
Optimized Distributed Data Sharing Substrate

in Multi-Core Commodity Clusters: A

Comprehensive Study with Applications

K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda

Network Based Computing Laboratory (NBCL)

The Ohio State University

Presentation Outline

• Introduction and Motivation

• Distributed Data Sharing Substrate

• Proposed Design Optimizations

• Experimental Results

• Conclusions and Future Work

Introduction and Motivation

• Interactive data-driven applications

– Stock trading, airline tickets, medical imaging, online auction, online

banking, web streaming, …

– Ability to interact, synthesize and visualize data

• Datacenters enable such capabilities

– Processes data and reply to client queries

– Common and increasing in size (IBM, Amazon, Google)

• Datacenters unable to meet increasing client demands

Stock markets Airline industries Medical imaging Online auction

Proxy/Web Server

(Apache, STORM)

Application Server

(PHP, CGI)

Storage

Tier 0 Tier 1 Tier 2

Database Server

(MySQL, DB2)

Resource monitoring (Ganglia), resource mgmt (IBM WebSphere), caching

Datacenter Architecture

WANWAN

Clients

• Applications host web content online

• Services improve performance and scalability

• State sharing is common in applications and services
– Communicate and synchronize (intra-node, intra-tier and inter-tier)

More Computation and Communication
Requirements

State Sharing in Datacenters

Proxy
Server

Tier 0

Application

Server

Tier 1

Memory copies

Apache Network

Memory copies

STORM Network

Memory copies

Caching Network

Memory copies

Res Mgmt Network

IPC

Apache Caching

IPC

STORM A STORM B

IPC

Servlets App

IPC

Apache Res Mgmt

Intra-Node State SharingIntra-Tier State SharingInter-Tier State Sharing

Resource
adaptation

System
state

Resource
adaptation

System
state

Caching Data

Caching Data

Resource
monitoring

Tier 1
load

Load
balancing

Tier 1
load

Resource
adaptation

Tier 1
load

Resource
adaptation

Tier 1
load

State Sharing in Datacenters…

• Several applications employ

their own

– data management protocols

– maintain versions of stored data

– synchronization primitives

• Datacenter Services

frequently exchange

– System load, system state,
locks

– Cached data

Issues

• Ad-hoc messaging protocols for exchanging data/resource

• Same data/resource at multiple places (e.g., load information, data)

• Protocols used are typically TCP/IP, IPC mechanisms, memory
copies, etc

• Performance may depend on the back-end load

• Scalability issues

High-Performance Networks

• InfiniBand, 10 Gigabit Ethernet

• High-Performance
– Low latency (< 1 usecs) and high bandwidth (> 32 Gbps with

QDR adapters)

• Novel features
– One-sided RDMA and atomics, multicast, QoS

• OpenFabrics alliance (http://www.openfabrics.org/)
– Common stack for several networks including iWARP

(LAN/WAN)

Datacenter Research at OSU

Reconfiguration
Resource

Monitoring

Soft Shared State Lock Manager
Global Memory

Aggregator

Distributed Data/Resource Sharing Substrate

High-Performance Networks (InfiniBand, iWARP 10GigE)

Existing Datacenter Components

Multicast

Advanced
System
Services

Active
Caching

Cooperative
Caching

Dynamic Content Caching

Active
Caching

Cooperative
Caching

Reconfiguration
Resource

Monitoring

Active Resource Adaptation

Reconfiguration
Resource

Monitoring

RDMA Atomics

High-speed
Networks

Advanced Communication
Protocols and SubsystemsSockets Direct Protocol

QoS
&

Admission
Control

Advanced
Service

Primitives

Distributed Data/Resource Sharing Substrate

Soft Shared State Lock Manager
Global Memory

Aggregator

Existing Datacenter Components

Datacenter Homepage: http://nowlab.cse.ohio-state.edu/projects/data-centers/

Distributed Data Sharing Substrate

Load Info
System State

Meta-data
Data

Datacenter

Application

Datacenter

Application

Datacenter

Services

Datacenter

Application

Datacenter

Application

Datacenter

Services

Get

Get

Get

Put

Put

Put

Multicore Architectures

• Increased cores per-chip

– More parallelism available

• Intel, AMD

– Dual-core, quad-core

– 80-core systems are currently built

• Significant benefits for datacenters

– Applications are multi-threaded in nature

– Design Optimizations in state sharing mechanisms

– Opportunities for dedicating one or more cores

Future multicore systems

Objective

• Can we enhance the distributed data sharing

substrate using the features of multicore

architectures by dedicating one or more of

the cores?

• How do these enhancements help in

improving the overall performance with

datacenter applications and services?

Presentation Outline

• Introduction and Motivation

• Distributed Data Sharing Substrate

• Proposed Design Optimizations

• Experimental Results

• Conclusions and Future Work

Distributed Data Sharing Substrate

• Use of a common service thread to get
access to the shared state

• Applications get shared state information
using the service thread

• Several design optimizations in
communicating with the service thread
– Message Queues (MQ-DDSS)

– Memory mapped queues for request (RMQ-DDSS)

– Memory mapped queues for request and response
(RCQ-DDSS)

Message Queue-based DDSS (MQ-DDSS)

NIC

Produce

Produce

Consume

Consume

Request

Queue

Completion

Queue

Kernel Message Queues

Application

Threads

Service

Thread

User Space

Kernel Space

IPC_Send
IPC_Recv IPC_Send

IPC_Recv

Interrupt

Event

Kernel

Thread

Kernel Involvement

Message Queue-based DDSS

• Kernel involvement
– IPC Send and Receive operations

– Communication Progress

• Limitations
– Several context-switches

– Interrupt overheads

Presentation Outline

• Introduction and Motivation

• Distributed Data Sharing Substrate

• Proposed Design Optimizations

• Experimental Results

• Conclusions and Future Work

Request/Message Queue-based

DDSS (RMQ-DDSS)

NIC

Produce

Produce

Consume

Consume

Request

Queue

Completion
Queue

Kernel Message Queues

Application
Threads

Service

Thread

User Space

Kernel Space

IPC_Recv IPC_Send

Kernel Involvement

Produce Consume

Request
Queue

Request/Completion Queue-based

DDSS (RCQ-DDSS)

NIC

Produce

Produce

Consume

Consume

Request

Queue

Completion
Queue

Application
Threads

Service

Thread

User Space

Kernel Space
No Kernel Involvement

Produce Consume

Request
Queue

Produce

Consume

Completion
Queue

RMQ-DDSS and RCQ-DDSS Schemes

• RMQ-DDSS scheme
+ Lesser number of interrupts and context-switches compared to

MQ-DDSS

+ Improvement in response time as request is sent via memory
mapped queues

– May occupy significant CPU

• RCQ-DDSS scheme
+ Avoids kernel involvement

+ Significant improvement in response time as request and
response are sent via memory mapped queues

– May occupy more CPU as compared to RMQ-DDSS - apps &
service thread need to poll on the completion queue

Presentation Outline

• Introduction and Motivation

• Distributed Data Sharing Substrate

• Proposed Design Optimizations

• Experimental Results

• Conclusions and Future Work

Experimental Testbed

• InfiniBand experiments
– 560-core cluster consisting of 70 compute nodes with dual 2.33

GHz Intel Xeon quad-core processors

– Mellanox MT25208 dual port HCA

• 10-Gigabit experiments
– Intel dual quad-core Xeon 3.0 GHz, 512 MB memory

– Chelsio T3B 10 GigE PCI-Express adapters

• OpenFabrics stack
– OFED 1.2

• Experimental outline
– Microbenchmarks (performance and scalability)

– Application performance (R-Trees, B-Trees, STORM,
checkpointing)

– Dedicating cores for datacenter services (resource monitoring)

Basic Performance of DDSS

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1K 4K 16K

Message Size (bytes)

L
a
te

n
c
y
 (
u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

• RCQ-DDSS scales with
increasing client threads

• RCQ-DDSS performs better
than RMQ-DDSS and MQ-
DDSS

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

Number of Client Threads

IP
C

 L
a

te
n

c
y

 (
u

s
e

c
s

)

RCQ-DDSS RMQ-DDSS MQ-DDSS

0

10

20

30

40

50

60

1 4 16 64 256 1K 4K 16K

Message Size (bytes)

 L
a
te

n
c
y
 (
u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

InfiniBand

10-Gigabit Ethernet

DDSS Scalability

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256 512

Number of Client Threads

L
a
te

n
c
y
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

• Hybrid approach is required for
scalability with large number of
threads

• DDSS scales when keys are
distributed

0

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Client Threads

IP
C

 L
a
te

n
c
y
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

0
200
400
600
800

1000
1200
1400
1600

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Client Threads

L
a
te

n
c
y
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

Keys are on a single node

Keys are distributed

Performance with R-Trees, B-Trees, STORM

0

5

10

15

20

25

20% 40% 60% 80% 100%

Records Accessed

T
im

e
 (

m
s
e
c
s
)

BTREE-RCQ-SS BTREE-RMQ-SS

BTREE-MQ-SS BTREE

0

20

40

60

80

20% 40% 60% 80% 100%

Records Accessed

T
im

e
 (

m
s
e
c
s
)

RTREE-RCQ-SS RRTEE-RMQ-SS

RTREE-MQ-SS RTREE

0
2000

4000
6000

8000
10000

12000
14000

10K 100K 1000K

Number of Records

T
im

e
 (

m
s
e
c
s
)

STORM-RCQ-SS STORM-RMQ-SS

STORM-MQ-SS STORM

• MQ-SS shows significant
improvement compared to

traditional implementations but

RCQ-SS shows marginal
improvements compared to MQ-SS

Data Sharing Performance in Applications

1

10

100

1000

10000

20% 40% 60% 80% 100%

Records Accessed

T
im

e
 (

u
s
e
c
s
)

BTREE-RCQ-DDSS BTREE-RMQ-DDSS

BTREE-MQ-DDSS BTREE

• RCQ-DDSS shows significant
improvement as compared to
RMQ-DDSS and MQ-DDSS

1

10

100

1000

10000

100000

20% 40% 60% 80% 100%

Records Accessed

T
im

e
 (

u
s
e
c
s
)

RTREE-RCQ-DDSS RRTEE-RMQ-DDSS

RTREE-MQ-DDSS RTREE

1

10

100

1000

10000

1K 10K 100K 1000K

Number of Records

T
im

e
 (
m

il
li
s
e
c
o
n
d
s
)

STORM-RCQ-DDSS STORM-RMQ-DDSS

STORM-MQ-DDSS STORM

Performance with checkpointing

0

20000

40000

60000

80000

100000

120000

140000

160000

1 4 16 64 256 1024 4096

Number of Client Threads

L
a
te

n
c
y
 (
u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

• Hybrid approach is required for
scalability with large number of
threads

1

10

100

1000

10000

100000

1 2 4 8 16 32 64

Number of Client Threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

1

10

100

1000

10000

1 4 16 64 256

Number of Client Threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

u
s
e
c
s
)

RCQ-DDSS RMQ-DDSS MQ-DDSS

Clients on diff node (non-distributed)

Clients on diff node (non-distributed)

Clients on single node (non-distributed)

Performance with Dedicated Cores

• Dedicating a core for resource monitoring can avoid up

to 50% degradation in client response time

0 200 400 600 800 1000
800

1000

1200

1400

1600

1800

2000

Iterations

L
a

te
n

c
y
(M

ic
ro

s
e

c
o

n
d

s
)

4Servers
8Servers
16Servers
32Servers

0 200 400 600 800 1000
800

1000

1200

1400

1600

1800

2000

Iterations

L
a
te

n
c
y
(M

ic
ro

s
e
c
o
n
d
s
)

4Servers
8Servers
16Servers
32Servers

Conclusions & Future Work

• Proposed multicore optimizations for

distributed data sharing substrate

• Evaluations with several applications shows

significant improvement

• Showed the benefits of dedicating cores for

services in datacenters

• Future work on dedicating other datacenter

services, datacenter-specific operations

Web Pointers

Datacenter Homepage: http://nowlab.cse.ohio-state.edu/projects/data-centers/

Emails: {vaidyana, laipi, narravul, panda}@cse.ohio-state.edu

NBC-LAB

