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Motivation

• The  increased number of nodes in modern computational 
systems introduces implicit heterogeneity: 

– For example, they can use different levels of switches

• It is difficult to use different computational cluster at the 
same time with the same parallel program (clusters of 
clusters)

• We want to study a way to exploit the locality in 
computational clusters, and in clusters of clusters



Motivation

• Two connected 
clusters have 
different latencies 
and bandwidths 
(depending on the 
source and the 
destination): 

– Inter-core

– Inter socket

– Level of the switch

– Inter cluster
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Motivation and problem statement

• MPI proposes a flat computational model that can well 
exploit the locality

• The stream models, with the light coupling between 
computational units: it is useful for heterogeneous 
networks

• This paper we study how to integrate MPI and Stream 
programming models in order to exploit network locality 
and topology

• In this paper we present a framework which integrates 
the two models.
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MPI and Stream models concepts

• A stream can be described as an unbounded set of data
• A series of “kernels” process each element of the stream
• The Kernel’s inputs and outputs are streams

Kernel Kernel Kernel

Stream

Stream StreamStream Stream

MPI proc. MPI proc. MPI proc.

point to point

collective communication

• An MPI program is a set of autonomous processes that 
exchange data through message passing



Stream model

• The data model is modeled as transient data streams
(not persistent relations)

• They arrive continuously in unpredictable way, and in 
unbound streams

Siblings -> MPI application



The hybrid model

• In the hybrid model a subset of kernels can be mapped 
on a set of MPI processes;

• Or, from another point of view, a set of MPI processes 
can be transformed as a stream kernel.
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The launching process

• The launcher requires a description of the whole 
system, and synchronization of MPI and sequential 
kernels in different nodes

• An XML file describes the task graph

• From the XML file the launcher dynamically produces 
MPI hostfiles and startup scripts

• At launch time, every kernel registers itself with the 
middleware or polls the stream autonomously



The hybrid framework sequence diagram
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The hybrid framework architecture

• The launcher starts 
both stream kernels 
and MPI applications

• The core is a 
modularized 
communication API

• A common interface allows to interact with different 
underlying protocols

• The graph management module builds a view of the 
application tasks



A simple example

int main (...) {

osf_KernelContext_t *kctx;

osf_Init(...);

osf_RegisterKernel(0, OSF_KRNTYP_POLLING,

OSF_KRN_STATELESS, SourceKernel, &kctx);

osf_RegisterKernel(1, OSF_KRNTYP_POLLING, 

OSF_KRN_STATELESS, FilterKernel, &kctx);

osf_StartStreams();

osf_Finalize();

}

The main function registers the kernels, and starts 
the streams



A simple example

osf_Result_t SourceKernel(osf_KernelContext_t *ctx) {

static osf_Stream_t *s = NULL;

if (s==NULL)

osf_Open(&s, OSF_STR_OUT, 1);

...

record = sin(t)+sin(4+2*t);

osf_Put(s, &record, sizeof(record) );

return OSF_ERR_SUCCESS;

}

A source kernel puts new data into a stream:



A simple example

osf_Result_t FilterKernel(osf_KernelContext_t *ctx) {

static osf_Stream_t *sIn = NULL;

if (sIn==NULL)

osf_Open(&sIn, OSF_STR_INPUT, 0);

...

res = osf_Get( sIn, &x, sizeof(double), &receiv );

return OSF_ERR_SUCCESS;

}

A filter kernel gets the data from a stream, elaborates 
them, and eventually, puts them in another stream
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Case study: a financial simulation application

Double-ended queues 
with pending orders at 

that price level.

min_ask:  Lowest offered 
selling price.  All orders at 

and above this price are ask 
type.

max_bid:  Highest offered 
buying price.  All orders at 
and below this price are 
bid type.
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• The application 
simulates a stock

• It generates 
random orders

• A matching engine 
compares offers, 
bids and quantities

• When it elaborates 
an order, it sends a 
confirmation



Case study: a financial  simulation application
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• The application has 4 
tasks

• The hybrid version 
uses both MPI and 
Stream primitive to 
communicate

• The stream kernels 
are not synchronized  
with one another



Case study: a financial  simulation application

• The experiment was 
lead on a single 
cluster

• The hybrid version 
shows a better 
execution time

• The improvement 
varies from 5% to 
32% (simulating 
30,000 orders/s)



Conclusions and future directions

• We proposed a way to exploit the locality using a hybrid 
Stream/MPI programming model

• We presented the prototype of a hybrid framework, and 
validated it using a financial simulation

• We plan to experiment this approach using clusters of 
clusters

• We plan to integrate the framework in the message 
queue of MPI middlewares
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