A 1 PB/s File System to Checkpoint Three Million MPI Tasks

Raghunath Rajachandrasekar * - Adam Moody # - Kathryn Mohror # - DK Panda*
* Network-Based Computing Laboratory | The Ohio State University
Lawrence Livermore National Laboratory

THE OHIO STATE UNIVERSITY

| H Lawrence Livermore

National Laboratory

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
The project is supported in part by NSF grants CCF-0937842 and
OCI-11148371. [LLNL-PRES-639372]

\What Is checkpointing?

&
\Why do we need It?

 HPDC13 2 ¢+ 0

Tolerating failures with Checkpointing

HPC architectures evolving to accommodate complex apps
» Multi-core CPUs, GPUs, Xeon Phi, S5Ds, Smart NICs...

Failure is inevitable => Imperative to design fault-resilient systems

Several tools and techniques are used to tolerate failures

 Proactive and reactive

Checkpoint-Restore mechanisms are predominantly used

HPDC'1 3 3 ¢ 0

That's awesomel!

ut, we have a problem..

 HPDC3 4+ ¢0

Contention for shared-storage resources

K ’ T , Compute Nodes

Netwo kCo tention

Gateway Nodes

o
‘ o\u%’“ev6 >
Contention from Other Clusters
? I for File System

HPDC13 S

t, we also have a solutio

 HPDC13 6 &0

ocalable Checkpoint/ Restart (SCR]

SCR_Start_checkpt();
SCR_Route_file[fn,fn2);

fwrite(data,...);

SCR_Complete_checkpt();

* First write checkpoints to
node-local storage

* WWhen checkpoint is
complete, apply redundancy
schemes

* Users select which checkpoints
are transferred to global storage

* Automatically drain last
checkpoint of the job

HPDC'13 7 ¢0

Node-local storage with SCR

Parallel Application

 HPDC13 s &0

Design

= Large checkpoints — small memory

boals

= | everage the node-local storage hierarchy

= Asynchronous copy-out capability
= Portability

= Future-proof

Improve checkpointing throughput

HPDC'13

e 0

Possible Solutions

= Storage medium for the checkpoint data
» Use kernel-provided “ramdisk”
« \WWrite an “in-memory” filesystem backed by an mmap’ed file
 Just use the kernel buffer-cache

« Manage System V IPC / Persistent memory segments

= |ntercept application | /0
* Write a FUSE-based file system
« Trap | /0 calls from the application using linker support

HPDC'13 0 &0

Can we not just use the RAM disk?

15097.85

Bandwidth

8 processes bound to 1 core each of 8-core Westmere CPU
in MB/'s

Writing 64MB data each
85535.26

1026.39
84.5 ooam o dERslE

NFS HDD Parallel FS SSD Ramdisk Memaory

HPDC'13 " &0

Can we not just write a FUSE file system?

I 161027
1600
1400
1200 * Dummy FUSE file system forwards all
Bal\r;lcligwidth 1000 application calls tq gctual system call
4° * Single process writing 50MB data
800
600
400
500 154.67
0
ramdisk FUSE over ramdisk
HPDC'13 2 &0

CRUISE: Checkpoint-Restart in User-Space

= Manages data in a byte-
addressable persistent-
memory region

= Library to intercept |/0
operations from an
application that links to it
« (Can statically / dynamically

intercept |/0 calls
(LD_PRELOAD or

-wrap,function)

* Also implements the different
calls such as open, write,
read, ftruncate, Iseek, etc....

Compute Nodes ///

Parallel
File System

/

@ @

MPI Application

SCR

»
J

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

r

RAM/
Persistent \._!
Memory = .

'] RAM

Node-Local Storage

HPDC'13

Design Assumptions

= No-shared files

» Eliminates inter-process consistency and need for file locking

= [Dense files

* No need to optimize for potential holes

= \Write-once-read-rarely model

« Asynchronous RDMA without ensuring consistency

= Temporal nature of checkpoint data
* No need to track POSIX timestamps, SCR handles versioning

= (lobally coordinated operation

« (an clear internal locks after a failure

HPDC'1 3 14 &0

Design of CRUISE

Persistent block of memory

ckpt_id allocator II chunk allocator II - -
e pr—— ——————————————

[I i
EE b“f[CRE—CHUNK—S'ZE]

File Metadata

{size, num_chunks,
chunk_ids...}

HPDC'13

OpPEeN($SCRUISE/ foo.txt)

Persistent block of memory

C allocator = -|-

- file_list[5].name=foo.txt -

size = 0; num_chunks =0 ”

HPDC'13

write(ckpt_id, data,128MB)

Persistent block of memory

=g o

5 I
B .

HPDC'13

Spill-over to SSD

Persistent block of memory (Byte-addressable) Flash Device

ckpt_id allocator II chunk allocator II
<—— File List —>

BN
File Metadata
Structure
{size, num_chunks,
chunk_ids, chunk
location...

HPDC'13

Spill-over to SSD

Test % g Spill size Expected Achieved
[I\/IB] Throughput | Throughput

. — throughput of cruise with spillover

pillover

Tvem — throughput of memory 15074.17 15074.17

Tesy — throughput of SSD 2 3.125 16 10349.12 10586.61

size,,, — total size of checkpoint 3 6.25 32 7879.33 8134.46

Sizeygy — Size of checkpm.nt in memaory 4 195 54 533361 531006

Sizegsn — Size of checkpoint in SSD
] 29 128 3240.00 3110.58
6 o0 296 1815.06 2163.93

Slzetot 7 100 912 965.67 965.67
il Sizeey S1Z€op - 300GB OCZ VeloDrive PCle SSD
T y T * 8 processes writing 512 MB each
MEM SSD « #1,#7 — Native throughput of Memory and
SSD respectively
HPDC'13 19 &0

RDMA-based Checkpoint Draining

Local RDMA Remote RDMA
SCR CRUISE

= Asynchronous |/0 without E E Agent AGS
competing with application for 1) >
CPU resources | oot data region) € '
f - L
= [Data-staging architectures © Elget_chunlg_meta_list(;g

= Job-/Process-migration
frameworks

®

HPDC'13

Implementation specifics

: open(const char *path, int flags.
- if path matches CRUISE mount prefix then
lookup corresponding FileID
if path not in File List then
pop new FilelD from free_fid_stack
if out of FileIDs then
return EMFILE
d i

path in File List at FileID
ialize File Metadata for FilelD
Local RDMA Remote RDMA end if i
Agent Agent return FilelD + RLINIT_SOFILE
else
return __real_open(path, flags,

: Pseudo-code for open() function wrapper
1: write(int fd, const void *buf, size_t count)
if fd more than RLIMIT_NOFILE then
FilelD = fd - RLIMIT_NOFILE
get File Metadata for FileID
compute number of additional data-chunks
required to accommodate the write
if additional data-chunks needed then
pop datachunks from free_chunk_stack
if out of memory data-chunks then
pop data-chunks from
the free_spillover_atack
end if
store new ChunkIDs in File Metadata
end if
copy data to chunks
update file size in File Metadata
return number bytes written

return __real_write(fd, buf, couat)
end if

Figure 5: Pseudo-code for write() function wrapper

HPDC'13

at happens when things fai

HPDC13 2 ¢0

Failure Model - Process Failures

= MPI runtime is required to clean the environment

= Data persists across process death => can be restarted directly

HPDC13 23 &0

Fallure Model - Node Failures

= Redundancy schemes applied by SCR rebuilds lost CRUISE files

= |f unable to rebuild, fetches latest copy from parallel file system

HPDC13 24 &0

Performance Evaluation

= Sierra (1,944 nodes) - #7150 in Topa00 [Nov'12)
« TOSS 2.0 | 6-core Intel Xeon | 24GB RAM/node | InfiniBand QDR | ICC v11.1

= Zin (2,916 nodes] - #29 in Topo00 (Nov'12)
« TOSS 2.0 8-core Intel Xeon | 32GB BRAM/node | InfiniBand QDR [ICC v11.1

= Sequoia (98,304 nodes) - #3 in Topo00O (#1 last year)
+ IBM BG/Q - CNK| 16 cores/node | 16GB RAM/node | IBM BG -Torus | IBM compiler v12.1

HPDC'13 25 &0

AN

Intra-node Scalability

20

18.3GB/s

18.2GB/s

18
16

Run on a singe node of Sierra

512MB

14 10 iterations
N 12 B4MB Chunks
10
o
() 8 -E-memcpy
6 ~A-CRUISE [block/proc)
4
~A-CRUISE (single block]
2
O [I I I I I I I I I I] +r‘amd|8k
1 2 3 4 5 6 7 8 9 10 11 12
k= Processes
HPDC'13 s &0

GB/s

Intra-node Scalability

13.5GB/s
12 GB/s /
i I \\
14 \
fii2 Run on a singe node of Sequoia
"Wty 50MB
10 2 10 iterations
4MB Chunks
8 ~~\ —
B —=—memcpy aligned
600 MB/s .
A i memcpy unaligned
\ —+—CRUISE
2 N\ —+—ramdisk
nd oo
D I I I
0 20 40 60

HPDC'13 Processes 27 &0

Inter-node Scalability

121 PB/s 116 FE
@32ppn
@B64ppn
10000 ™~
1000 Run on the Sequoia system
50MB
10 iterations
. 100 4MB Chunks
~N
10 -2 Memory
- CRUISE
1
——RAM disk
01 I I I I T 1
4K 8K 16K 32K 64K 96K
Nodes (1.5mil (3 mi
procs] procs)
HPDC'13 28 &0

Performance Evaluation

Run on the Zin system

+ OSU-RL: 4-cores share a memory bank [50MB| 10 iterations | 4MB Chunks]

1

oA

+ libnuma used to manage memory-binding policies

Single Memory Block

N-Memory Blocks

Procs
)

Hmemcpy
ACRUISE
+ramdsk

HPDC'13

23 &0

summary

= CRUISE: a file system to extend capabilities of multi-level checkpointing systems
= Allows asynchronous draining of checkpoints using RDMA techniques

= (Checkpoint data cascades down the storage hierarchy

= 20x faster than BAM disk, can run on systems without RAM disk

= Scales linearly with node-count

1.16PB/'s when three million processes checkpoint simultaneously

HPDC'13 30 0

The path forward

= Evaluation with real-word applications (pF3D laser-plasma]
= Enhanced caching policies when data splills-over
= |Impact of CRUISE on non-CR application file | /0O

= Releasing the CRUISE for use by the community

HPDC'13 31 0

Thank you!

rajachan@cse.ohio-state.edu

nowlab.cse.ohio-state.edu

National Laboratory

THE OHIO STATE UNIVERSITY M Lawrence Livermore

LLNL-PRES-576972

