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Introduction 
•  Partitioned Global Address Space (PGAS) is an emerging 

parallel programming model: 
–  Shared memory abstraction on distributed memory machines 
–  User can control data layout and work distribution to take 

advantage of locality 
–  High-productivity and better applicability with multi-core and 

network architecture 
•  Unified Parallel C (UPC) is one of the most popular PGAS 

languages:  
–  Based on parallel extensions to the C language 
–  Ease of programmability  
–  Suitable for multi-core and accelerator clusters  
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UPC Runtime Choice –  
Pthreads vs Processes 

•  Thread-based runtime  
•  Low-latency intra-node communication 
•  Low-level load balancing schemes 
•  Criticized for poor network performance  

–  Process-based runtime  
•  Good inter-node communication due to independent network 

context 
•  Need kernel/shared memory schemes for intra node 

communication 

–  Runtime design choice has an impact on: 
–  Performance, Portability, Interoperability, Support for 

irregular parallelism 
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Problem Statement 

•  With the advent of multi-cores, should the UPC 
runtime itself be multi-threaded? 

•  How it will affect the performance and 
productivity aspects? 

•  Can it provide implicit load balancing? 
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Existing UPC Runtimes and Multithreaded 
Runtime Design Choices 

•  Process Based Runtime 
•  Process Based Runtime with intra-node 

communication optimizations (PSHM) 
•  Multi-threaded Runtime – Global lock 
•  Multi-threaded Runtime – Fine-grained lock 
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of Design Alternatives 
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Load Balancing For Irregular Applications – 
Helper Threads and Work Stealing  

 
•  Irregular applications are hard to express 
•  Handling irregularity in the application hurts programmer 

productivity 
•  Compiler based approaches: may be limited by lack of 

dynamic characteristics 
•  We present runtime level load balancing schemes, and 

provide transparent optimization to irregular applications: 
–  Application independent 
–  Can provide generic load balancing, even for applications that 

don’t have specific application-level optimizations 
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Unified Communication Runtime (UCR) 
•  Aims to unify communication runtimes of different parallel 

programming models 
–  J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: 

Experience with MVAPICH, (PGAS’10) 

•  Design of UCR evolved from MVAPICH/MVAPICH2 software 
stacks (h5p://mvapich.cse.ohio-­‐state.edu/) 
–  Used by more than 1,810 organizations in 65 countries 

•  UCR provides interfaces for Active Messages as well as one-
sided put/get operations 

•  Support for Scalable Graph Traversals 
–  J. Jose, S. Potluri, M. Luo, S. Sur, D. K. Panda, UPC Queues for Scalable Graph 

Traversals – Design and Evaluation on InfiniBand Clusters -(PGAS’’11) 
•  UCR in Cloud Computing domain 

–  J. Jose, H. Subramoni, M. Luo, S. Sur, D. K. Panda, et al., Memcached Design on 
High Performance RDMA Capable Interconnects, (ICPP’11) 

–  J. Huang, X. Ouyang, J. Jose, D.K. Panda et al, High Performance Design of 
Hbase with RDMA over InfiniBand – (IPDPS’12) 
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Experimental Platform 

•  Intel Westmere cluster 
–  1,280 cores where each node has eight Intel Xeon 

EE5630 processors, organized into two sockets of 
four cores each clocked at 2.53 GHz. 

–  Mellanox ConnectX QDR HCAs (32 Gbps data rate) 
–  L1 cache is 32K, L2 is 256 K and shared L3 (among 

cores in one socket) is 12 M. 
–  Each node has 12 GB of main memory 
–  Red Hat Enterprise Linux Server Release 5.4 
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Performance Evaluation 
•  Evaluated existing UPC runtime choices and design 

alternatives: 
–  ibv-process: the process based runtime from Berkeley UPC GASNet 

IBV-conduit 
–  ibv-thread: the multi-threaded runtime with single endpoint from 

Berkeley UPC GASNet IBV-conduit 
–  UCR-global-lock: Multi-threaded runtime with single endpoint (global 

locks to achieve thread safety) 
–  UCR-fg-lock: Multi-threaded runtime with single endpoint (fine 

grained locks to achieve thread safety) 
–  UCR-endpoint: Multi-threaded runtime with multiple endpoints.  

•  Evaluation based on Latency, Bandwidth, Message Rate, 
Load balancing 

•  Berkeley UPC version 2.12.1 with PSHM (sysv) enabled is 
used for ibv-process and ibv-thread 
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Micro-benchmark Performance 
upc_memput 

•  UPC memput operation latency and bandwidth micro benchmark 
•  Latency reduced by 80% compared to single endpoint multi-thread design. 
•  2X improvement in bandwidth for middle range message size 
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Micro-benchmark Performance 
upc_memget 
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•  Similar for UPC memget micro benchmark 
•  Latency is reduced by 76% from single endpoint multi-thread design 
•  Bandwidth is doubled for middle range message sizes 
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Message Rate Evaluation 
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Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread 

•  Benchmark Description:  
– 14 UPC threads are grouped into seven pairs 

on two nodes 
– Senders send 1MB message to peers and 

wait for acknowledgement 
– Receivers perform a defined amount of 

computation before polling network 
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Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread 

•  Bandwidth Results with Computation on 
Receiver Side: 

. 
•  Helper threads can keep 

bandwidth fully utilized while 
UPC threads are busy 
computation 
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Load Balancing Evaluation for  
Multi-endpoint Design: Work Stealing 

•  Work stealing benchmark:  
–  16 UPC threads are grouped into eight pairs on two nodes. 
–  Computation is represented by DGEMM 
–  Senders send varying computation to peers and wait for 

acknowledgement  
–  The average workload is matrix size equals to 2,000 
–  As matrix range x increases,  three UPC threads have 

workload as 2,000 – x; another three UPC threads receive 
2,000 + x workload; the left two UCP threads will keep 
getting requests of 2,000     

–  Receivers reply back once they finish corresponding 
computations 
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Load Balancing Evaluation for  
Multi-endpoint Design: Work Stealing 

•  Without work stealing, receivers with light workload become idle 
and CPU cycles are wasted 

•  With work stealing, idle threads consume workload for busy 
threads: GFLOPS is kept close to peak value 
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Conclusion 
•  Explored multiple design alternatives for UPC runtime 

implementation on multi-core architectures 
•  Designed a new multi-threaded runtime with multiple 

network endpoint design in UCR 
•  Significant performance improvements over available 

multi-threaded runtime 
–  80% lower latency as compared to existing multi-threaded 

designs 
–  2X improvement on bandwidth for medium size messages 

•  Efficient load balancing using ‘Helper Thread’ and ‘Work 
stealing’ techniques 
–  90% of peak efficiency 
–  1.3 times better than existing multi-threaded Runtime design 
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Future Work 

•  Application level evaluations using Irregular 
applications such as Graph500, Barnes Hut, etc 

•  UPC collectives using multi-threaded design with 
multiple endpoints 

•  Multi-threaded, multi-endpoint support to hybrid 
applications of MPI and UPC 
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