Multi-threaded UPC Runtime with Network
Endpoints: Design Alternatives and
Evaluation on Multi-core Architectures

Miao Luo, Jithin Jose,
Sayantan Sur & D. K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, USA

OHIO
SIATE

Outline

* |ntroduction

* Problem Statement

 UPC Runtime Design Choices
* Multi-endpoint Design

* Performance Evaluations

* Conclusion & Future Work

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Outline

 |ntroduction

* Problem Statement

* Runtime Design Choices

* Multi-endpoint Design

* Performance Evaluations
* Conclusion & Future Work

OHIO
SIATE

Introduction

« Partitioned Global Address Space (PGAS) is an emerging
parallel programming model:

— Shared memory abstraction on distributed memory machines

— User can control data layout and work distribution to take
advantage of locality

— High-productivity and better applicability with multi-core and
network architecture

« Unified Parallel C (UPC) is one of the most popular PGAS
languages:
— Based on parallel extensions to the C language
— Ease of programmability
— Suitable for multi-core and accelerator clusters

OHIO
_

UPC Runtime Choice —
Pthreads vs Processes

* Thread-based runtime
* Low-latency intra-node communication
* Low-level load balancing schemes
 Criticized for poor network performance

— Process-based runtime

* (Good inter-node communication due to independent network
context

* Need kernel/shared memory schemes for intra node
communication

— Runtime design choice has an impact on:

— Performance, Portability, Interoperability, Support for
irregular parallelism

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* |ntroduction

* Problem Statement

« Existing Runtime Designs
* Multi-endpoint Design

* Performance Evaluations
* Conclusion & Future Work

OHIO
SIATE

Problem Statement

o With the advent of multi-cores, should the UPC
runtime itself be multi-threaded?

* How it will affect the performance and
productivity aspects?

* Can it provide implicit load balancing?

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

« Existing Runtime Designs

OHIO
SIATE

Existing UPC Runtimes and Multithreaded
Runtime Design Choices

Process Based Runtime

Process Based Runtime with intra-node
communication optimizations (PSHM)

Multi-threaded Runtime — Global lock
Multi-threaded Runtime — Fine-grained lock

OHIO
_

Process based Runtime

Difficult to share
processor states

Core 1

e Process R g Process ; _ \\\
--” Protection Boundary “y"" Protection Boundar bad intra-node oundary
performance;
UPC UPC w/ PSHM:
thread thread

Poor portability
* * \' ya

Communication . Communication . Communication .
Connections Connections Connections

Buffers Buffers Buffers
Network: Incoming, Network: Incoming, Network: Incoming,
Outgoing, Completion Outgoing, Completion eee Outgoing, Completion
Queues Queues Queues
Network Network Network
Endpoint Endpoint

Endpoint
/

Physical Network
Device

OHIO
SIATE

Multi-threaded Runtime with
Single Network Endpoint

/,’, Process Protection Boundary \\\

,/ UPC UPC UPC \\
7 thread thread oo thread .
I _ _ _ _ _ _ _ Y _ _ ______ yi
| Atomic Operation Semaphore
l Communication Buffers Connections

4 |
Contention from\ Mutex Lock

locks results in Network: Incoming, Outgoing, Completion

] Queues
bad inter-node
pe rformance Network Endpoint

-

Physical Network
Device

OHIO
SIATE

Outline

* Multi-endpoint Design

OHIO
SIATE

e
Multi-threaded Runtime

with Multiple Network Endpoint

o Process Protection Boundary N
UPC UPC UPC
7 thread thread oo thread N
NV ____ S] NV _____ R | A———
| || | |
I| Communication Connections || | Communication C G | | Communication Connections |
| Buffers P Buffers onnections 1 : Buffers |
| |
| |
| Network: Incoming, : I Network: Incoming, | | ' Network: Incoming, |
I | Outgoing, Completion | Outgoing, Completion | | eee | Outgoing, Completion | |
| Queues | Queues | : Queues |
| |
I Network Endpoint | : Network Endpoint I | Network Endpoint :
N | | A

Good intra/inter node) Provide supports to
Physical Network

performance ‘ Device | irregular applications

Good portability through work stealing

and helper threads

OHIO
SIATE

Multi-Dimensional Compar
of Design Alternatives

Optimization for
Irregular Applications
(Higher is Better)

Multi-Thread
with Multi-Endpoint

Multi\—T read

_| with one endpoint

yd (Global Lo.ck)
/ (FmI(_a—Gl:alned\
% ocks) .
J N
Intra-node Process based AN Inter-node
Performance T approach AN Performance
(Higher is Pz (SA‘:‘;/O'TDSS;'LW) AN (Higher is
Better) L | | | | AN ! Better)

|
Process based

[[A1
Multi-Thread Multi-Thread Process based

P
rchepsri:sﬁed approach with one with one V2 approach
La/ DSLINAN (w/o PSHM) endpoint endpoint (w/ PSHM)
Multi-Threa (Global (Fine-Grain Lanfo DSLIN
with |\l}l|ul|ti_E':§doim\ Locks) Locksy Multi-Thread
_mr%_u I- I hrea AN Process based e with Multi-Endpoint
with one endpoint approach %
(Global Locks) \(w/ PSHM) T
(Fine-Grained e
Locks) Prosess based V%
appxoach P
Multi-Thraad S
vith Multi-Endpoint e
NGt Thre rea%
with one endpoint\/
(Global Locks)
(Fine-Grained
Locks) v
Portability

OHIO
SIATE

(Higher is Better)

Load Balancing For Irregular Applications —
Helper Threads and Work Stealing

 lIrregular applications are hard to express

* Handling irregularity in the application hurts programmer
productivity

« Compiler based approaches: may be limited by lack of
dynamic characteristics

 We present runtime level load balancing schemes, and
provide transparent optimization to irregular applications:
— Application independent

— Can provide generic load balancing, even for applications that
don’t have specific application-level optimizations

OHIO
_

—

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

F

Dedicated Communication Threads
(Helper Thread)

Physical Network

Device

| | r—
I| Communication Connections : | Communication Connections | | Communication Connections
| Buffers | | Buffers [| Buffers !
| | |
! |
| Network: Incoming, : | Network: Incoming, |'“| Network: Incoming,
I | Outgoing, Completion | | Outgoing, Completion | | Outgoing, Completion
| Queues | : Queues | : Queues
|
I Network Endpoint I Network Endpoint : | Network Endpoint
I I

Helps to progress communication,

even when other threads are busy

doing computation

Helper thread is not visible at UPC

application level

Work Stealing for Efficient
Asynchronous Remote Methods

Process Protection Boundary S
UPC
thread
V.
= M e
	Communication Connections : I Communication Connections		Communication Connections
Buffers		Buffers [Buffers
Network: Incoming, :	Network: Incoming, Pt	Network: Incoming,	
I	Outgoing, Completion		Outgoing, Completion [
: Queues	: Queues [: Queues [
Network Endpoint		Network Endpoint :	Network Endpoint :
U			

|dle UPC threads help to progress
communication on behalf on busy
threads

Physical Network
Device

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Unified Communication Runtime (UCR)

« Aims to unify communication runtimes of different parallel
programming models

— J.Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes:
Experience with MVAPICH, (PGAS’10)

* Design of UCR evolved from MVAPICH/MVAPICHZ2 software
stacks (http://mvapich.cse.ohio-state.edu/)
— Used by more than 1,810 organizations in 65 countries

 UCR provides interfaces for Active Messages as well as one-
sided put/get operations

« Support for Scalable Graph Traversals

— J. Jose, S. Potluri, M. Luo, S. Sur, D. K. Panda, UPC Queues for Scalable Graph
Traversals — Design and Evaluation on InfiniBand Clusters -(PGAS”11)

 UCR in Cloud Computing domain

— J. Jose, H. Subramoni, M. Luo, S. Sur, D. K. Panda, et al., Memcached Design on
High Performance RDMA Capable Interconnects, (ICPP’11)

— J. Huang, X. Ouyang, J. Jose, D.K. Panda et al, High Performance Design of
Hbase with RDMA over InfiniBand - (IPDPS’12)

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

e Performance Evaluations

OHIO
SIATE

Experimental Platform

 |Intel Westmere cluster

— 1,280 cores where each node has eight Intel Xeon
EE5630 processors, organized into two sockets of
four cores each clocked at 2.53 GHz.

— Mellanox ConnectX QDR HCAs (32 Gbps data rate)

— L1 cache is 32K, L2 is 256 K and shared L3 (among
cores in one socket) is 12 M.

— Each node has 12 GB of main memory
— Red Hat Enterprise Linux Server Release 5.4

OHIO
_

Performance Evaluation

« Evaluated existing UPC runtime choices and design
alternatives:

— ibv-process: the process based runtime from Berkeley UPC GASNet
IBV-conduit

— ibv-thread: the multi-threaded runtime with single endpoint from
Berkeley UPC GASNet IBV-conduit

— UCR-global-lock: Multi-threaded runtime with single endpoint (global
locks to achieve thread safety)

— UCR-fg-lock: Multi-threaded runtime with single endpoint (fine
grained locks to achieve thread safety)

— UCR-endpoint: Multi-threaded runtime with multiple endpoints.

« Evaluation based on Latency, Bandwidth, Message Rate,
Load balancing

« Berkeley UPC version 2.12.1 with PSHM (sysv) enabled is

’—‘ﬂomo sed for ibv—ﬁrocess and ibv-thread
SIAIE

NETWORK-BASED
COMPUTING
LABORATORY

Micro-benchmark Performance
upc _memput

35 =@®=ibv-process 4 450
eE=iby-thread 400
30
#=UCR-global-lock et
350
o5 == JCR-fg-lock
™ “=¢=UCR-endpoint @ 300
(7]
o 20 = 250
5 <
= =]
£ - A = — A —
PRLE e 3 200
£ 3
= @ 150
10
100
5
50
0 T T T 0 /“,_ . T\ T T T .
1 16 256 1 16 256 4096 65536 1048576
msg size (byte) msg size (byte)

« UPC memput operation latency and bandwidth micro benchmark
« Latency reduced by 80% compared to single endpoint multi-thread design.

« 2X improvement in bandwidth for middle range message size
OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

w w
o ()]

(¢)]

.Time(micrq secs),,
a o

o

(6)]

0

Micro-benchmark Performance

upc_memget

450
“4=ibv-process -
=®=ibv-thread 400
#=UCR-global-lock A 350
=*=UCR-fg-lock % 300
=*#=UCR-endpoint_~*" e g
| A > " A - < 250
- - <

)

o
2 200

e ————

- é 8 150

100

50

g

0 B

8 16 32 64 128 256 512 10242048
msg size (byte)

1 2 4

256 4096
msg size (byte)

65536 1048576

« Similar for UPC memget micro benchmark
« Latency is reduced by 76% from single endpoint multi-thread design
« Bandwidth is doubled for middle range message sizes

OHIO
SIATE

Message Rate Evaluation

12000 12000
«4=ibv-process

=@=ibv-thread 10000 4=
#=UCR-global-lock
=>=UCR-fg-lock

=4=1 pair «i=2 pairs

10000

=4 pairs =>=8 pairs

o
o
o
(@)

8000 “¥=UCR-endpoint—— _
Comparison
between UCR-

Comparison etwee

multi-endpoint with
different number of

between different
alternatives with 8
UPC thread pairs. 2000

N
o
o
o

N
o
o
o
Message Rate (K msgs/s)
(o))
o
o
o

Message Rate (K msgs/s)
(@]
o
o
o

2000

Jan A
///////////// A\

£\
0 T T T T T T T T T T T T T RN\
1 16 256 4096 65536 1048576

msg size (byte)

0 T T T T T T T T T T T 1 : '“'"“ Z8ZNI 28 A
1 16 256 4096 65536 1048576

msg size (byte)

« Left: Multi-threaded with single endpoint can only achieve one-eighth as
compared to ibv-process and UCR-endpoint

» Right: Message rate of small messages is dependent on number of endpoints;
Most concurrency in the network adapter is already utilized by four pairs

OHIO
SIATE

Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread

 Benchmark Description:

— 14 UPC threads are grouped into seven pairs
on two nodes

— Senders send 1MB message to peers and
wait for acknowledgement

— Receivers perform a defined amount of
computation before polling network

OHIO
_

Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread

« Bandwidth Results with Computation on
Receiver Side:

3500

3000 .

2500 -< * Helper threads can keep
% \ =#+=UCR-endpoint w/o helper thread bandwidth fU”y utilized while
S 2000 UPC threads are busy
S \ =#=UCR-endpoint w/ helper thread Computation
2 1500 -
o \\ “=ibv-process

500 A e

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Computations (s)

OHIO
_

Load Balancing Evaluation for
Multi-endpoint Design: Work Stealing

* Work stealing benchmark:
— 16 UPC threads are grouped into eight pairs on two nodes.
— Computation is represented by DGEMM

— Senders send varying computation to peers and wait for
acknowledgement

— The average workload is matrix size equals to 2,000

— As matrix range x increases, three UPC threads have
workload as 2,000 — x; another three UPC threads receive
2,000 + x workload; the left two UCP threads will keep

getting requests of 2,000

— Receivers reply back once they finish corresponding
computations

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Load Balancing Evaluation for
Multi-endpoint Design: Work Stealing

60
50
7
o
Q 40
™
o
30
=4=peak
20 =@=UJCR-endpoint w/o work stealing

“=UCR-endpoint w/ work stealing
=>=ibv-process

0 256 512 768 1024 1280 1536 1792 2048
Matrix Range

« Without work stealing, receivers with light workload become idle
and CPU cycles are wasted

« With work stealing, idle threads consume workload for busy

56 threads: GFLOPS is kept close to peak value
SIATE

Outline

 Conclusion & Future Work

OHIO
SIATE

Conclusion

« Explored multiple design alternatives for UPC runtime
Implementation on multi-core architectures

* Designed a new multi-threaded runtime with multiple
network endpoint design in UCR

« Significant performance improvements over available
multi-threaded runtime

— 80% lower latency as compared to existing multi-threaded
designs

— 2X improvement on bandwidth for medium size messages
 Efficient load balancing using ‘Helper Thread’ and ‘Work

stealing’ techniques

— 90% of peak efficiency

— 1.3 times better than existing multi-threaded Runtime design

OHIO
_

Future Work

« Application level evaluations using lrregular
applications such as Graph500, Barnes Hut, etc

« UPC collectives using multi-threaded design with
multiple endpoints

* Multi-threaded, multi-endpoint support to hybrid
applications of MP| and UPC

OHIO
_

OHIO
SIATE

Thank Youl!

{luom, jose, surs, panda}@cse.ohio-state.edu

o&&ased CO@%
] B MVAPICH

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

