Designing High Performance DSM Systems using InfiniBand Features

Ranjit Noronha and Dhabaleswar K. Panda The Ohio State University

Outline

- Introduction
- Motivation
- Design and Implementation
- Results
- Conclusions
- Future Work

Introduction

- Software DSM
 - HLRC/VIA (Rutgers), TreadMarks (Rice), JIAJIA (ICT China)
- Depends on user and software layer
- Depends on communication protocols provided by the system such as TCP, UDP, etc.
- Degraded performance because of false sharing and high overhead of communication
- Has scaling problems

Introduction

- Modern Interconnects (InfiniBand, Myrinet, Quadrics)
- Low Latency (InfiniBand 5.0 μs)
- High Bandwidth (InfiniBand 4X upto 10 Gbps)
- Programmable NIC
- User Level Protocols (VAPI, GM)
- Can deliver performance close to that of the underlying hardware
- RDMA Write/Read, Atomic Operations, Service Levels, Multicast

Motivation

- Traditional DSM
 - Uses Request / Response Communication Model (asynchronous)
 - Separate signal handler thread needed
 - Application Processing interrupted
 - Cache Effects

• Can network based features be used to reduce interrupt overhead ?

Motivation

- Asynchronous communication model
- Use network features to achieve the same effect (synchronous/hybrid communication model)
- Potential Advantages
 - Partial offload of protocol to network
 - More application processing time
 - Reduced Copying
 - Better caching
- Potential Disadvantages
 - Longer protocol execution time
 - Ordering problems
 - Consistency Issues

Outline

- Introduction
- Motivation
- Design and Implementation
- Results
- Conclusions
- Future Work

Preliminaries

• RDMA

- Remote Direct Memory Access
- Allows access to memory on a remote node
- No involvement from the remote node
- RDMA Write
- RDMA Read

RDMA Write Example

RDMA Read Example

Preliminaries - Remote Atomic Operations

- Remote Atomic Operations
 - Compare and Swap (CMP_AND_SWAP)
 - Conditionally change a location on a remote machine atomically
 - Fetch and Add

Remote Atomic Operations Example

• Compare and Swap

Preliminaries - HLRC

- HLRC/VIA (Rutgers)
 - Home Based Lazy Release Consistency Model
 - Page Based DSM System
- Basic Operations
 - Page
 - Diff
 - Lock
- Use interrupts
 - Referred to as ASYNC

Time

•Initial value of X = 0

•B is home node for page P containing X

HLRC Design

Our Design

- Design consists of 2 protocols
 - ARDMAR (Atomic and RDMA Write)
 - DRAW (Diff using RDMA Write)
- ARDMAR is a synchronous protocol
- DRAW is a hybrid protocol
- NEWGENDSM = ARDMAR + DRAW

NEWGENDSM

ARDMAR (Atomic and RDMA Write)

NEWGENDSM

Outline

- Introduction
- Motivation
- Design and Implementation
- Results
- Conclusions
- Future Work

Experimental Setup

- HLRC/ VIA (Rutgers) modified to work with VAPI
- InfiniScale MT43132 Eight 4X switch
- Mellanox InfiniHost MT23108 DualPort 4X HCA's
- SuperMicro SUPER P4DL6
 - Dual Pentium Xeon 2.4 GHz
 - 512 MB memory
 - 133 MHz PCI-X bus
- Linux 2.4.7-10 SMP kernel

Evaluation

- Micro-benchmarks (modified from TreadMarks suite)
 - Page \rightarrow
 - Average time to fetch a page from a home node when a number of nodes are accessing it
 - Diff \rightarrow
 - Measure Compute Time and Apply Time
 - Small diff (single word) and Large diff (entire page)
- Applications from SPLASH-2 suite (Barnes, TSP, 3Dfft, Radix)

Application	Parameter	Size
Barnes	Bodies	32678
3Dfft	Grid size	128
Radix	Number of keys	2621440
TSP	Tour size	20 (large)

Microbenchmarks (Page)

• Page fetching in ARDMAR is lower than ASYNC at 8 nodes

Microbenchmarks (Diff)

ASYNC DRAW

DRAW performs better than ASYNC in all cases

Application Speedup

• Speedup w.r.t. sequential running times

•Radix NEWGENDSM speedup 1.63 times ASYNC

• Barnes NEGENDSM speedup 1.59 times ASYNC

Breakdown

- •Diff time a part of Barrier Compute Time
- •Page time reduced significantly

Asynchronous Handler Time

Asynchronous handler time substantially reduced for Barnes and 3Dfft

Conclusions

- Explored reducing asynchronous protocol processing time
- Used network features like RDMA Read/Write and atomic operations
- Incorporated in a protocol NEWGENDSM
- Microbenchmark/application level evaluation
- Improvement in parallel speedup upto 1.63

Future Work

- Exploit small message latency to implement "critical word first"
- RDMA Read for "early restart"
- Atomic operations for locking
- Migrating home protocol

http://nowlab.cis.ohio-state.edu/

E-mail: {noronha, panda} @cis.ohio-state.edu

Breakdown

•Page time reduced for Barnes