Efficient Hardware Multicast Group Management over InfiniBand

Amith R. Mamidala, Hyun-Wook Jin and Dhabaleswar K. Panda

Department of Computer Science and Engineering Ohio State University

{mamidala, jinhy, panda}@cse.ohio-state.edu

Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work

Background

- MPI Collectives
 - take advantage of network features
- InfiniBand (IBA)
 - H/W Mcst Support
- Efficient and Scalable Collectives
 - J. Liu, A. Mamidala, D.K. Panda, "<u>Fast and Scalable MPI-Level Broadcast using InfiniBand's Hardware Multicast Support</u>", IPDPS 04
 - A. Mamidala, J.Liu, D.K. Panda, "<u>Efficient Barrier and</u> <u>Allreduce on IBA clusters using hardware multicast and</u> <u>adaptive algorithms</u>", Cluster 04

MPI_Bcast over H/W Mcst

•

Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work

Limitations

- Earlier study using single communicator
 - MPI_COMM_WORLD
 - Static initialization
- Need of supporting multiple communicator
 - Fluent, etc.
 - Dynamic Process Management (MPI-2)
- Efficient mechanism for supporting multiple communicator
 - H/W Mcst Groups constructed on the fly
 - involves an external management entity

Research Challenges

- Mapping Communicators to H/W Mcst Grps
 - No explicit mechanism defined for notifying MPI
- Overhead of mapping
 - High Forwarding Table Update overhead
 - Especially critical for large communicator and cluster sizes
- Can we develop an efficient framework for mapping MPI Communicators to H/W Mcst Grps?

Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work

Design Alternatives

- Propose three design alternatives:
 - Basic approach
 - Notification
 - Incurs Forwarding Table Update overhead
 - Lazy approach
 - Overlapping Notification and Forwarding Table Update
 - H/W Mcst Grp Pool approach
 - Hiding Forwarding Table Update
 - No Notification phase required

Limitation

- Notification
 - MPI_Comm_create
 - Simple to implement
- Disadvantage
 - Notification is a blocking call
 - High overhead for large communicators
 - Forwarding Table Update
- Question
 - Can we overcome the high overhead of Forwarding Table Update?

Lazy Approach

- Step 1: Same as Earlier Approach
- Step 2: Notification
 - non blocking
 - Overlapping Forwarding Table Update
- Implementation
 - Root returns immediately after posting ping mesg
 - Ack posting and collection done asynchronously
 - Time stamps stored in the communicator object
 - Ptp fall back for communication

Drawbacks

- Disadvantages:
 - Utility of H/W Mcst Grp reduced
 - Like to use it as soon as possible
 - Overlapping does not solve the problem
- Question:
 - Can we avoid the high overhead of the Forwarding Table Update to make H/W Mcst Grps readily available?

Benefits

- Advantages:
 - H/W Mcst Grp can be immediately used
 - Most of the job out of the critical path
- Implementation
 - Notification required for newly replenished groups
 - The size of the H/W Mcst Grp Pool can be tuned for different applications

Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work

Experimental TestBed

Cluster of Intel Xeon 2.66 MHz,512
 KB L2 Cache, MT23108 IBA HCAs

 OpenSM: Multicast Mgmt Entity (Subnet Manager & Subnet Administrator)

Experiments

- 1. Effect of different parameters such as the number of outstanding MADs and transaction timeout values of OpenSM on notification
- 2. Latency of Basic H/W Mcst Grp Operations

Experiments contd..

3. Effective MPI_Bcast Latency for different iteration count

Comm. sizes {
 1. MPI_Comm_create
 2. MPI_Bcast } Iter. Count

4. Effective MPI_Bcast Latency for different computation time

Comm. sizes {
1. MPI_Comm_create
2. Computation
3. MPI_Bcast } 1000 Iter.

Latencies of basic Multicast Grp Set-up operations

 Latency of issue of multicast grp set-up operations much smaller compared to setting up routing entries

Effective MPI_Bcast Latency

Effective Latency of MPI_Bcast: 16 nodes

Effective Latency of MPI_Bcast: 32 nodes

 Multicast Grp pool improves effective latency by a factor of as much as 2.42 for 16 nodes and 4.8 for 32 nodes compared to Basic approach

Effective MPI_Bcast Latency

Effective Latency of MPI_Bcast: 16 nodes

Effective Latency of MPI_Bcast: 32 nodes

 Multicast Grp pool improves effective latency by a factor of as much as 1.95 for 16 nodes and 1.80 for 32 nodes compared to Basic approach

Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work

Conclusions & Future Work

- Design Alternatives for efficiently mapping MPI Communicators to H/W Mcst Grps
- Three designs proposed:
 - Basic, Lazy and H/W Mcst Pool
 - H/W Mcst Pool design performs best
- Evaluated performance using OpenSM
- Future work: Application Level Evaluation (Fluent, Pallas)
- Evaluation with Gen2 verbs

Acknowledgements

Our research is supported by the following organizations

Current Funding support by

Current Equipment donations by

Web Pointers

http://www.cse.ohio-state.edu/~panda/ http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

- •
- •
- •

Questions ?

٠

۲

۲

۲

٠