
Multi-threaded UPC Runtime with Network
Endpoints: Design Alternatives and

Evaluation on Multi-core Architectures
	

Miao	
 Luo,	
 Jithin	
 Jose,	
 	

Sayantan	
 Sur	
 &	
 D.	
 K.	
 Panda	

	

Network-­‐Based	
 Compu2ng	
 Laboratory	

Department	
 of	
 Computer	
 Science	
 and	
 Engineering	

The	
 Ohio	
 State	
 University,	
 USA	

	

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  UPC Runtime Design Choices
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

2

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  Runtime Design Choices
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

3

HiPC-2011

Introduction
•  Partitioned Global Address Space (PGAS) is an emerging

parallel programming model:
–  Shared memory abstraction on distributed memory machines
–  User can control data layout and work distribution to take

advantage of locality
–  High-productivity and better applicability with multi-core and

network architecture
•  Unified Parallel C (UPC) is one of the most popular PGAS

languages:
–  Based on parallel extensions to the C language
–  Ease of programmability
–  Suitable for multi-core and accelerator clusters

4

HiPC-2011

UPC Runtime Choice –
Pthreads vs Processes

•  Thread-based runtime
•  Low-latency intra-node communication
•  Low-level load balancing schemes
•  Criticized for poor network performance

–  Process-based runtime
•  Good inter-node communication due to independent network

context
•  Need kernel/shared memory schemes for intra node

communication

–  Runtime design choice has an impact on:
–  Performance, Portability, Interoperability, Support for

irregular parallelism
5

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  Existing Runtime Designs
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

6

HiPC-2011

Problem Statement

•  With the advent of multi-cores, should the UPC
runtime itself be multi-threaded?

•  How it will affect the performance and
productivity aspects?

•  Can it provide implicit load balancing?

7

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  Existing Runtime Designs
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

8

HiPC-2011

Existing UPC Runtimes and Multithreaded
Runtime Design Choices

•  Process Based Runtime
•  Process Based Runtime with intra-node

communication optimizations (PSHM)
•  Multi-threaded Runtime – Global lock
•  Multi-threaded Runtime – Fine-grained lock

9

HiPC-2011

Core 0

Network
Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Process
Protection Boundary

Core 1 Core N

Network
Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Process
Protection Boundary

...

...

Network
Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Process
Protection Boundary

Physical Network
Device

UPC
thread

UPC
thread

UPC
thread...

Process based Runtime

w/o PSHM:
bad intra-node
performance;

w/ PSHM:
Poor portability

Difficult to share
processor states

10

HiPC-2011

Core 0

Network Endpoint

Communication Buffers Connections

Network: Incoming, Outgoing, Completion

Queues

Process Protection Boundary

Core 1 Core N...

Physical Network

Device

Atomic Operation

UPC

thread

UPC

thread

UPC

thread...

Semaphore

Mutex Lock

Multi-threaded Runtime with
Single Network Endpoint

Contention from
locks results in
bad inter-node
performance

11

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  Existing Runtime Designs
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

12

HiPC-2011

Core 0

Process Protection Boundary

Core 1 Core N...

Network Endpoint

Communication

Buffers
Connections

Network: Incoming,

Outgoing, Completion

Queues

Physical Network

Device

UPC

thread

UPC

thread

UPC

thread...

Network Endpoint

Communication

Buffers
Connections

Network: Incoming,

Outgoing, Completion

Queues

Network Endpoint

Communication

Buffers
Connections

Network: Incoming,

Outgoing, Completion

Queues

...

Multi-threaded Runtime
with Multiple Network Endpoint

Good intra/inter node
performance
Good portability

Provide supports to
irregular applications
through work stealing
and helper threads

13

HiPC-2011

Multi-Dimensional Comparison
of Design Alternatives

Optimization for
Irregular Applications

(Higher is Better)

Inter-node
Performance

(Higher is
Better)

Intra-node
Performance

(Higher is
Better)

Portability
 (Higher is Better)

Multi-Thread
with Multi-Endpoint

Multi-Thread
with one endpoint

(Global Locks)
(Fine-Grained

Locks)

Process based
approach

(w/ PSHM)
(w/o PSHM)

Process based
approach

(w/ PSHM)
Multi-Thread

with Multi-Endpoint
Multi-Thread

with one endpoint
(Global Locks)
(Fine-Grained

Locks)

Process based
approach

(w/o PSHM)

Process based
approach

(w/ PSHM)
(w/o PSHM)
Multi-Thread

with Multi-Endpoint

Multi-Thread
with one
endpoint

(Fine-Grained
 Locks)

Multi-Thread
with one
endpoint
(Global
Locks)

Process based
approach

(w/ PSHM)

Process based
approach

(w/o PSHM)
Multi-Thread

with Multi-Endpoint
Multi-Thread

with one endpoint
(Global Locks)
(Fine-Grained

Locks)

14

HiPC-2011

Load Balancing For Irregular Applications –
Helper Threads and Work Stealing

•  Irregular applications are hard to express
•  Handling irregularity in the application hurts programmer

productivity
•  Compiler based approaches: may be limited by lack of

dynamic characteristics
•  We present runtime level load balancing schemes, and

provide transparent optimization to irregular applications:
–  Application independent
–  Can provide generic load balancing, even for applications that

don’t have specific application-level optimizations

15

HiPC-2011

Core 0

Process Protection Boundary

Core 1 Core N
...

Network Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Physical Network
Device

UPC
thread

UPC
thread

UPC
thread...

Network Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Network Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

...

Comm.
thread

Core N+1

Dedicated Communication Threads
(Helper Thread)

•  Helps to progress communication,
even when other threads are busy
doing computation

•  Helper thread is not visible at UPC
application level

16

HiPC-2011

Core 0

Process Protection Boundary

Core 1 Core N...

Network Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Physical Network
Device

UPC
thread

UPC
thread

UPC
thread...

Network Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

Network Endpoint

Communication
Buffers Connections

Network: Incoming,
Outgoing, Completion

Queues

...

Work Stealing for Efficient
Asynchronous Remote Methods

Idle UPC threads help to progress
communication on behalf on busy
threads
 17

HiPC-2011

Unified Communication Runtime (UCR)
•  Aims to unify communication runtimes of different parallel

programming models
–  J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes:

Experience with MVAPICH, (PGAS’10)

•  Design of UCR evolved from MVAPICH/MVAPICH2 software
stacks (h5p://mvapich.cse.ohio-­‐state.edu/)
–  Used by more than 1,810 organizations in 65 countries

•  UCR provides interfaces for Active Messages as well as one-
sided put/get operations

•  Support for Scalable Graph Traversals
–  J. Jose, S. Potluri, M. Luo, S. Sur, D. K. Panda, UPC Queues for Scalable Graph

Traversals – Design and Evaluation on InfiniBand Clusters -(PGAS’’11)
•  UCR in Cloud Computing domain

–  J. Jose, H. Subramoni, M. Luo, S. Sur, D. K. Panda, et al., Memcached Design on
High Performance RDMA Capable Interconnects, (ICPP’11)

–  J. Huang, X. Ouyang, J. Jose, D.K. Panda et al, High Performance Design of
Hbase with RDMA over InfiniBand – (IPDPS’12)

18

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  Existing Runtime Designs
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

19

HiPC-2011

Experimental Platform

•  Intel Westmere cluster
–  1,280 cores where each node has eight Intel Xeon

EE5630 processors, organized into two sockets of
four cores each clocked at 2.53 GHz.

–  Mellanox ConnectX QDR HCAs (32 Gbps data rate)
–  L1 cache is 32K, L2 is 256 K and shared L3 (among

cores in one socket) is 12 M.
–  Each node has 12 GB of main memory
–  Red Hat Enterprise Linux Server Release 5.4

20

HiPC-2011

Performance Evaluation
•  Evaluated existing UPC runtime choices and design

alternatives:
–  ibv-process: the process based runtime from Berkeley UPC GASNet

IBV-conduit
–  ibv-thread: the multi-threaded runtime with single endpoint from

Berkeley UPC GASNet IBV-conduit
–  UCR-global-lock: Multi-threaded runtime with single endpoint (global

locks to achieve thread safety)
–  UCR-fg-lock: Multi-threaded runtime with single endpoint (fine

grained locks to achieve thread safety)
–  UCR-endpoint: Multi-threaded runtime with multiple endpoints.

•  Evaluation based on Latency, Bandwidth, Message Rate,
Load balancing

•  Berkeley UPC version 2.12.1 with PSHM (sysv) enabled is
used for ibv-process and ibv-thread

21

HiPC-2011

Micro-benchmark Performance
upc_memput

•  UPC memput operation latency and bandwidth micro benchmark
•  Latency reduced by 80% compared to single endpoint multi-thread design.
•  2X improvement in bandwidth for middle range message size

0

5

10

15

20

25

30

35

1 16 256

Ti
m

e
(m

ic
ro

 s
ec

s)

msg size (byte)

ibv-process

ibv-thread

UCR-global-lock

UCR-fg-lock

UCR-endpoint

0

50

100

150

200

250

300

350

400

450

1 16 256 4096 65536 1048576

B
an

dw
id

th
 (M

B
/s

)

msg size (byte)

22

HiPC-2011

Micro-benchmark Performance
upc_memget

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256 512 1024 2048

Ti
m

e
(m

ic
ro

 s
ec

s)

msg size (byte)

ibv-process
ibv-thread
UCR-global-lock
UCR-fg-lock
UCR-endpoint

0

50

100

150

200

250

300

350

400

450

1 16 256 4096 65536 1048576

B
an

dw
id

th
 (M

B
/s

)

msg size (byte)

•  Similar for UPC memget micro benchmark
•  Latency is reduced by 76% from single endpoint multi-thread design
•  Bandwidth is doubled for middle range message sizes

23

HiPC-2011

Message Rate Evaluation

0

2000

4000

6000

8000

10000

12000

1 16 256 4096 65536 1048576

M
es

sa
ge

 R
at

e
(K

 m
sg

s/
s)

msg size (byte)

ibv-process
ibv-thread
UCR-global-lock
UCR-fg-lock
UCR-endpoint

0

2000

4000

6000

8000

10000

12000

1 16 256 4096 65536 1048576
M

es
sa

ge
 R

at
e

(K
 m

sg
s/

s)

msg size (byte)

1 pair 2 pairs

4 pairs 8 pairs

•  Left: Multi-threaded with single endpoint can only achieve one-eighth as
compared to ibv-process and UCR-endpoint

•  Right: Message rate of small messages is dependent on number of endpoints;
Most concurrency in the network adapter is already utilized by four pairs

Comparison
between UCR-
multi-endpoint with
different number of
UPC thread pairs.

Comparison
between different
alternatives with 8
UPC thread pairs.

24

HiPC-2011

Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread

•  Benchmark Description:
– 14 UPC threads are grouped into seven pairs

on two nodes
– Senders send 1MB message to peers and

wait for acknowledgement
– Receivers perform a defined amount of

computation before polling network

25

HiPC-2011

Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread

•  Bandwidth Results with Computation on
Receiver Side:

.
•  Helper threads can keep

bandwidth fully utilized while
UPC threads are busy
computation

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
an

dw
id

th
 (M

B
/s

)

Computations (s)

UCR-endpoint w/o helper thread

UCR-endpoint w/ helper thread

ibv-process

26

HiPC-2011

Load Balancing Evaluation for
Multi-endpoint Design: Work Stealing

•  Work stealing benchmark:
–  16 UPC threads are grouped into eight pairs on two nodes.
–  Computation is represented by DGEMM
–  Senders send varying computation to peers and wait for

acknowledgement
–  The average workload is matrix size equals to 2,000
–  As matrix range x increases, three UPC threads have

workload as 2,000 – x; another three UPC threads receive
2,000 + x workload; the left two UCP threads will keep
getting requests of 2,000

–  Receivers reply back once they finish corresponding
computations

27

HiPC-2011

Load Balancing Evaluation for
Multi-endpoint Design: Work Stealing

•  Without work stealing, receivers with light workload become idle
and CPU cycles are wasted

•  With work stealing, idle threads consume workload for busy
threads: GFLOPS is kept close to peak value

0

10

20

30

40

50

60

70

80

0 256 512 768 1024 1280 1536 1792 2048

G
FL

O
PS

Matrix Range

peak
UCR-endpoint w/o work stealing
UCR-endpoint w/ work stealing
ibv-process

28

HiPC-2011

Outline

•  Introduction
•  Problem Statement
•  Existing Runtime Designs
•  Multi-endpoint Design
•  Performance Evaluations
•  Conclusion & Future Work

29

HiPC-2011

Conclusion
•  Explored multiple design alternatives for UPC runtime

implementation on multi-core architectures
•  Designed a new multi-threaded runtime with multiple

network endpoint design in UCR
•  Significant performance improvements over available

multi-threaded runtime
–  80% lower latency as compared to existing multi-threaded

designs
–  2X improvement on bandwidth for medium size messages

•  Efficient load balancing using ‘Helper Thread’ and ‘Work
stealing’ techniques
–  90% of peak efficiency
–  1.3 times better than existing multi-threaded Runtime design

30

HiPC-2011

Future Work

•  Application level evaluations using Irregular
applications such as Graph500, Barnes Hut, etc

•  UPC collectives using multi-threaded design with
multiple endpoints

•  Multi-threaded, multi-endpoint support to hybrid
applications of MPI and UPC

31

HiPC-2011

	
 Thank	
 You!	

{luom,	
 jose,	
 surs,	
 panda}@cse.ohio-­‐state.edu	

Network-­‐Based	
 CompuLng	
 Laboratory	

h5p://nowlab.cse.ohio-­‐state.edu/

32

MVAPICH	
 Web	
 Page	

h5p://mvapich.cse.ohio-­‐state.edu/

