
Optimized Distributed Data Sharing Substrate 

in Multi-Core Commodity Clusters: A 

Comprehensive Study with Applications

K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda

Network Based Computing Laboratory (NBCL)

The Ohio State University



Presentation Outline

• Introduction and Motivation

• Distributed Data Sharing Substrate

• Proposed Design Optimizations

• Experimental Results

• Conclusions and Future Work



Introduction and Motivation

• Interactive data-driven applications

– Stock trading, airline tickets, medical imaging, online auction, online 

banking, web streaming, …

– Ability to interact, synthesize and visualize data

• Datacenters enable such capabilities

– Processes data and reply to client queries

– Common and increasing in size (IBM, Amazon, Google)

• Datacenters unable to meet increasing client demands

Stock markets Airline industries Medical imaging Online auction
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• Applications host web content online

• Services improve performance and scalability

• State sharing is common in applications and services
– Communicate and synchronize (intra-node, intra-tier and inter-tier)

More Computation and Communication
Requirements



State Sharing in Datacenters
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State Sharing in Datacenters…

• Several applications employ 

their own

– data management protocols

– maintain versions of stored data 

– synchronization primitives

• Datacenter Services 

frequently exchange

– System load, system state, 
locks 

– Cached data

Issues

• Ad-hoc messaging protocols for exchanging data/resource

• Same data/resource at multiple places (e.g., load information, data)

• Protocols used are typically TCP/IP, IPC mechanisms, memory 
copies, etc

• Performance may depend on the back-end load

• Scalability issues



High-Performance Networks

• InfiniBand, 10 Gigabit Ethernet

• High-Performance
– Low latency (< 1 usecs) and high bandwidth (> 32 Gbps with 

QDR adapters)

• Novel features
– One-sided RDMA and atomics, multicast, QoS

• OpenFabrics alliance (http://www.openfabrics.org/)
– Common stack for several networks including iWARP

(LAN/WAN)



Datacenter Research at OSU
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Datacenter Homepage: http://nowlab.cse.ohio-state.edu/projects/data-centers/



Distributed Data Sharing Substrate
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Multicore Architectures

• Increased cores per-chip

– More parallelism available

• Intel, AMD

– Dual-core, quad-core

– 80-core systems are currently built

• Significant benefits for datacenters

– Applications are multi-threaded in nature

– Design Optimizations in state sharing mechanisms

– Opportunities for dedicating one or more cores

Future multicore systems



Objective

• Can we enhance the distributed data sharing 

substrate using the features of multicore

architectures by dedicating one or more of 

the cores?

• How do these enhancements help in 

improving the overall performance with 

datacenter applications and services?
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Distributed Data Sharing Substrate

• Use of a common service thread to get 
access to the shared state

• Applications get shared state information 
using the service thread

• Several design optimizations in 
communicating with the service thread
– Message Queues (MQ-DDSS)

– Memory mapped queues for request (RMQ-DDSS)

– Memory mapped queues for request and response 
(RCQ-DDSS)



Message Queue-based DDSS (MQ-DDSS)
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Message Queue-based DDSS

• Kernel involvement
– IPC Send and Receive operations

– Communication Progress

• Limitations
– Several context-switches

– Interrupt overheads
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Request/Completion Queue-based 

DDSS (RCQ-DDSS)
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RMQ-DDSS and RCQ-DDSS Schemes

• RMQ-DDSS scheme
+ Lesser number of interrupts and context-switches compared to 

MQ-DDSS

+ Improvement in response time as request is sent via memory 
mapped queues

– May occupy significant CPU

• RCQ-DDSS scheme
+ Avoids kernel involvement

+ Significant improvement in response time as request and 
response are sent via memory mapped queues

– May occupy more CPU as compared to RMQ-DDSS - apps & 
service thread need to poll on the completion queue
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Experimental Testbed

• InfiniBand experiments
– 560-core cluster consisting of 70 compute nodes with dual 2.33 

GHz Intel Xeon quad-core processors

– Mellanox MT25208 dual port HCA

• 10-Gigabit experiments
– Intel dual quad-core Xeon 3.0 GHz, 512 MB memory

– Chelsio T3B 10 GigE PCI-Express adapters

• OpenFabrics stack
– OFED 1.2

• Experimental outline
– Microbenchmarks (performance and scalability)

– Application performance (R-Trees, B-Trees, STORM, 
checkpointing)

– Dedicating cores for datacenter services (resource monitoring)



Basic Performance of DDSS

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1K 4K 16K

Message Size (bytes)

L
a
te

n
c
y
 (
u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

• RCQ-DDSS scales with 
increasing client threads

• RCQ-DDSS performs better 
than RMQ-DDSS and MQ-
DDSS

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

Number of Client Threads

IP
C

 L
a

te
n

c
y

 (
u

s
e

c
s

)

RCQ-DDSS RMQ-DDSS MQ-DDSS

0

10

20

30

40

50

60

1 4 16 64 256 1K 4K 16K

Message Size (bytes)

 L
a
te

n
c
y
 (
u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

InfiniBand

10-Gigabit Ethernet



DDSS Scalability

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256 512

Number of Client Threads

L
a
te

n
c
y
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

• Hybrid approach is required for 
scalability with large number of 
threads

• DDSS scales when keys are 
distributed

0

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Client Threads

IP
C

 L
a
te

n
c
y
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

0
200
400
600
800

1000
1200
1400
1600

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Client Threads

L
a
te

n
c
y
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

Keys are on a single node

Keys are distributed



Performance with R-Trees, B-Trees, STORM
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Data Sharing Performance in Applications
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Performance with checkpointing
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Performance with Dedicated Cores

• Dedicating a core for resource monitoring can avoid up 

to 50% degradation in client response time
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Conclusions & Future Work

• Proposed multicore optimizations for 

distributed data sharing substrate

• Evaluations with several applications shows 

significant improvement

• Showed the benefits of dedicating cores for 

services in datacenters

• Future work on dedicating other datacenter 

services, datacenter-specific operations
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