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A 1 PB/s File System to Checkpoint Three Million MPI Tasks 
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What is checkpointing? 

& 

Why do we need it? 
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Tolerating failures with Checkpointing 

ÁHPC architectures evolving to accommodate complex apps 

ÅMulti-BNQD $16Ru (16Ru 9DNM 1GHu 44%Ru 4L@QS /*$Rt 

ÁFailure is inevitable => Imperative to design fault-resilient systems 

ÁSeveral tools and techniques are used to tolerate failures 

ÅProactive and reactive 

ÁCheckpoint-Restore mechanisms are predominantly used 
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But, we have a problem.. 
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Contention for shared-storage resources 

Gateway Nodes 

Compute Nodes 

Network Contention 

Contention from Other Clusters 

for File System 
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But, we also have a solution.. 
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Scalable Checkpoint/ Restart (SCR) 
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Å First write checkpoints to 

node-local storage 

Å When checkpoint is 

complete, apply redundancy 

schemes 

Å Users select which checkpoints 

are transferred to global storage 

Å Automatically drain last 

checkpoint of the job 
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Node-local storage with SCR 
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Design Goals 

Á Large checkpoints --- small memory 

Á Leverage the node-local storage hierarchy 

Á Asynchronous copy-out capability 

Á Portability 

Á Future-proof 

Á Improve checkpointing throughput 
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Possible Solutions 

ÁStorage medium for the checkpoint data 

ÅUse kernel-OQNUHCDC yramdiskx 

Å8QHSD @M yHM-LDLNQXx EHKDRXRSDL A@BJDC AX @M LL@O½DC file 

ÅJust use the kernel buffer-cache 

ÅManage System V IPC / Persistent memory segments 

ÁIntercept application I/O 

ÅWrite a FUSE-based file system 

ÅTrap I/O calls from the application using linker support 
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Can we not just use the RAM disk? 
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11 

8 processes bound to 1 core each of 8-core Westmere CPU 

Writing 64MB data each 

Bandwidth  

in MB/s  
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Can we not just write a FUSE file system? 
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Å Dummy FUSE file system forwards all    

  application calls to actual system call 

Å Single process writing 50MB data 
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CRUISE: Checkpoint-Restart in User-Space  

Á Manages data in a byte-
addressable persistent-
memory region 

Á Library to intercept I/O 
operations from an 
application that links to it 

Å Can statically / dynamically 
intercept I/O calls 
(LD_PRELOAD or 

 -wrap,function) 

Å Also implements the different 
calls such as open, write, 
read, ftruncate, lseeku DSBtq 
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CRUISE 
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Design Assumptions 
Á No-shared files 

Å Eliminates inter-process consistency and need for file locking 

Á Dense files 

Å No need to optimize for potential holes 

Á Write-once-read-rarely model 

Å Asynchronous RDMA without  ensuring consistency 

Á Temporal nature of checkpoint data 

Å No need to track POSIX timestamps, SCR handles versioning 

Á Globally coordinated operation 

Å Can clear internal locks after a failure 
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Design of CRUISE 

Persistent block of memory 
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open($CRUISE/foo.txt) 

Persistent block of memory 

0 1 2 

1 N 

Tot_chunks -1 

N 

1 

chunk allocator ckpt_id allocator 5 

size = 0; num_chunks = 0 5 

return 

(ckpt_id) 

file_list[5].name=foo.txt 
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write(ckpt_id, data,128MB) 

Persistent block of memory 
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return 
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size = 0; num_chunks = 0 5 
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size = 128MB; num_chunks = 2 
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