCAST packet)
 - Performs the RMA Get operation to the sender’s backup buffer to retrieve lost MCAST packets
 - **Sender is not interrupted**
Backup Buffer Requirements

- Large enough to keep the MCAST packets available when it is needed
- As small as possible to limit size of memory footprint

\[
W > \frac{B \times (K \times RTT)}{f}
\]

Frame size: Size of a single MCAST packet
Outline

• Introduction
• Proposed Designs
• Performance Evaluation
 – Experimental Environments
 – Streaming Benchmark Level Evaluation
• Conclusion and Future Work
Experimental Environments

1. **RI2 cluster @ The Ohio State University**
 - Mellanox EDR InfiniBand HCAs
 - 2 NVIDIA K80 GPUs per node
 - Used up to 16 GPU nodes

2. **CSCS cluster @ Swiss National Supercomputing Centre**

 - Mellanox FDR InfiniBand HCAs
 - Cray CS-Storm system, 8 NVIDIA K80 GPU cards per node
 - Used up to 88 NVIDIA K80 GPU cards over 11 nodes

- **Modified Ohio State University (OSU) Micro-Benchmark (OMB)**
 - http://mvapich.cse.ohio-state.edu/benchmarks/
 - osu_bcast - MPI_Bcast Latency Test
 - Modified to support heterogeneous broadcast

- **Streaming benchmark**
 - Mimics real streaming applications
 - Continuously broadcasts data from a source to GPU-based compute nodes
 - Includes a computation phase that involves host-to-device and device-to-host copies

Results from RI2 and OMB are omitted in this presentation due to time constraints
Overview of the MVAPICH2 Project

• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 – MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 – MVAPICH2-X (MPI + PGAS), Available since 2011
 – Support for GPGPUs (MVAPICH2-GDR), Available since 2014
 – Support for MIC (MVAPICH2-MIC), Available since 2014
 – Support for Virtualization (MVAPICH2-Virt), Available since 2015
 – Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 – Used by more than 2,675 organizations in 83 countries
 – More than 400,000 (> 0.4 million) downloads from the OSU site directly
 – Empowering many TOP500 clusters (June 2016 ranking)
 • 12th ranked 462,462-core cluster (Stampede) at TACC
 • 15th ranked 185,344-core cluster (Pleiades) at NASA
 • 31st ranked 74520-core cluster (Tsubame 2.5) at Tokyo Institute of Technology
 – Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 – http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
 – System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 Tflop/s) ⇒
 – Stampede at TACC (12th in June 2016, 462,462 cores, 5.168 Pflop/s)
• Negligible overhead compared to existing NACK-based design
• RMA-based design outperforms NACK-based scheme for large messages
 • A helper thread in the background performs backups of MCAST packets
Evaluation: Latency on Streaming Benchmark

Normalized to SL-based MCAST with NACK-based retransmission scheme

Latency reduction of proposed RMA-based design compared to the existing NACK-based scheme

<table>
<thead>
<tr>
<th>Message Size</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01%</td>
</tr>
<tr>
<td>8KB</td>
<td>16%</td>
</tr>
<tr>
<td>128KB</td>
<td>21%</td>
</tr>
<tr>
<td>2MB</td>
<td>24%</td>
</tr>
</tbody>
</table>
Evaluation: Broadcast Rate (Throughput)

- Equal or better than the leading NACK-based design for different message sizes and error rates
- Always yields (up to 56%) a higher broadcast rate than the existing NACK-based design

Error rates: 0.01% 0.10% 1%

Normalized Latency vs. Message Size (Bytes)

Normalized to SL-based MCAST with NACK-based retransmission scheme
Outline

• Introduction
• Proposed Designs
• Performance Evaluation
• Conclusion and Future Work
Conclusion

• Propose an RMA-based reliability design on top of IB hardware multicast based broadcast for streaming applications
 – Maintains pipelining of broadcast operations
 – Minimizes consumption of PCIe resources
 – Provides good performance with streaming benchmarks, which is promising for real streaming applications

• Future work
 – Include the proposed design in future releases of the MVAPICH2-GDR library
 – Evaluate effectiveness with real streaming applications
Thank You!

Ching-Hsiang Chu
chu.368@osu.edu

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

This project is supported under the United States Department of Defense (DOD) High Performance Computing Modernization Program (HPCMP) User Productivity Enhancement and Technology Transfer (PETTT) activity (Contract No. GS04T09DBC0017 through Engility Corporation). The opinions expressed herein are those of the authors and do not necessarily reflect the views of the DOD or the employer of the author.