
An Hybrid MPI/Stream Programming
Model for Heterogeneous High

Performance Systems

Emilio P. Mancini, Gregory Marsh, Dhabaleswar K. Panda

{mancini, marshgr, panda}@cse.ohio-state.edu

May 19th, 2009

Outline

• Introduction

• The MPI , Stream and Hybrid programming models

• Architecture of the hybrid framework

• Case study: a financial application

• Conclusions

Motivation

• The increased number of nodes in modern computational
systems introduces implicit heterogeneity:

– For example, they can use different levels of switches

• It is difficult to use different computational cluster at the
same time with the same parallel program (clusters of
clusters)

• We want to study a way to exploit the locality in
computational clusters, and in clusters of clusters

Motivation

• Two connected
clusters have
different latencies
and bandwidths
(depending on the
source and the
destination):

– Inter-core

– Inter socket

– Level of the switch

– Inter cluster

19 U

3 U

2 U

2 U

4 U

4 U

4 U

13 U

3 U

2 U

4 U

4 U

Motivation and problem statement

• MPI proposes a flat computational model that can well
exploit the locality

• The stream models, with the light coupling between
computational units: it is useful for heterogeneous
networks

• This paper we study how to integrate MPI and Stream
programming models in order to exploit network locality
and topology

• In this paper we present a framework which integrates
the two models.

Outline

• Introduction

• The MPI , Stream and Hybrid programming models

• Architecture of the hybrid framework

• Case study: a financial application

• Conclusions

MPI and Stream models concepts

• A stream can be described as an unbounded set of data
• A series of “kernels” process each element of the stream
• The Kernel’s inputs and outputs are streams

Kernel Kernel Kernel

Stream

Stream StreamStream Stream

MPI proc. MPI proc. MPI proc.

point to point

collective communication

• An MPI program is a set of autonomous processes that
exchange data through message passing

Stream model

• The data model is modeled as transient data streams
(not persistent relations)

• They arrive continuously in unpredictable way, and in
unbound streams

Siblings -> MPI application

The hybrid model

• In the hybrid model a subset of kernels can be mapped
on a set of MPI processes;

• Or, from another point of view, a set of MPI processes
can be transformed as a stream kernel.

Outline

• Introduction

• The MPI , Stream and Hybrid programming models

• Architecture of the hybrid framework

• Case study: a financial application

• Conclusions

The launching process

• The launcher requires a description of the whole
system, and synchronization of MPI and sequential
kernels in different nodes

• An XML file describes the task graph

• From the XML file the launcher dynamically produces
MPI hostfiles and startup scripts

• At launch time, every kernel registers itself with the
middleware or polls the stream autonomously

The hybrid framework sequence diagram

Stream Launcher MPI Launcher MPI Kernel Sequential kernel

Run

Run

Run

Streams middleware

Open stream

Open stream

Put
Put

Get
Get

Parallel

End

End

Close stream Close stream

Complete MPI
application

The hybrid framework architecture

• The launcher starts
both stream kernels
and MPI applications

• The core is a
modularized
communication API

• A common interface allows to interact with different
underlying protocols

• The graph management module builds a view of the
application tasks

A simple example

int main (...) {

osf_KernelContext_t *kctx;

osf_Init(...);

osf_RegisterKernel(0, OSF_KRNTYP_POLLING,

OSF_KRN_STATELESS, SourceKernel, &kctx);

osf_RegisterKernel(1, OSF_KRNTYP_POLLING,

OSF_KRN_STATELESS, FilterKernel, &kctx);

osf_StartStreams();

osf_Finalize();

}

The main function registers the kernels, and starts
the streams

A simple example

osf_Result_t SourceKernel(osf_KernelContext_t *ctx) {

static osf_Stream_t *s = NULL;

if (s==NULL)

osf_Open(&s, OSF_STR_OUT, 1);

...

record = sin(t)+sin(4+2*t);

osf_Put(s, &record, sizeof(record));

return OSF_ERR_SUCCESS;

}

A source kernel puts new data into a stream:

A simple example

osf_Result_t FilterKernel(osf_KernelContext_t *ctx) {

static osf_Stream_t *sIn = NULL;

if (sIn==NULL)

osf_Open(&sIn, OSF_STR_INPUT, 0);

...

res = osf_Get(sIn, &x, sizeof(double), &receiv);

return OSF_ERR_SUCCESS;

}

A filter kernel gets the data from a stream, elaborates
them, and eventually, puts them in another stream

Outline

• Introduction

• The MPI , Stream and Hybrid programming models

• Architecture of the hybrid framework

• Case study: a financial application

• Conclusions

Case study: a financial simulation application

Double-ended queues
with pending orders at

that price level.

min_ask: Lowest offered
selling price. All orders at

and above this price are ask
type.

max_bid: Highest offered
buying price. All orders at
and below this price are
bid type.

0

OrderBook Vector

999450 549451 548547452
......

453 546
................

orders inorders in

orders outorders out

• The application
simulates a stock

• It generates
random orders

• A matching engine
compares offers,
bids and quantities

• When it elaborates
an order, it sends a
confirmation

Case study: a financial simulation application
M

P
I a

p
p

lic
at

io
n

H
yb

ri
d

 a
p

p
lic

at
io

n

• The application has 4
tasks

• The hybrid version
uses both MPI and
Stream primitive to
communicate

• The stream kernels
are not synchronized
with one another

Case study: a financial simulation application

• The experiment was
lead on a single
cluster

• The hybrid version
shows a better
execution time

• The improvement
varies from 5% to
32% (simulating
30,000 orders/s)

Conclusions and future directions

• We proposed a way to exploit the locality using a hybrid
Stream/MPI programming model

• We presented the prototype of a hybrid framework, and
validated it using a financial simulation

• We plan to experiment this approach using clusters of
clusters

• We plan to integrate the framework in the message
queue of MPI middlewares

Thank you

An Hybrid MPI/Stream Programming Model for
Heterogeneous High Performance Systems

{mancini, marshgr, panda}@cse.ohio-state.edu

