Multi-Threaded UPC Runtime for GPU! to
GPU communication over InfiniBand

Miao Luo, Hao Wang,
& D. K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, USA

OHIO
SIAIE

OHIO
SIAIE

Outline

Introduction

Motivation

Proposed Designs
Performance Evaluations
Conclusion & Future Work

Outline

* |ntroduction

SIATE

Introduction

 Unified Parallel C (UPC)

— One of the most popular PGAS programming languages

— High-productivity and better applicability on hierarchical
architectures

— lrregular parallelism
» Graphics Processing Units (GPUs) Clusters:

— High peak performance

— Cost-efficiency

— OpenCL / CUDA

— High performance interconnects (i.e. InfiniBand)
« UPC (PGAS) + CUDA (GPU)?

4

OHIO

Outline

 Motivation

SIATE

Motivation

UPC Thread 0:
cudaMalloc(&device buffer);
tmp_send_buffer = upc_all_alloc(...);

cudaMemcpy(tmp_send_buffer,
device_buffer,...);

upc_barrier;

upc_memput();

upc_barrier;

UPC Thread 1:
cudaMalloc(&deviceBuffer);
temp_recv_buffer = upc_all_alloc(...);

upc_barrier;

upc_barrier;
cudaMemcpy(deviceBuffer,
tmp_recv_buffer, ...);

OHIO
SIAIE

Motivation

UPC Thread 0:
cudaMalloc(&device buffer);
tmp_send_buffer = upc_all_alloc(...);

R

!

cudaMemcpy(tmp_send_buffer,
dewce_b_uffer,...); OO
upc_barrier; temporary buffer
upc_m emput : can be overwritten
—| upc_barrier;

}

!

b

UPC Thread 1:
cudaMalloc(&deviceBuffer);
temp_recv_buffer = upc_all_alloc(...);

upc_barrier;

upc barrier; Make sure Flata
— already arrived
cudaMemcpy(de :
tmp_recv_buffer, ...);

» Complicated CUDA functions & temporary host buffer

 Explicit synchronizations

* Involvement of remote UPC thread: poor latency when remote is busy ...

OHIO
SIAIE

Motivation

UPC Thread 0:
cudaMalloc(&device buffer);
tmp_send_buffer = upc_all_alloc(...);

cudaMemcpy(tmp_send_buffer,
device_buffer,...);

upc_barrier;

upc_memput();

upc_barrier;

UPC Thread 1:
cudaMalloc(&deviceBuffer);
temp_recv_buffer = upc_all_alloc(...);

upc_barrier;

upc_barrier;
cudaMemcpy(deviceBuffer,
tmp_recv_buffer, ...);

« Can both device and host memory be part of shared space and be accessed
by the same UPC thread at the same time through UPC standard APIs?

* How to provide efficient GPU to GPU communication based on RDMA

features?

* How to ensure low-latency non-uniform data access while the destination is

busy?

OHIO
SIAIE

Outline

* Proposed Designs

SIATE

GPU Global Address Space with

Host and Device Memory

Host Memory Host Memory
Private Private
(oo | | [0~ o]
| Shared shared space Shared I
I |
. on hclst_ mfnfry ,
Device Memory Device Memory
Private Private
(= =-=="== N
I i}i Shared shared spage i}i Shared I
\ on glevice memory I
upc_on_device(); . .
/* allocated on device shared segment */ Extended APls:
upc_all_alloc(THREADS, N*sizeof(int)); — upc_on_device/upc_off device
. * Return true device memory through Unified
upc_off_device(), Virtual Addressing (UVA)

/[* allocated on host shared segment */
upc_all_alloc(THREADS, N*sizeof(int));
10

OHIO
SIAIE

NETWORK-BASED
COMPUTING
LABORATORY

Design for Remote Memory
Operation

+ After device memory becomes part of the global shared
space:
— Accessible through standard UPC APIs

— Data movement and communication over network both hidden
inside runtime

« Goal: same or better performance compared to existing
UPC/CUDA device to device memory access operations

11
OHIO
SIAIE

— NETWORK-BASED F
COMPUTING
LABORATORY

OHIO
SIAIE

Design for Remote Memory
Operation

upc_memput for small and medium message through RDMA Fastpath
design

Device Host Host Device
Memory Memory Memory Memory

RDMA_WRITE

cudaMemcpy

cudaMemcpy

12

— NETWORK-BASED F
COMPUTING
LABORATORY

OHIO
SIAIE

Design for Remote Memory
Operation

upc_memget for small and medium message through RDMA Fastpath

design
Device Host Host Device
Memory Memory Memory Memory

memget_upc_ack

RDMA_WRITE

———

cudaMemcpy

cudaMemcpy

13

O

H

IO
SIAIE

NETWORK-BASED
COMPUTING
LABORATORY

Design for Remote Memory
Operation

upc_memput for large message

Device Host Host Device
Memory Memory Memory Memory
Malloc &
pin-down
cudaMemcpy memput_upc_ack

__________________________).

RDMA_READ

<

cudaMemcpy

Registration Cache

14
Free-delayed buffer

OHIO
SIAIE

Design for Remote Memory
Operation

upc_memput for large message

Device Host Host Device
Memory Memory Memory Memory

Malloc &
pin-down

memput_upc_ack

cudaMemcpy “Neemmmm——m =~ Memput upc_ack >

RDMA_READ

cudaMemcpy

-

cudaMemcpy

cudaMemcpy

Overlapping of data movement and network

.S, 15
communication

— NETWORK-BASED F
COMPUTING
LABORATORY

OHIO
SIAIE

Design for Remote Memory
Operation

upc_memget for large message

Device Host Host Device
Memory Memory Memory Memory

Malloc &

pin-down memget_upc_ack
——————————————————————————————————— Malloc &

pin-down

RDMA_WRITE
cudaMemcpy

’ memget_upc_reply

/

cudaMemcpy
h

16

—

Helper Thread for Improved

Asynchronous Access

 Remote UPC threads are busy?
» Helper threads managed by user?

OHIO
SIAIE

Device Memory EP L
Access Busy

LABORATORY

GPU

[Kernel

)

)

Function

S EEEEEEEEEEEE >

GPU
Device
Memory

17

—

Helper Thread for Improved

— Poll endpoints of busy UPC threads
— Helper thread complete memory access

Asynchronous Access

* True runtime helper thread

— Multi-GPUs are supported by multi-endpoints

Device Memory
Access

OHIO
SIAIE

EP

Busy I

)

GPU

[Kernel

Function

LABORATORY

EP

oJol

GPU
Device
Memory

18

United Communication Runtime

* Designed and implemented with multi-threaded
Unified Communication Runtime (UCR):

— Support both MPI and PGAS programming models on
InfiniBand clusters

— Based on MVAPICH2 project
« MVAPICHZ2-X 1.9a release:

— http://mvapich.cse.ohio-state.edu
— OpenSHMEM support in current release
— UPC support in next release

19

OHIO

OHIO
SIAIE

Outline

« Performance Evaluations

20

Experimental Platform

« The experiments are carried out on following

platform:
— Four nodes, Each contains two sockets

— Intel Xeon Quad-core Westmere CPUs operating at 2.53GHz and 12GB
of host memory

— Each node has one Tesla C2050 GPU with 3GB DRAM
— MT26428 QDR ConnectX HCAs (36Gbps)
— Red Hat Linux 5.4, OFED 1.5.1, and CUDA Toolkit 4.0

« Comparison to user level UPC/CUDA implementations
— Naive: explicity cudaMemcpy and cudaMalloc; temporary host buffers
— Improved: multi-threaded UCR + our proposed designs

21

OHIO

— NETVIORCEASED
Micro-benchmark Evaluation 2=

upc_memput latency

40
35
30
» 25
o 20
i= 15
10

OHIO
SIAIE

A
w 80 —#—Naive /_
34% 107
=#=Improved
i - 60 - 1
2 50
[«2)
£ 40
| =
| =#=Naive 30
20
<+ =#=Improved 10
T T T T T 1 0 T T T T 1
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Message Size (byte) Message Size (byte)
900
800 ==Naive
700
- 600 =#=|mproved
2 500
£ 400
= 300
200
100
O T T T T 1
64K 128K 256K 512K 1M

Message Size (byte)

22

NETWORK-BASED
COMPUTING
LABORATORY

Micro-benchmark Evaluation

upc_memget

600
~*-Naive

500 7 -®-|mproved-no-helper
400 +— “Improved-with-helper
(2
2
o 300
E
= 200

100

{A,v A a = A A

0 | | | | |

0 50 100 150 200 250
Unbalanced Workload on Remote UPC Thread (N)

« The local UPC thread calls upc memget operation to read a piece of 8K
byte data on the remote device memory

* Remote UPC is busy with CUDA kernel function doing matrix multiplication,,

crioikernel function is not calculating on the required data
*@\E

700

600 —— UCR Communication Time
B UCR Calculation Time

@ User Communication Time

500 +—

N
o
o

~ M User Calculation Time

w
o
o

N
o
o

Average Time (us)

o
1

N=100 N=300
Matrix Size (N x N)

« Matrix Multiplication with 4 GPU nodes

« Communication between root node and other nodes happens before/after

computation in every iteration
24

OHIO
SIAIE

OHIO
SIAIE

Outline

 Conclusion & Future Work

25

Conclusion

* Identify problems in current UPC/CUDA applications

* A new multi-threaded UPC runtime is proposed:
— GPU global address space

— Design for remote memory access
— Runtime helper thread for improved asynchronous access

» Evaluation through micro-benchmarks and sample
benchmark:

— 47% for upc_memput
— Helper thread micro-benchmark evaluation

— 17% ~ 34% improvement for a parallel matrix-multiplication
sample benchmark

26
OHIO

Future Works

« Adapting UPC/CUDA for irregular applications

* Further study on the helper thread and work-stealing
based on multi-threaded UPC runtime at real
application level

27
OHIO
SIAIE

Thank You!

{luom, wangh, panda}@cse.ohio-state.edu

&‘%ased CO%
§ 05’ | _\-_ MVAPICH
Laboratory -~

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

28
OHIO
SIAIE

OHIO
SIAIE

Matrix Multiplication

CIN][N] = A[N][N] * B[N][N]

B is divided into 4 (the number of GPUs) matrix B,[N][N/4] and B; is
associated with UPC thread with thread ID 1.

Kernel function: C,[N][N/4] = A[N][N] * B,[N][N/4]

C, will be sent to UPC thread 0

29

