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Introduction

« Partitioned Global Address Space (PGAS) is an emerging
parallel programming model:

— Shared memory abstraction on distributed memory machines

— User can control data layout and work distribution to take
advantage of locality

— High-productivity and better applicability with multi-core and
network architecture

« Unified Parallel C (UPC) is one of the most popular PGAS
languages:
— Based on parallel extensions to the C language
— Ease of programmability
— Suitable for multi-core and accelerator clusters
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UPC Runtime Choice —
Pthreads vs Processes

* Thread-based runtime
* Low-latency intra-node communication
* Low-level load balancing schemes
 Criticized for poor network performance

— Process-based runtime

* (Good inter-node communication due to independent network
context

* Need kernel/shared memory schemes for intra node
communication

— Runtime design choice has an impact on:

— Performance, Portability, Interoperability, Support for
irregular parallelism
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Problem Statement

o With the advent of multi-cores, should the UPC
runtime itself be multi-threaded?

* How it will affect the performance and
productivity aspects?

* Can it provide implicit load balancing?
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« Existing Runtime Designs
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Existing UPC Runtimes and Multithreaded
Runtime Design Choices

Process Based Runtime

Process Based Runtime with intra-node
communication optimizations (PSHM)

Multi-threaded Runtime — Global lock
Multi-threaded Runtime — Fine-grained lock
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Process based Runtime
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Multi-threaded Runtime with
Single Network Endpoint
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Multi-Dimensional Compar
of Design Alternatives
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Irregular Applications
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Load Balancing For Irregular Applications —
Helper Threads and Work Stealing

 lIrregular applications are hard to express

* Handling irregularity in the application hurts programmer
productivity

« Compiler based approaches: may be limited by lack of
dynamic characteristics

 We present runtime level load balancing schemes, and
provide transparent optimization to irregular applications:
— Application independent

— Can provide generic load balancing, even for applications that
don’t have specific application-level optimizations
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Dedicated Communication Threads
(Helper Thread)

Physical Network

Device

| | r—
I| Communication Connections : | Communication Connections | | Communication Connections
| Buffers | | Buffers [ | Buffers !
| | |
! |
| Network: Incoming, : | Network: Incoming, |'“| Network: Incoming,
I | Outgoing, Completion | | Outgoing, Completion | | Outgoing, Completion
| Queues | : Queues | : Queues
|
I Network Endpoint I Network Endpoint : | Network Endpoint
I I

Helps to progress communication,

even when other threads are busy

doing computation

Helper thread is not visible at UPC

application level




Work Stealing for Efficient
Asynchronous Remote Methods
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Unified Communication Runtime (UCR)

« Aims to unify communication runtimes of different parallel
programming models

— J.Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes:
Experience with MVAPICH, (PGAS’10)

* Design of UCR evolved from MVAPICH/MVAPICHZ2 software
stacks (http://mvapich.cse.ohio-state.edu/)
— Used by more than 1,810 organizations in 65 countries

 UCR provides interfaces for Active Messages as well as one-
sided put/get operations

« Support for Scalable Graph Traversals

— J. Jose, S. Potluri, M. Luo, S. Sur, D. K. Panda, UPC Queues for Scalable Graph
Traversals — Design and Evaluation on InfiniBand Clusters -(PGAS”11)

 UCR in Cloud Computing domain

— J. Jose, H. Subramoni, M. Luo, S. Sur, D. K. Panda, et al., Memcached Design on
High Performance RDMA Capable Interconnects, (ICPP’11)

— J. Huang, X. Ouyang, J. Jose, D.K. Panda et al, High Performance Design of
Hbase with RDMA over InfiniBand - (IPDPS’12)

OHIO
SIATE




NETWORK-BASED
COMPUTING
LABORATORY

e Performance Evaluations

OHIO
SIATE




Experimental Platform

 |Intel Westmere cluster

— 1,280 cores where each node has eight Intel Xeon
EE5630 processors, organized into two sockets of
four cores each clocked at 2.53 GHz.

— Mellanox ConnectX QDR HCAs (32 Gbps data rate)

— L1 cache is 32K, L2 is 256 K and shared L3 (among
cores in one socket) is 12 M.

— Each node has 12 GB of main memory
— Red Hat Enterprise Linux Server Release 5.4
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Performance Evaluation

« Evaluated existing UPC runtime choices and design
alternatives:

— ibv-process: the process based runtime from Berkeley UPC GASNet
IBV-conduit

— ibv-thread: the multi-threaded runtime with single endpoint from
Berkeley UPC GASNet IBV-conduit

— UCR-global-lock: Multi-threaded runtime with single endpoint (global
locks to achieve thread safety)

— UCR-fg-lock: Multi-threaded runtime with single endpoint (fine
grained locks to achieve thread safety)

— UCR-endpoint: Multi-threaded runtime with multiple endpoints.

« Evaluation based on Latency, Bandwidth, Message Rate,
Load balancing

« Berkeley UPC version 2.12.1 with PSHM (sysv) enabled is

’—‘ﬂomo sed for ibv—ﬁrocess and ibv-thread
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Micro-benchmark Performance
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« UPC memput operation latency and bandwidth micro benchmark
« Latency reduced by 80% compared to single endpoint multi-thread design.

«  2X improvement in bandwidth for middle range message size
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« Similar for UPC memget micro benchmark
« Latency is reduced by 76% from single endpoint multi-thread design
« Bandwidth is doubled for middle range message sizes
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Message Rate Evaluation
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« Left: Multi-threaded with single endpoint can only achieve one-eighth as
compared to ibv-process and UCR-endpoint

» Right: Message rate of small messages is dependent on number of endpoints;
Most concurrency in the network adapter is already utilized by four pairs
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Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread

 Benchmark Description:

— 14 UPC threads are grouped into seven pairs
on two nodes

— Senders send 1MB message to peers and
wait for acknowledgement

— Receivers perform a defined amount of
computation before polling network
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Load Balancing Evaluation for Multi-
endpoint Design: Helper Thread

« Bandwidth Results with Computation on
Receiver Side:
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Load Balancing Evaluation for
Multi-endpoint Design: Work Stealing

* Work stealing benchmark:
— 16 UPC threads are grouped into eight pairs on two nodes.
— Computation is represented by DGEMM

— Senders send varying computation to peers and wait for
acknowledgement

— The average workload is matrix size equals to 2,000

— As matrix range x increases, three UPC threads have
workload as 2,000 — x; another three UPC threads receive
2,000 + x workload; the left two UCP threads will keep

getting requests of 2,000

— Receivers reply back once they finish corresponding
computations
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Load Balancing Evaluation for
Multi-endpoint Design: Work Stealing
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« Without work stealing, receivers with light workload become idle
and CPU cycles are wasted

« With work stealing, idle threads consume workload for busy

56 threads: GFLOPS is kept close to peak value
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Conclusion

« Explored multiple design alternatives for UPC runtime
Implementation on multi-core architectures

* Designed a new multi-threaded runtime with multiple
network endpoint design in UCR

« Significant performance improvements over available
multi-threaded runtime

— 80% lower latency as compared to existing multi-threaded
designs

— 2X improvement on bandwidth for medium size messages
 Efficient load balancing using ‘Helper Thread’ and ‘Work

stealing’ techniques

— 90% of peak efficiency

— 1.3 times better than existing multi-threaded Runtime design
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Future Work

« Application level evaluations using lrregular
applications such as Graph500, Barnes Hut, etc

« UPC collectives using multi-threaded design with
multiple endpoints

* Multi-threaded, multi-endpoint support to hybrid
applications of MP| and UPC
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