
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
The project is supported in part by NSF grants CCF-0937842 and
OCI-11148371. [LLNL-PRES-639372]

A 1 PB/s File System to Checkpoint Three Million MPI Tasks

)1%$½bd

What is checkpointing?

&

Why do we need it?

2

)1%$½bd

Tolerating failures with Checkpointing

ÁHPC architectures evolving to accommodate complex apps

ÅMulti-BNQD $16Ru (16Ru 9DNM 1GHu 44%Ru 4L@QS /*$Rt

ÁFailure is inevitable => Imperative to design fault-resilient systems

ÁSeveral tools and techniques are used to tolerate failures

ÅProactive and reactive

ÁCheckpoint-Restore mechanisms are predominantly used

3

)1%$½bd

5G@S½R @VDRNLD{

But, we have a problem..

4

)1%$½bd

Contention for shared-storage resources

Gateway Nodes

Compute Nodes

Network Contention

Contention from Other Clusters

for File System

5

)1%$½bd

But, we also have a solution..

6

)1%$½bd

Scalable Checkpoint/ Restart (SCR)

t

SCR_Start_checkpt();

SCR_Route_file(fn,fn2);

t

fwrite¨C@S@ut©v

t

SCR_Complete_checkpt();

SCR_Start_checkpt();

SCR_Route_file(fn,fn2);

t

fwrite¨C@S@ut©v

t

SCR_Complete_checkpt();

2

SCR_Start_checkpt();

SCR_Route_file(fn,fn2);

t

fwrite¨C@S@ut©v

t

SCR_Complete_checkpt();

2

SCR_Start_checkpt();

SCR_Route_file(fn,fn2);

t

fwrite¨C@S@ut©v

t

SCR_Complete_checkpt();

2

SCR_Start_checkpt();

SCR_Route_file(fn,fn2);

t

fwrite¨C@S@ut©v

t

SCR_Complete_checkpt();

2
2 2 2 2

1
1

1
1

Å First write checkpoints to

node-local storage

Å When checkpoint is

complete, apply redundancy

schemes

Å Users select which checkpoints

are transferred to global storage

Å Automatically drain last

checkpoint of the job

7

)1%$½bd

Node-local storage with SCR

8

Compute Nodes

Parallel

File System

Parallel Application

RAM

Disk
SSD HDD

Node-Local Storage

SCR

?

)1%$½bd

Design Goals

Á Large checkpoints --- small memory

Á Leverage the node-local storage hierarchy

Á Asynchronous copy-out capability

Á Portability

Á Future-proof

Á Improve checkpointing throughput

9

)1%$½bd

Possible Solutions

ÁStorage medium for the checkpoint data

ÅUse kernel-OQNUHCDC yramdiskx

Å8QHSD @M yHM-LDLNQXx EHKDRXRSDL A@BJDC AX @M LL@O½DC file

ÅJust use the kernel buffer-cache

ÅManage System V IPC / Persistent memory segments

ÁIntercept application I/O

ÅWrite a FUSE-based file system

ÅTrap I/O calls from the application using linker support

10

)1%$½bd

Can we not just use the RAM disk?

84.5 97.43
764.18 1026.39

8555.26

15097.85

NFS HDD Parallel FS SSD Ramdisk Memory

11

8 processes bound to 1 core each of 8-core Westmere CPU

Writing 64MB data each

Bandwidth

in MB/s

)1%$½bd

Can we not just write a FUSE file system?

1610.27

154.67

0

200

400

600

800

1000

1200

1400

1600

1800

ramdisk FUSE over ramdisk

Bandwidth

MB/s

Å Dummy FUSE file system forwards all

 application calls to actual system call

Å Single process writing 50MB data

12

)1%$½bd

CRUISE: Checkpoint-Restart in User-Space

Á Manages data in a byte-
addressable persistent-
memory region

Á Library to intercept I/O
operations from an
application that links to it

Å Can statically / dynamically
intercept I/O calls
(LD_PRELOAD or

 -wrap,function)

Å Also implements the different
calls such as open, write,
read, ftruncate, lseeku DSBtq

13

CRUISE

Compute Nodes

Parallel

File System

MPI Application

RAM

Disk
SSD HDD

Node-Local Storage

SCR

RAM/

Persistent

Memory

)1%$½bd

Design Assumptions
Á No-shared files

Å Eliminates inter-process consistency and need for file locking

Á Dense files

Å No need to optimize for potential holes

Á Write-once-read-rarely model

Å Asynchronous RDMA without ensuring consistency

Á Temporal nature of checkpoint data

Å No need to track POSIX timestamps, SCR handles versioning

Á Globally coordinated operation

Å Can clear internal locks after a failure

14

)1%$½bd

Design of CRUISE

Persistent block of memory

P
o
in

te
r

to
 p

e
rs

is
te

n
t

 m
e

m
o
ry

 b
lo

c
k

buf[CRUISE_CHUNK_SIZE]

0 1 2 ..

File List 1 N

Tot_chunks -1

File Metadata

{size, num_chunks,

chunk_idst¿

N

1

chunk allocator ckpt_id allocator

15

)1%$½bd

open($CRUISE/foo.txt)

Persistent block of memory

0 1 2

1 N

Tot_chunks -1

N

1

chunk allocator ckpt_id allocator 5

size = 0; num_chunks = 0 5

return

(ckpt_id)

file_list[5].name=foo.txt

16

)1%$½bd

write(ckpt_id, data,128MB)

Persistent block of memory

0 1 2 ..

1 N

Tot_chunks -1

N

1

chunk allocator ckpt_id allocator

5

return

(128MB)

file_list[5].name=foo.txt

size = 0; num_chunks = 0 5

2 3

size = 128MB; num_chunks = 2

17

